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Ganesh, Massoulié and Towsley: The effect of network topology on the spread of epidemics (2005)
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“Weakly-coupled” problems

Qﬁ% )

» Multiple “easy” control problems » Separate easy problems...
stitched together by joint constraints

» E.g. : » E.g. Online Purchasing:
- T items arrive sequentially, with Select items from incoming stream, with
values V1, Vo, ..., V7 values and costs
- Can select up to B items (no budget or limit on # items accepted)
Vi=10 Vo=7? Vr=? Vi=10 V=2 Vr=?

-8 88 .
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Online knapsack: results

- . O

Online purchasing

VO V? V? VO Vm

Kamesh Munagala: Lecture notes on “Optimization and Decision-Making under Uncertainty” (2016)

V=7

CT=)\
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Online knapsack: results

- . O

Online purchasing

VO V? V? VO Vm

Can choose a ‘cost’ A s.t. accepting all V:>A while space available
gives a 2-approximation

Kamesh Munagala: Lecture notes on “Optimization and Decision-Making under Uncertainty” (2016)

V=7

CT=)\
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Online knapsack: results
1

! _ @ii%ij%? -

5 <

Online purchasing

Vi=10 Vo=? Vr="7? Vi=10 Vo=?

c1=A Co=A
Can choose a ‘cost’ A s.t. accepting all V:>A while space available

gives a 2-approximation

Kamesh Munagala: Lecture notes on “Optimization and Decision-Making under Uncertainty” (2016)

V=7

CT=)\
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Classifying coupling techniques
@5::%:% > @ A. Every sample path B. Steady-state distribution

1. More information

M/M/k vs. M/M/1
2. Fewer constraints

, . Queues with redundancy
3. Simpler dynamics | |
SIS epidemics
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Classifying coupling techniques

@ﬁii%:% > @ A. Every sample path

1. More information

M/M/k vs. M/M/1

2. Fewer constraints Online knapsack

(via constraints-to-costs)

, . Queues with redundancy
3. Simpler dynamics | |
SIS epidemics

B. Steady-state distribution

22



BIG online knapsacks

BEDE O ~-666
o

Should we be happy
with a 2-approximation?

» T items arrive sequentially, with values V1, Vo, ...

» Can select up to B items
» Both B and T are large (with say B = 0.1 T)

Vr
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BIG online knapsacks

BEDE O ~-666
o

Should we be happy
with a 2-approximation?

» T items arrive sequentially, with values V1, Vo, ...

» Can select up to B items
» Both B and T are large (with say B = 0.1 T)

That means our regret

grows linearly with T

Vr

23



Classifying coupling techniques

@ﬁii%:% > @ A. Every sample path

1. More information

M/M/k vs. M/M/1

2. Fewer constraints Online knapsack

(via constraints-to-costs)

. . SIS epidemics
3. Simpler dynamics |
Queues with redundancy

B. Steady-state distribution
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Classifying coupling techniques

@ﬁii%:% > @ A. Every sample path

BIG online knapsack

1. More information
(stay tuned!)

M/M/k vs. M/M/1

2. Fewer constraints Online knapsack

(via constraints-to-costs)

. . SIS epidemics
3. Simpler dynamics |
Queues with redundancy

B. Steady-state distribution

24



In-Depth Study 1:
Online Resource Allocation



The (stochastlc) online knapsack

5 b b -

» Can select up to B items

* Values are i.i.d from distribution

5  with probability pg

ﬁijjﬁ V. =4 10 with probability pq,

20 with probability p,,

» T items arrive sequentially, with values V1, Vo, ...,

VT
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The (stochastlc) online knapsack

20

» Can select up to B items

* Values are i.i.d from distribution

\f:} ii:} 5  with probability pg

V. =4 10 with probability pq,
20 with probability p,,

i » T items arrive sequentially, with values V1, Vo, ...,

VT

26



Prophet benchmarks

@i:%? o

 Uncertainty about the future

ﬂ VO V? V?




Prophet benchmarks

@i:%? @

 Uncertainty about the future » Knows the future!

ﬂ VO V? V?




Prophet benchmarks

%8

 Uncertainty about the future

ﬂ ‘10 Vz‘— VT‘—

%

 Knows the future!

» Offline Knapsack

=10 Vyh= V=20

D& -
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Coupling to OFFLINE

Vs=? Ve=? Vy=7 Vg=7

i:%;j% m VO V? V? V?

%



Coupling to OFFLINE
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Coupling to OFFLINE

é}@ mvmv i? i? ? . ? ?
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Coupling to OFFLINE
SN\ EEEEEEE

RON(0Q)=0

) (B

DOFF(8,4)=70




Coupling to OFFLINE

é}@ Vz_? Vg_? V4—? Vs—? V? V? V

RON(1) =

DOFF(8,4)=70




Coupling to OFFLINE

Qﬁ%

RON(l) =10

(I)OFF('7,3) =60

@ VO VO VS V5




Coupling to OFFLINE

5;:;} V? V? V? V? V? V? V?

RON(1)=10

i
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Coupling to OFFLINE

10

9 566 OO O G

RON(1)=10 >
QSO& Q'Qfs*
e @ fo
55
sat® .

