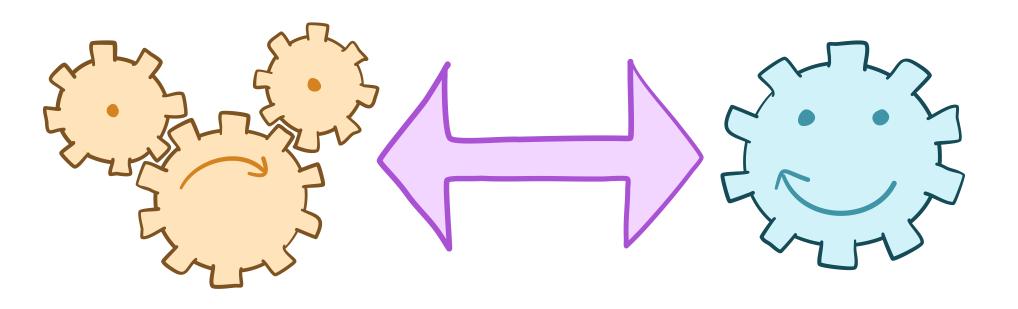
Coupling Techniques for Complex Control Problems

Ziv Scully Carnegie Mellon University

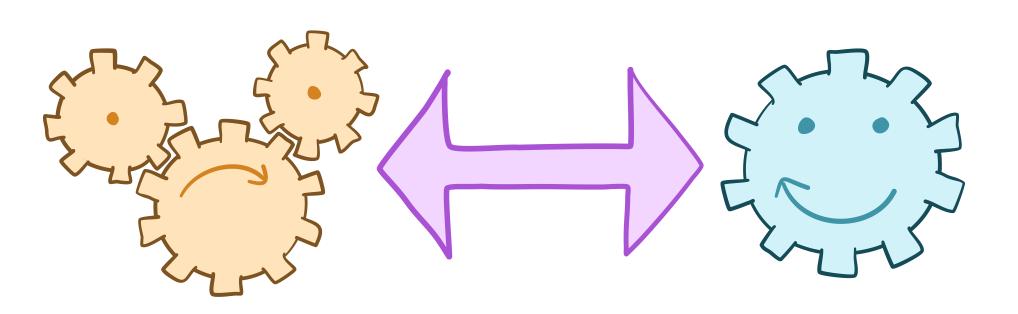
Sid Banerjee Cornell University



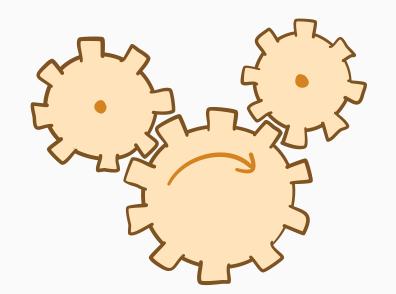
Coupling Techniques for Complex Control Problems

Ziv Scully Carnegie Mellon University

Sid Banerjee Cornell University

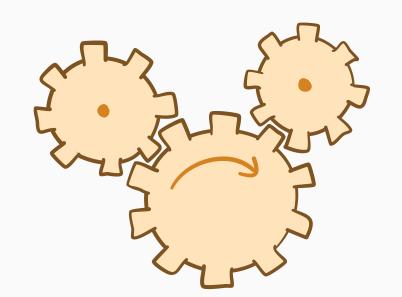


Complex stochastic systems



World is full of complex systems

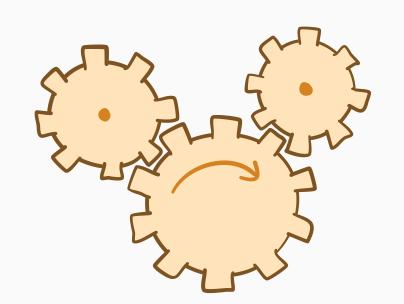
Complex stochastic systems



World is full of complex systems

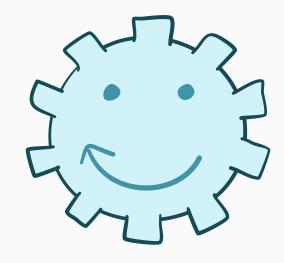
- Epidemics in social networks
- Inventory management
- Ride-sharing networks
- Multiserver queueing systems
- Load-balancing systems
- Many more...

Complex stochastic systems



World is full of complex systems

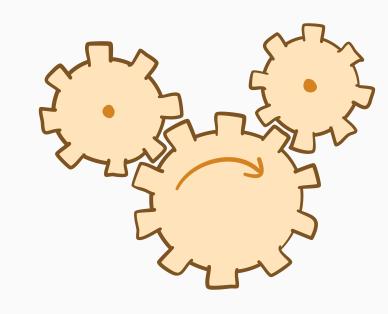
- Epidemics in social networks
- Inventory management
- Ride-sharing networks
- Multiserver queueing systems
- Load-balancing systems
- Many more...



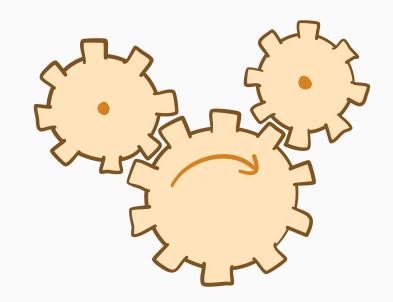
Coupling:

a way to analyze **complex systems** by working with related **easy systems**

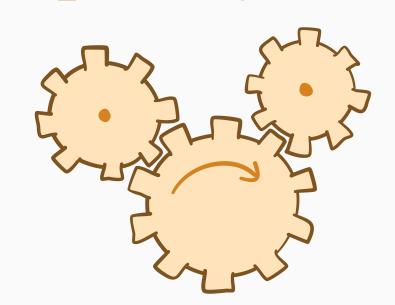
complex system X

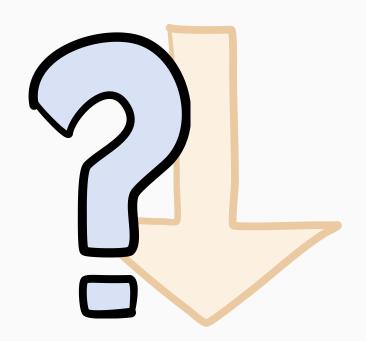


complex system X

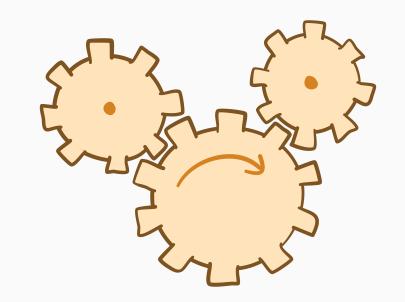


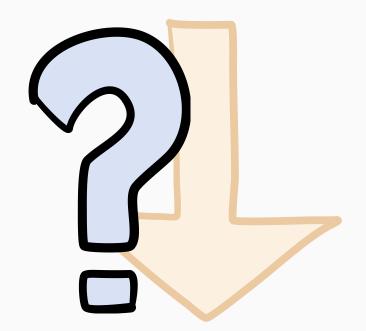
complex system X





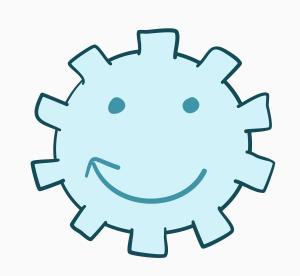
complex system X



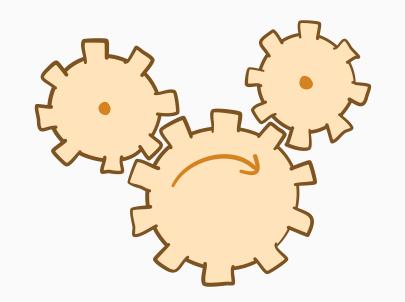


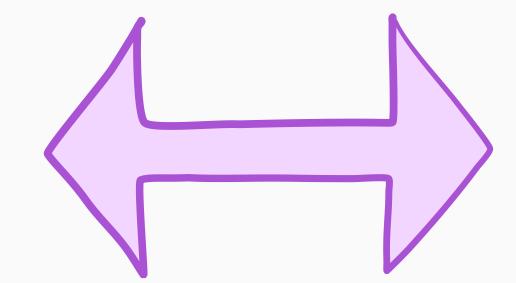
Goal: answer a question about *X* (approximate is okay)