DOFF(7.3) =60

@ VO vo VO VO V =5 VS v




Coupling to OFFLINE with compensations

S NTEEEEE

RON(2)=20

POFF(6,2) =40

@ ‘ VO Vo VO vs VS vo




Coupling to OFFLINE with compensations

=20 V4=? Vs=? Ve=? Vy;=? Vg=?

S JEEEEE &
@ VO VO VO V =5 V =5 VO




Coupling to OFFLINE with compensations

V3=20 V4=? Vs5=? Ve=? V;=7? Vg—

S B EEEEE

RON(2)=20
QSOC?Q'Q’
& &[
(c? © -
e st
Sa \}0

POFF(6,2) =40

@ 0 VO VO VS VS V




Coupling to OFFLINE with compensations

éj%i;i%} V? V? V? V ? V ? V ?

RON(2)=20

Comp(2)=10

POFF(6,2) =40

@ VO Vo VO vs VS VO




Coupling to OFFLINE with compensations

w_?vwﬂ Vs=? Ve=? Vy=? Vg=?

H O 6H O O O

RON(2)=20 >
OV ¢/
ﬁﬁ Comp(2)=10 %@?®
\
S‘aﬁ\es Omp )§70
dOFF(6,2) =40

20V4 20V5 10 V6 S V7 5 Vg
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Coupling to OFFLINE with compensations

20 Va="?

T ) &

RON(7)=40

adds to
(DOFF(8,4)=7O Comp(1)++C0mp(7)=1()

POFF(1,1)=20

@ V‘ZO




Coupling to OFFLINE with compensations

o 18R
3" 4

RON(8)=60

adds to

Comp(1l)+...+Comp(8)=10
DOFF(8,4) =70 p(1) P(8)

@DOFF(0,0)=0

&




Compensated coupling

S

POFF(8,4) — POFF((Q,0) = RON(8) + (Comp(1)+Comp(2)+...+Comp(8))
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Compensated coupling

S

POFF(8,4) — POFF((Q,0) = RON(8) + (Comp(1)+Comp(2)+...+Comp(8))

iONLINE state)

where Comp(t) = ®OFF(T—t,B;) - RON(t)
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Compensated coupling

S

POFF(8,4) — POFF((Q,0) = RON(8) + (Comp(1)+Comp(2)+...+Comp(8))

fONLINE state)

where Comp(t) = ®OFF(T—t,B;) - RON(t)
= “Compensation” provided to OFFLINE for following ONLINE
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Compensated coupling

SIS

DOFF(8,4) — POFF(0,0) = RON(8) + (Comp(1)+Comp(2)+...+Comp(8))

fONLINE state)

where Comp(t) = ®OFF(T—t,B;) - RON(t)
= “Compensation” provided to OFFLINE for following ONLINE

Notes: In computing Comp/(t)
» Past arrivals/actions are forgotten (only ONLINE’s current state matters)
» Future arrivals are incorporated via OFFLINE (Comp(f) is a rand. var.)

35



When do we compensate?

Vo=10 V3=? V4=? Vs=? Ve=? Vy=? Vg=?

B




%::f

When do we compensate?

=10 V3=? V4=? Vs=? Ve=? Vy;=? Vg=?

DB b

wants to accept Vo

= 10 IFF at least 3 future arrivals have value 20
= 0 otherwise

36



e

If

When do we compensate?

o

Vo=10 V3=? V4=? Vs=? Ve=? Vy=? Vg=?

wants to accept Vo

10 IFF at least 3 future arrivals have value 20
O otherwise

wants to reject Vo

10 IFF at most 2 future arrivals have values in {10,20}
0 otherwise

36



When do we compensate?

Vo=10 V3=? Vy4=7? V5— Ve="7 V7—7 Vg="?

i 58 8% 8 G

/

| Bin(6, pyg) = 3]

/

P[Bin(6,py0 +p10) <2]



Compensated coupling: online knapsack

@ m The Bayes selector: é:%jﬁ;
={ ONLINE chooses action with least compensation

Vera and Banerjee: The Bayesian Prophet (2020)

37


https://people.orie.cornell.edu/sbanerjee/publication/vera-19/

Compensated coupling: online knapsack

: : : ; chooses action with least compensation @Z:j@

Vera and Banerjee: The Bayesian Prophet (2020)

37


https://people.orie.cornell.edu/sbanerjee/publication/vera-19/

Example: Vt

ﬂ Vi=0.5
. Acceptif V; > 0

» Let h=T-t, and define V = {bth largest value in V|t + 1

00000
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Example: Vt , 1.1.d.
Vi=0.5 Vi=?
ﬂ 8o
. Acceptif V; > 0

» Let h=T-t, and define V — {bth largest value in V|t + 1|, V|t + 2|,...,

Ve : V,
v o Vi t
7 A

0



Example: Vt , 1.1.d.
Vi=0.5 Vi=?
ﬂ 8o
. Acceptif V; > 0

» Let h=T-t, and define V — {bth largest value in V|t + 1|, V|t + 2|,...,

0

ZRIIE 2 R 2
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Example: Vt

m Vi=0.5
. Acceptif V; > 0

» Let h=T-t, and define V = {bth largest value in V|t + 1

00000
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Example: Vt

1.1.d.