easy system Y

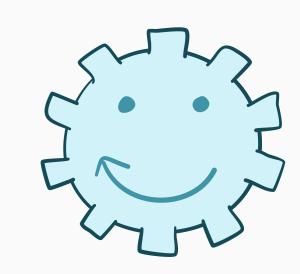


complex system X

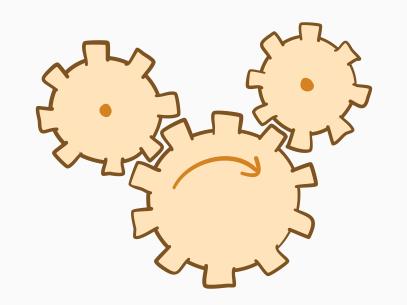


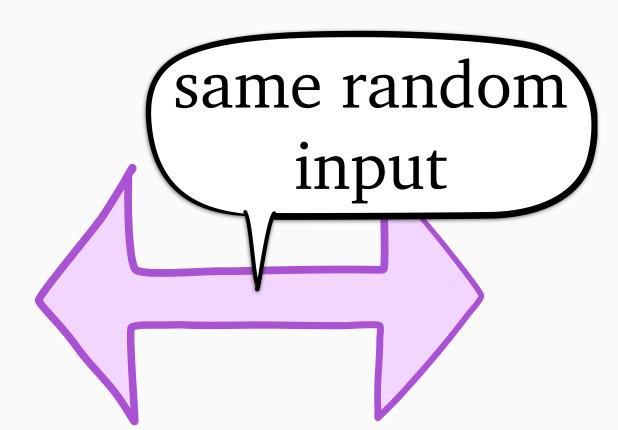


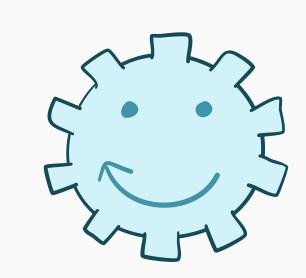
easy system Y



complex system X

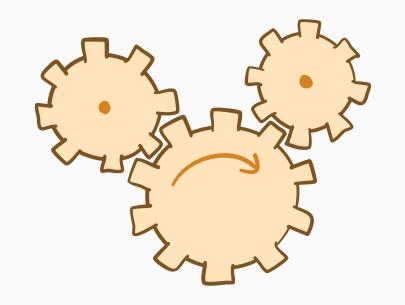


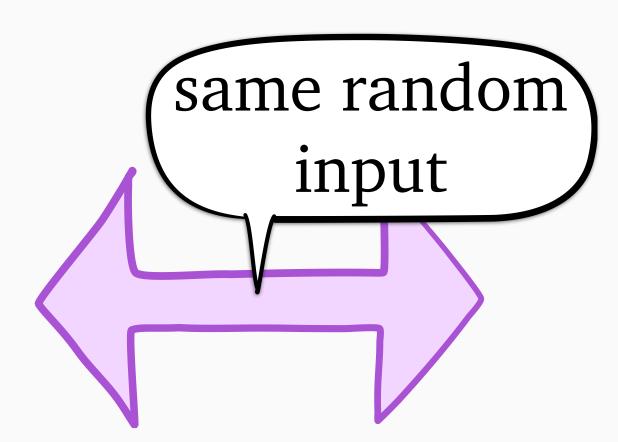




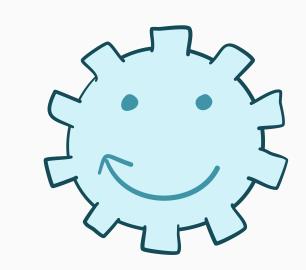


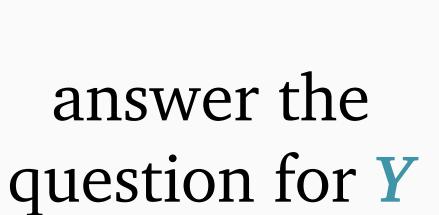
complex system X



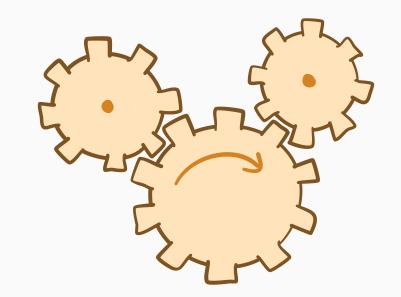


easy system Y



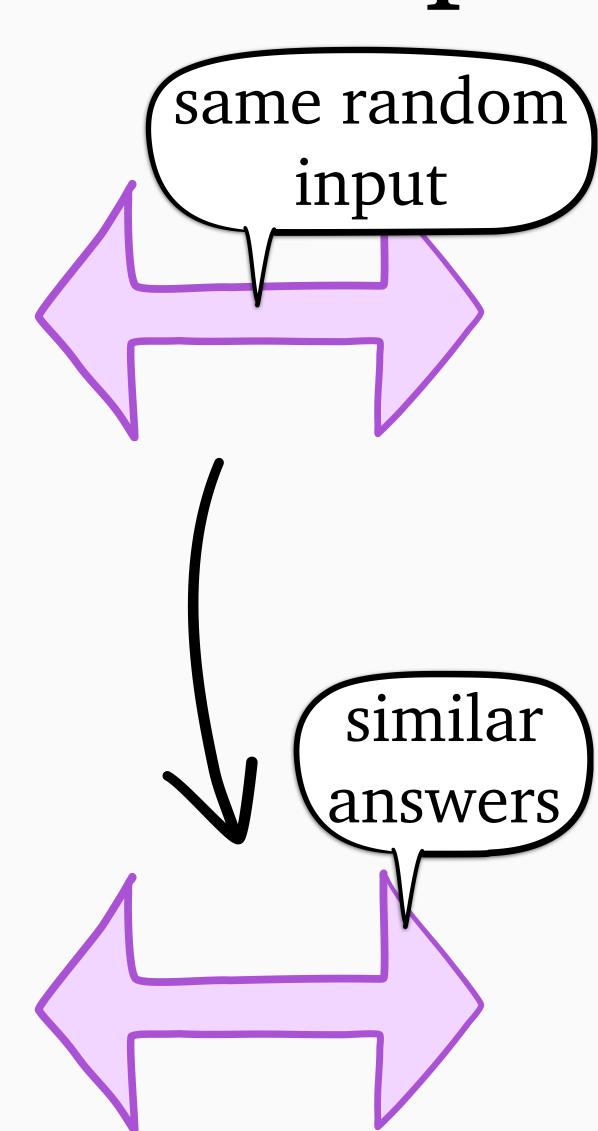


complex system X

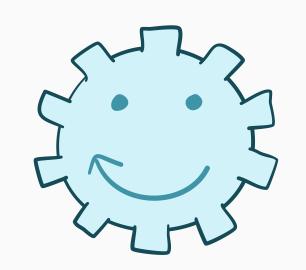


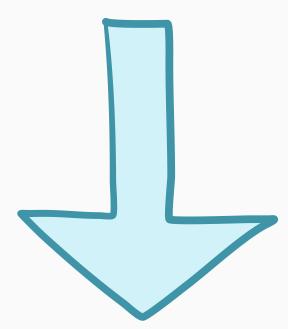


Goal: answer a question about *X* (approximate is okay)



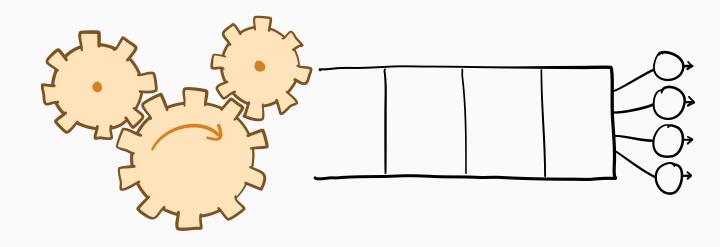
easy system Y



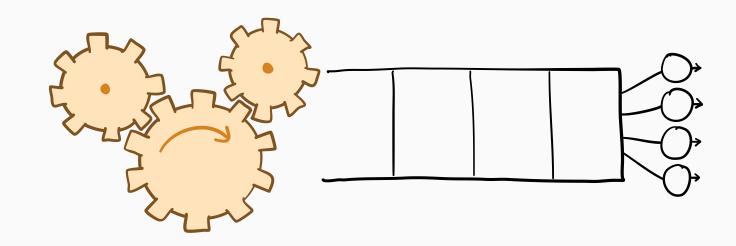


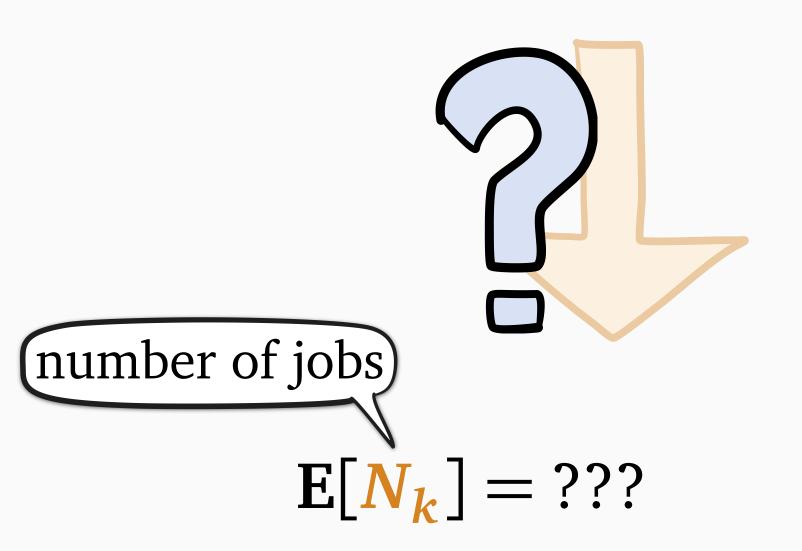
answer the question for **Y**

X = M/M/k

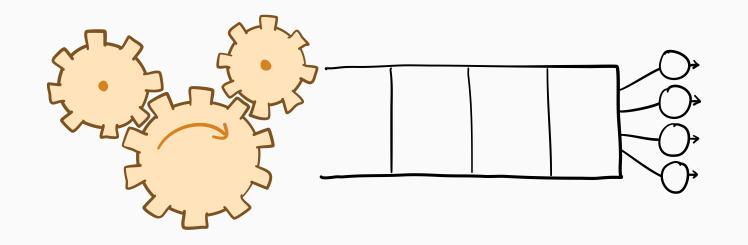


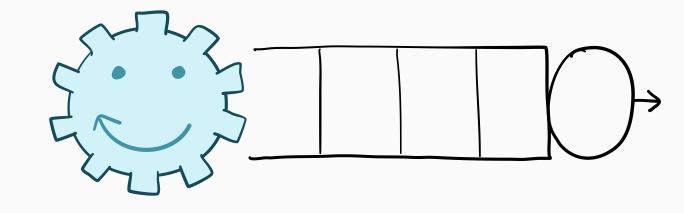
X = M/M/k

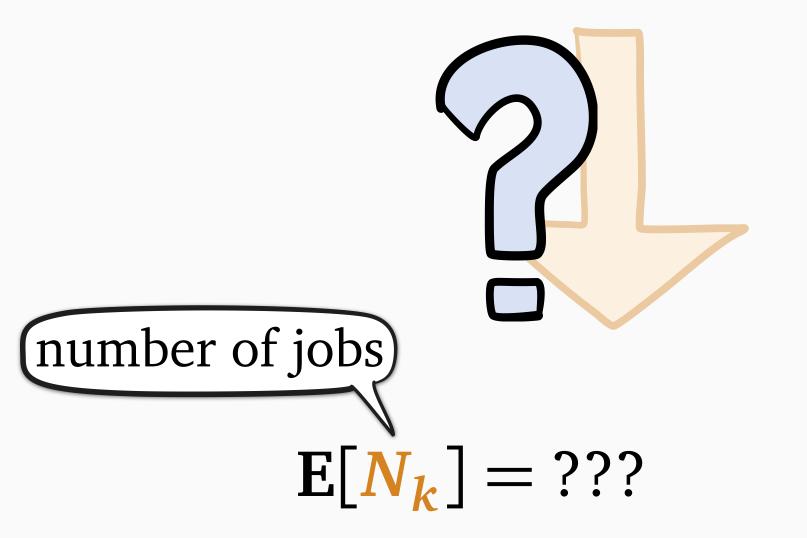




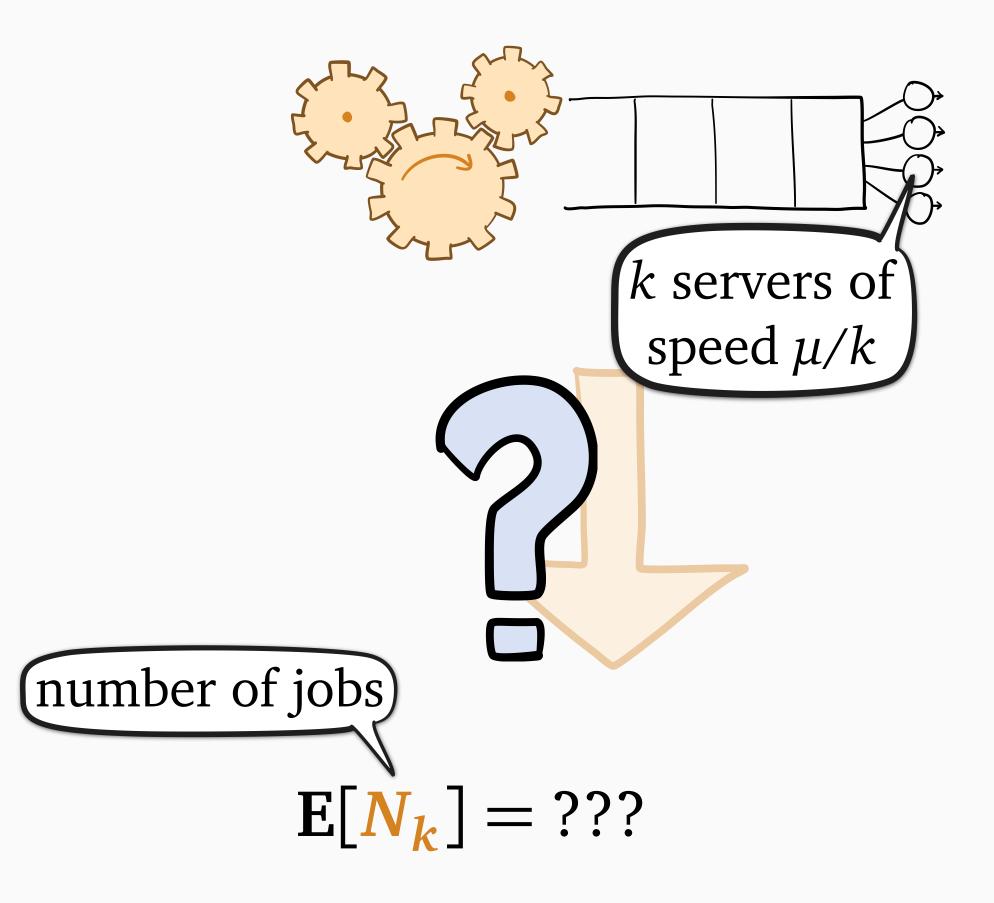
X = M/M/k



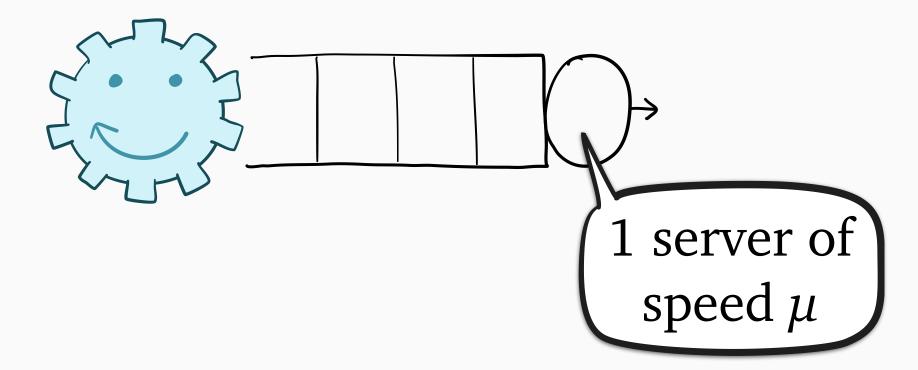


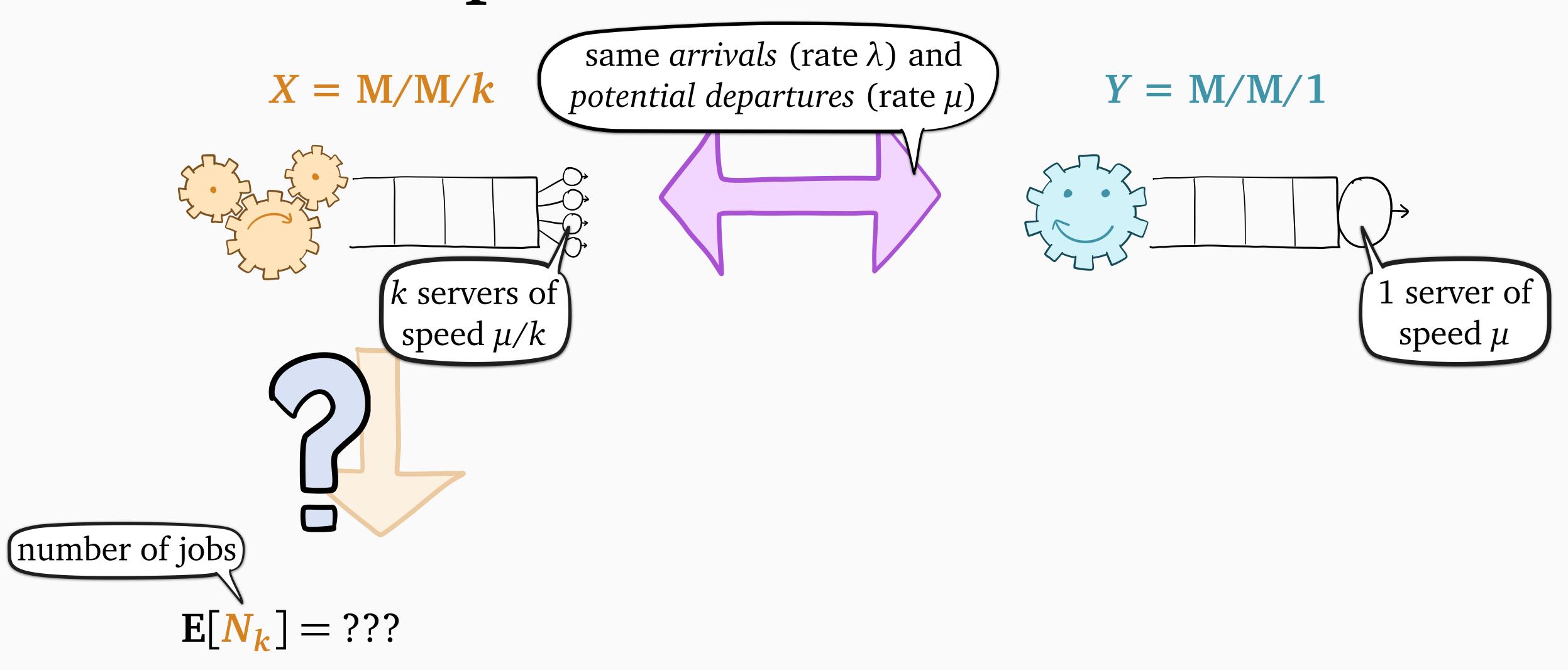


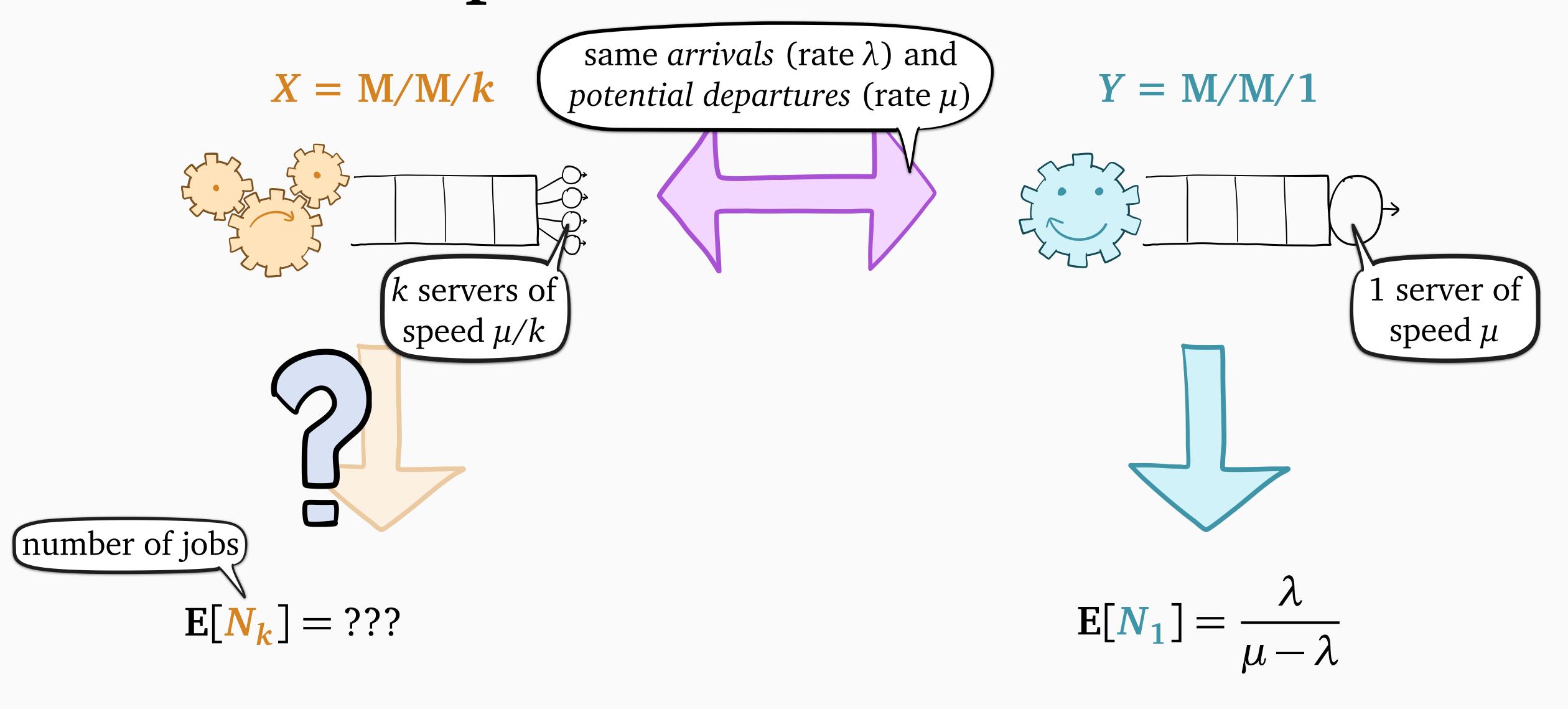
X = M/M/k

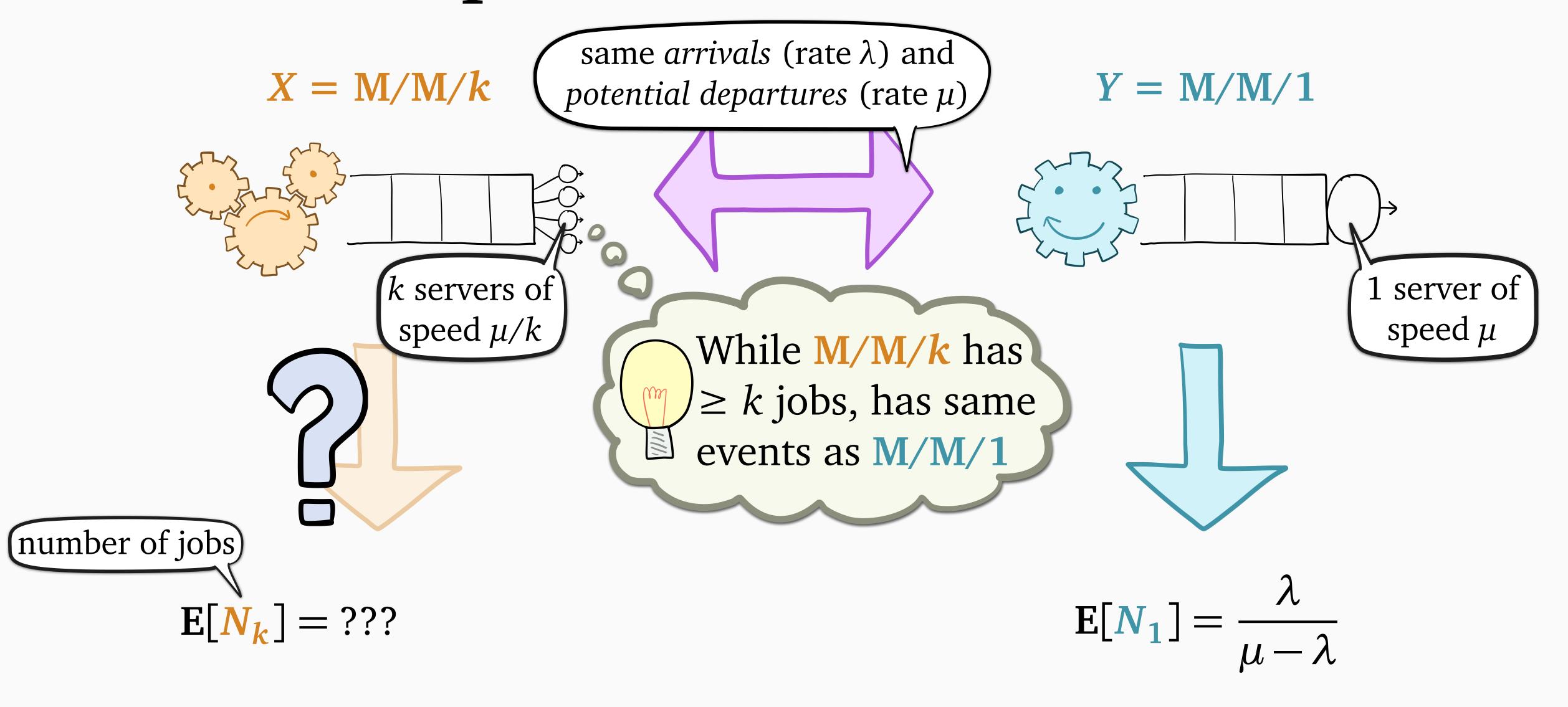