ﬂ Vt—‘OS
. Acceptif V; > 0

» Let h=T-t, and define V = {bth largest value in V|t + 1

Comp(t) = \V[Z] — %H]lvte[e,v[ﬁ]]

, v,
00 Vi
0 <}_——_—>

Comp(t)

Vit + 2|,

Vr="?

o

S VTS
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Example: Vt , 1.1.d.

b Vt—O 5 VT—?

. Acceptif V; > 0

+ Let h=T-t, and define V — {bth largest value in V|t + 1|, V|t +2|,...,V|T]}

[Comp(t)] = E _43[|Vh _ th]lvE ) v[g]]\Vt] V[Z]_

A

: '(v[ h H)Q/Z\V < Var(Viy) = ©(1/h)

, v,
NI
0 <}_——_—> 1
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Example: Vt

. Acceptif V; > 0
» Let h=T-t, and define V = {bth largest value in V|t + 1

U[Comp(t)] =

A

_4‘|

A

‘L[

(V) ~ 02/2V] < Var(

“|Regret| = O(logT)

V[b] _ Wlﬂvte[e,v[g]]\%] V[

1.1.d.

) %—05

h
b)

)

H O B

Vit + 2|,

— O(1/h)

Rob Bray: Does the Multisecretary Problem Always Have Bounded Regret? (2020)

Vr="?

S VTS
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https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3497056

Coupling to easy system with more information

OFFLINE ONLINE
F, = ‘natural’ filtration &
R > §; = Ticher filtration (i.e., F; € G;) @

MOFE( ) | QOFE( ) : value/Q functions for OFFLINE
@ON(C ) | QON( | ) :value/Q functions for ONLINE
St, A : state/action taken by ONLINE in time slot t

40



Compensated coupling

OFFLINE ONLINE

3 e



Compensated coupling

OFFLINE ONLINE

POFF(S,) = R1(S1,A1) + POFF(S3) + Comp(1)
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Compensated coupling

OFFLINE ONLINE

POFF(S,) = R1(S1,A1) + POFF(S3) + Comp(1)
DOFF(S5) = Ra(S2,A2) + POFF(S3) + Comp(2)
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Compensated coupling

OFFLINE ONLINE

POFF(S,) = R1(S1,A1) + POFF(S3) + Comp(1)
DOFF(S5) = Ra(S2,A2) + POFF(S3) + Comp(2)

DOFE(S7) = Rr(ST1,AT) + ®OFF(ST4+1) + Comp(T)
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Compensated coupling

OFFLINE ONLII‘%}
QOFF(S 1, Al) @
k__&_ﬂ

POFF(S,) = R1(S1,A1) + POFF(S3) + Comp(1)
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Compensated coupling

OFFLINE ONLII‘%}
QOFF(S 1, Al) @
k__&_ﬂ

POFF(S,) = R1(S1,A1) + POFF(S3) + Comp(1)
DOFF(S5) = Ra(S2,A2) + POFF(S3) + Comp(2)

DOFE(S7) = Rr(ST1,AT) + ®OFF(ST4+1) + Comp(T)

DOFE(S1) = (R1(S1, A1) +...+ Rr(S7, A7) +(Comp (1) +Comp(T))

41



Compensated coupling

OFFLINE ONLII%}
QOFF(S 1, Al) @
f__&_ﬂ

POFF(S,) = R1(S1,A1) + POFF(S3) + Comp(1)
DOFF(S5) = Ra(S2,A2) + POFF(S3) + Comp(2)

DOFE(S7) = Rr(ST1,A1) + ®OFF(ST4+1) + Comp(T)

m

POFF(S1) = RON(S;) + Total Comp

41



Compensated coupling: network revenue management

For NRM with d resources, finite types

| Regret| = ©(d) @

Statie CEQ
e Adapave CEQ
Bayes Selector

&

&

Average Regrel
<

S

) o
o

0 500 1000 1500 2000
Scaling
Vera and Banerjee: The Bayesian Prophet (2020) 42



https://people.orie.cornell.edu/sbanerjee/publication/vera-19/

Compensated coupling: online bin packing

S
\’
(V)
(V)
O
—
©
Q
-
O
Q
Q.
>
(W
QQ
x
3 5 :
,\/0 ,\/Q ,\'Q

Time Horizon

Banerjee and Freund: Uniform Loss Algorithms for Online Stochastic Decision-Making (2020)
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Classifying coupling techniques

@ﬁii%:% > @ A. Every sample path

1. More information

M/M/k vs. M/M/1

2. Fewer constraints Online knapsack

(via constraints-to-costs)

. . SIS epidemics
3. Simpler dynamics |
Queues with redundancy
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Classifying coupling techniques

@ﬁii%:% > @ A. Every sample path

BIG online knapsack

(via compensated coupling)

1. More information

M/M/k vs. M/M/1

2. Fewer constraints Online knapsack

(via constraints-to-costs)

. . SIS epidemics
3. Simpler dynamics |
Queues with redundancy
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