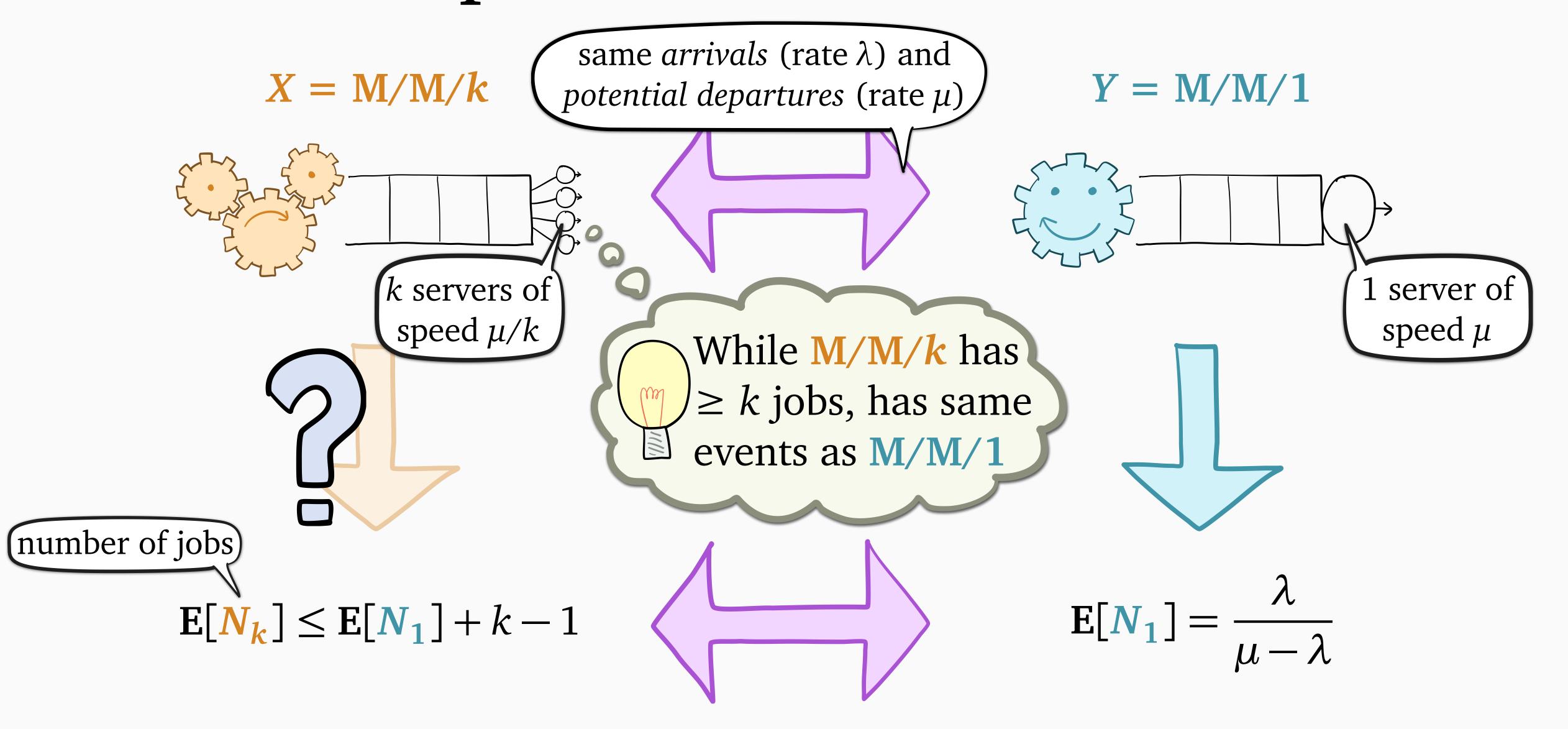
Y = M/M/1



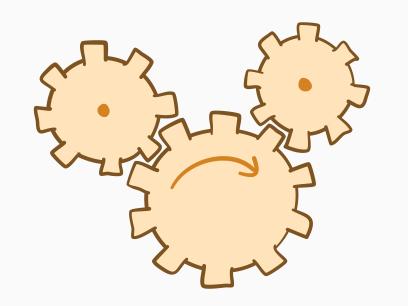


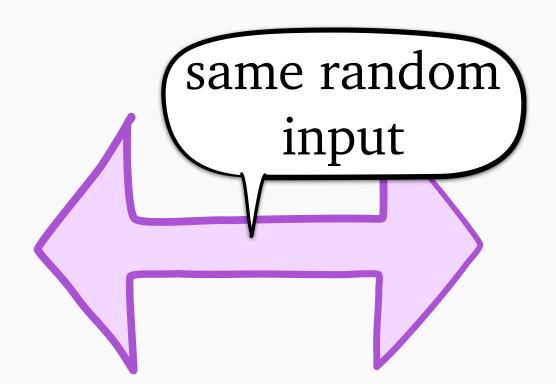




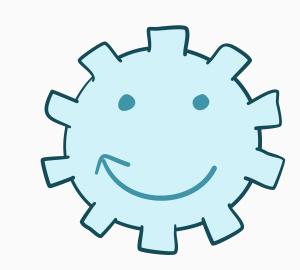


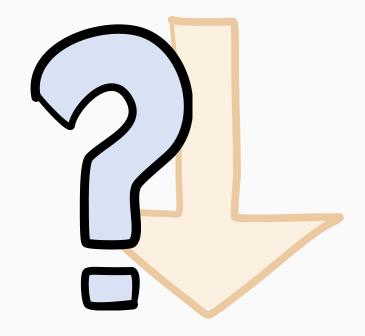
complex system X

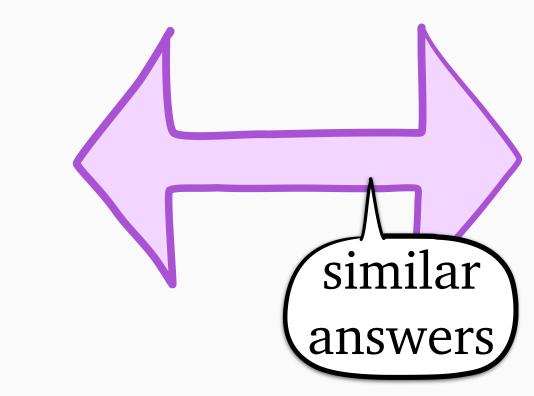




easy system Y

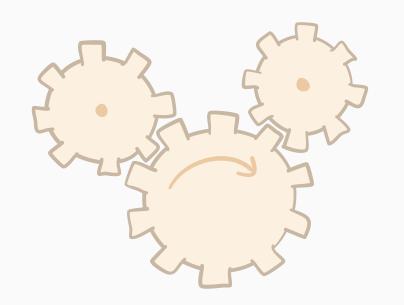


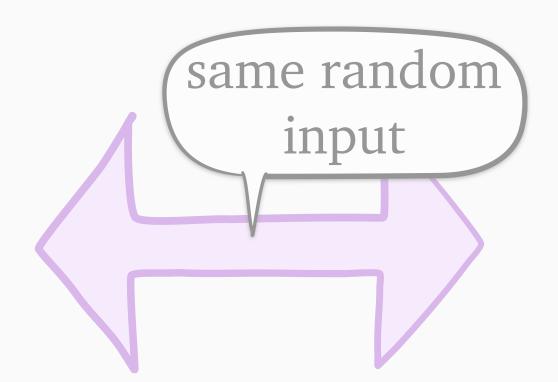


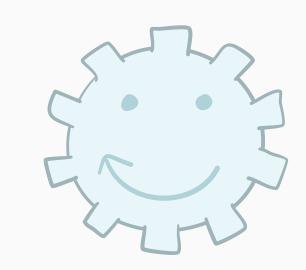


answer the question for **Y**

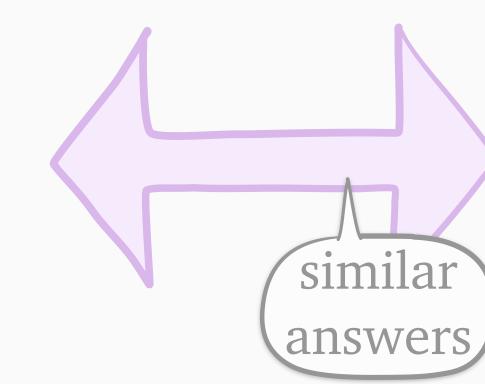
complex system X





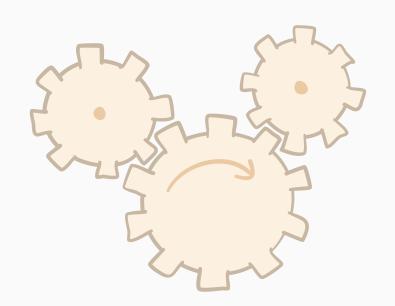


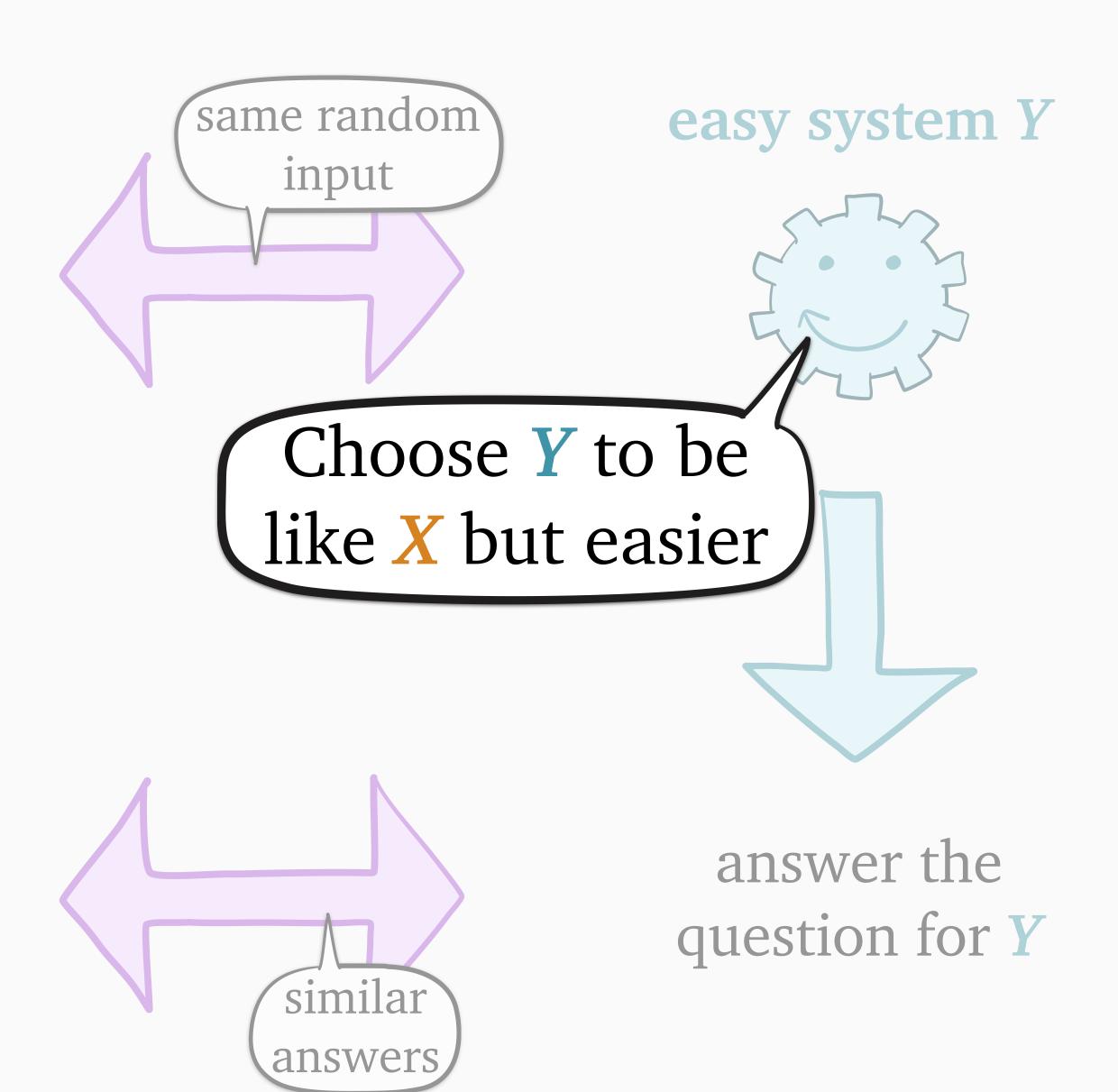


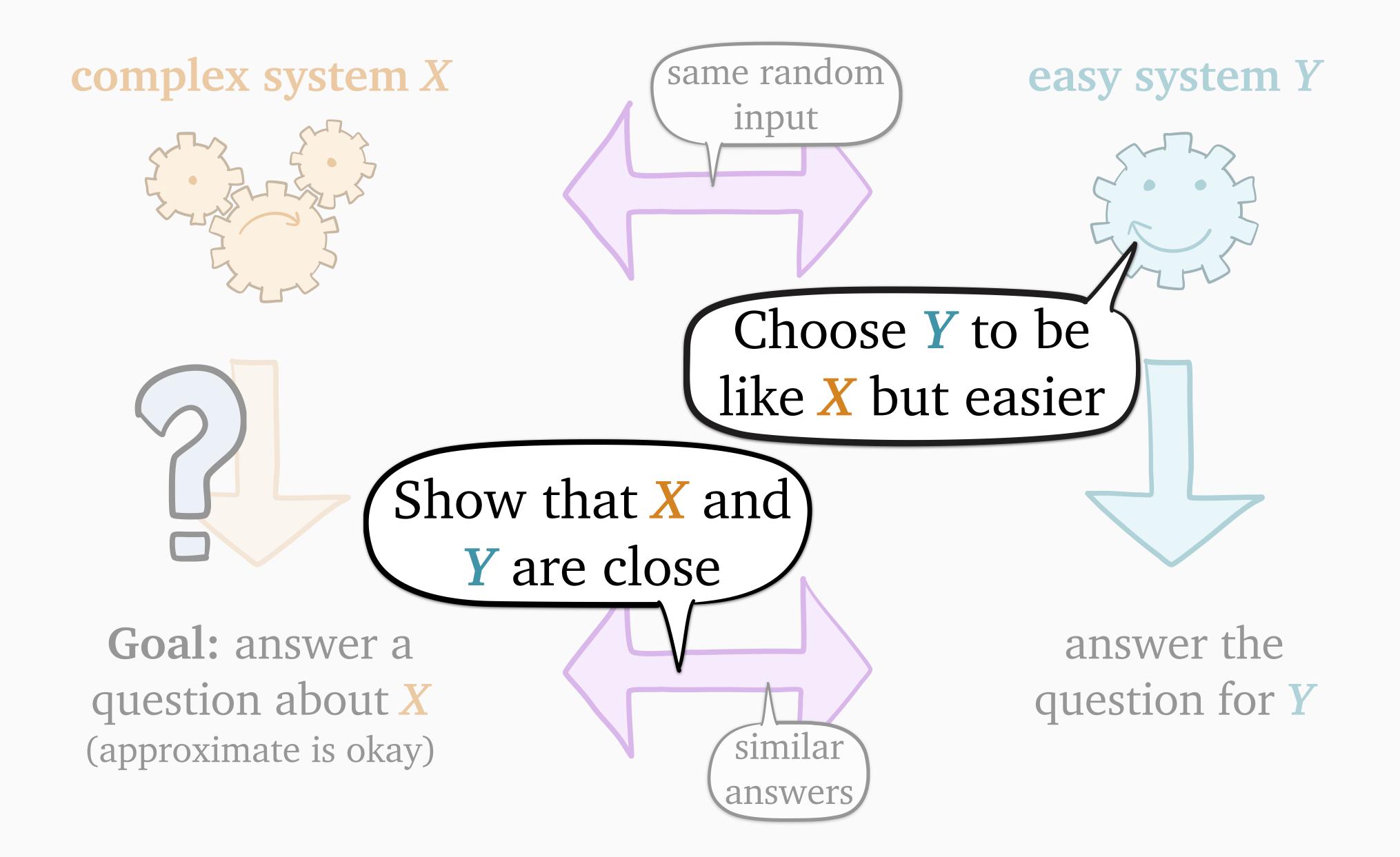


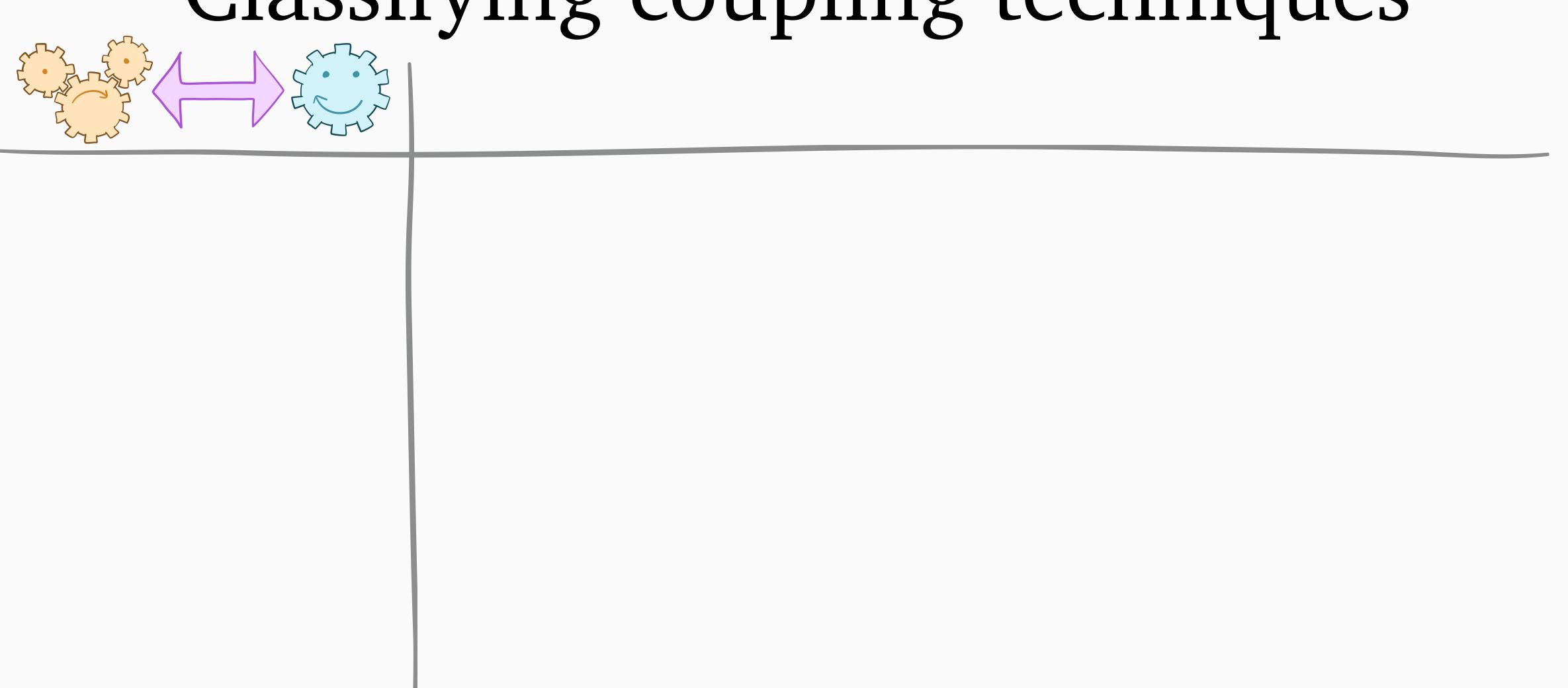
answer the question for *Y*

complex system X

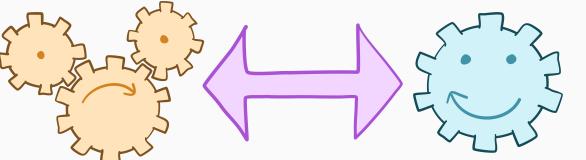




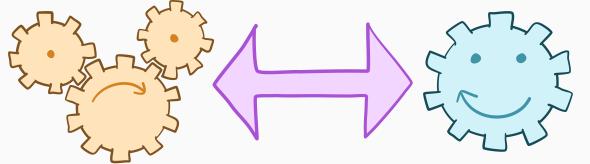






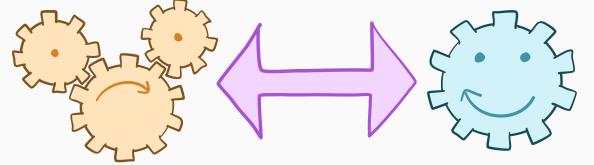


In what sense are *X* and *Y* close?



1. More information

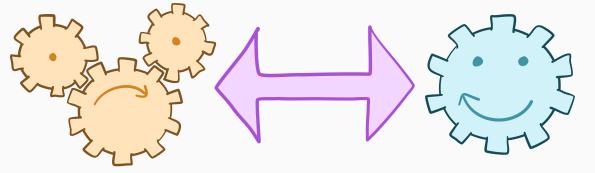
In what sense are *X* and *Y* close?



1. More information

In what sense are *X* and *Y* close?

2. Fewer constraints



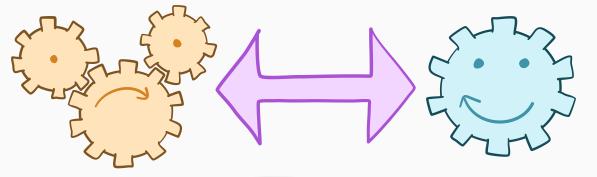
1. More information

In what sense are *X* and *Y* close?

2. Fewer constraints

How does Y make X easier?

3. Simpler dynamics



A. Every sample path

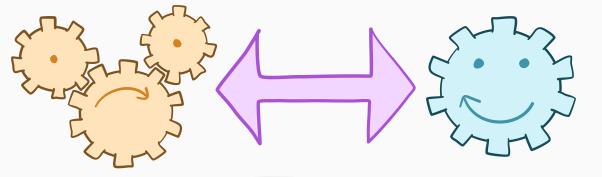
1. More information

In what sense are *X* and *Y* close?

2. Fewer constraints

How does Y make X easier?

3. Simpler dynamics



A. Every sample path

B. Steady-state distribution

1. More information

In what sense are *X* and *Y* close?

2. Fewer constraints

How does Y make X easier?

3. Simpler dynamics

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2	B2
3. Simpler dynamics	A3	B3

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2 M/M/k vs. M/M/1	B2
3. Simpler dynamics	A3	B3

Overview

Part 1 Part 2

Part 2 Part 1

Survey 1: Sample-Path Coupling

Part 1

Part 2

Survey 1: Sample-Path Coupling

Survey 2: Steady-State Coupling

Part 1

Part 2

Survey 1: Sample-Path Coupling

Survey 2:
Steady-State Coupling

In-Depth Study 1:

Online Resource Allocation

Part 1

Part 2

Survey 1:

Sample-Path Coupling

Survey 2: Steady-State Coupling

In-Depth Study 1:

Online Resource Allocation

In-Depth Study 2:
Gittins in the M/G/k

Part 1

Part 2

Survey 1:

Sample-Path Coupling

Survey 2: Steady-State Coupling

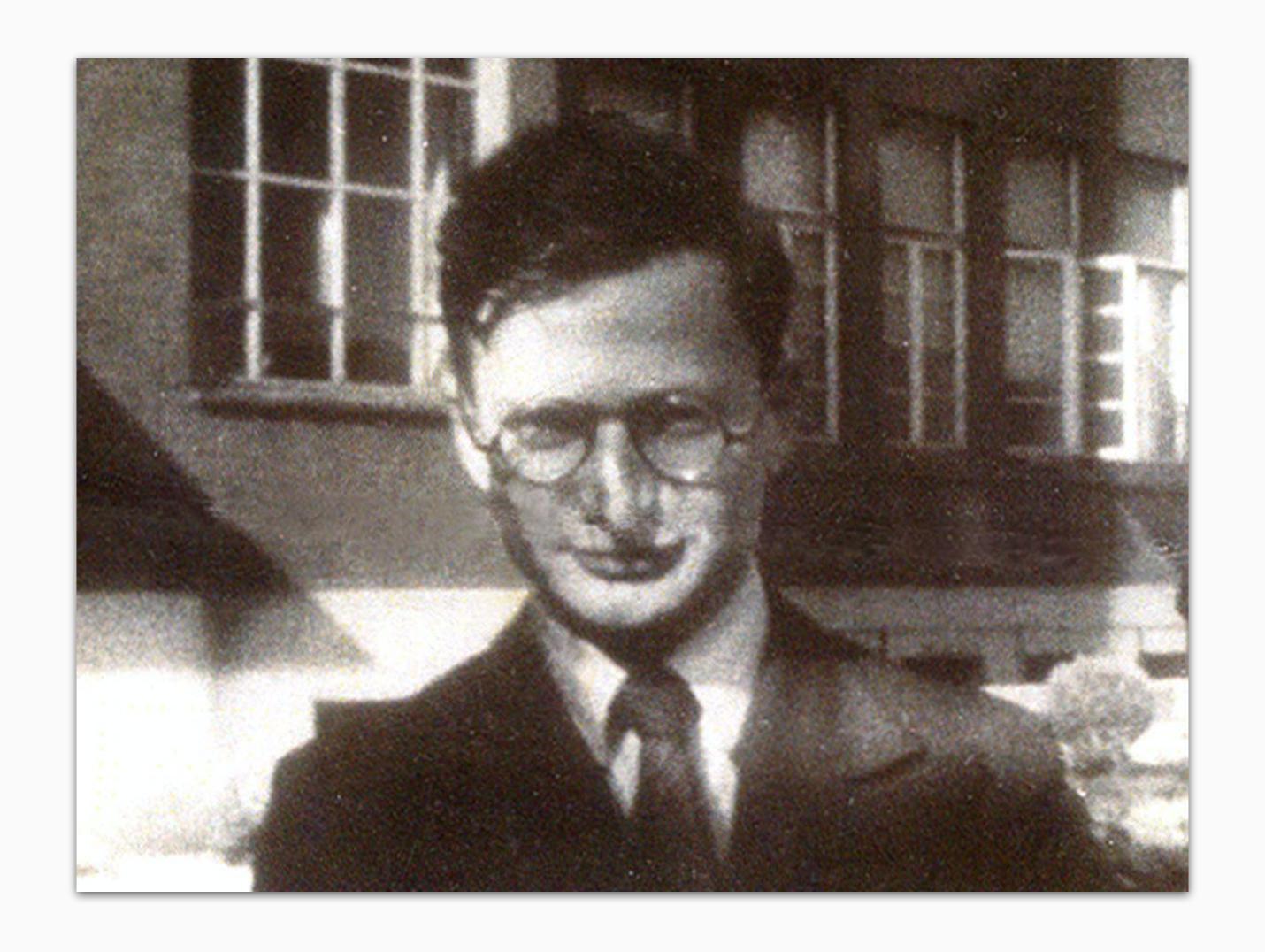
In-Depth Study 1:

Online Resource Allocation

In-Depth Study 2:
Gittins in the M/G/k

Survey 1: Sample-Path Coupling

Historical Note: Wolfgang Döblin



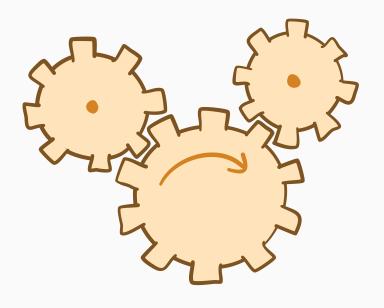
Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2 M/M/k vs. M/M/1	B2
3. Simpler dynamics	A3	B3

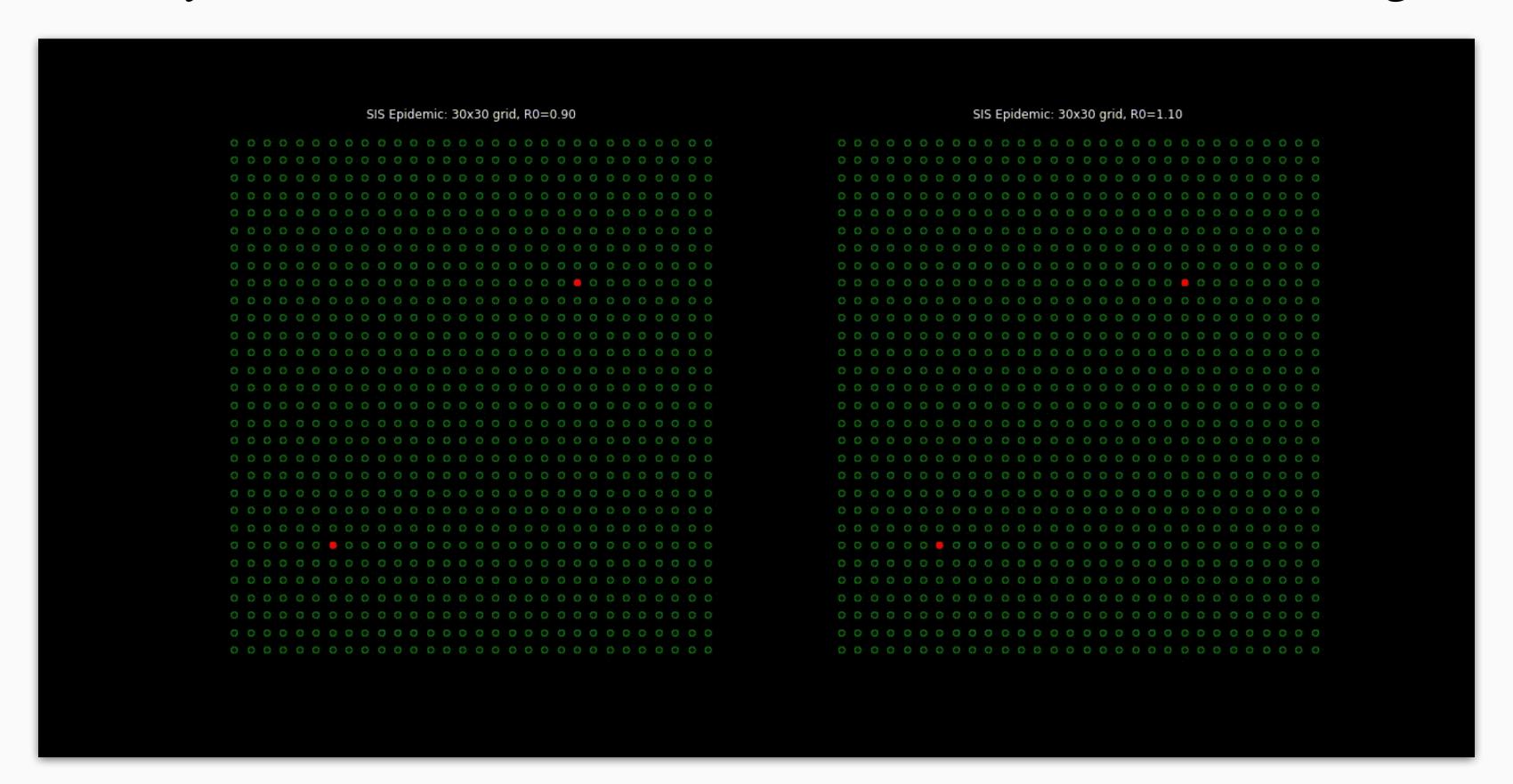
Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2 M/M/k vs. M/M/1	B2
3. Simpler dynamics	A3	B3

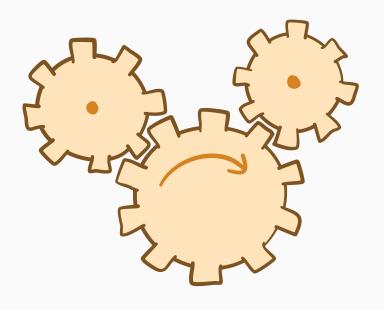
SIS epidemic model



- Set of people connected via social network graph G
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection*: at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



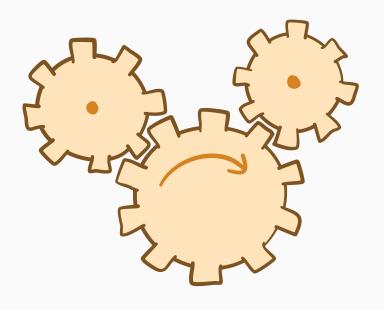
SIS epidemic model



- Set of people connected susceptible les infected raph G
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection*: at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$

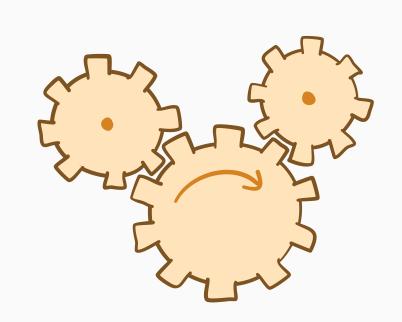
SIS Epidemic: 30x30 grid, R0=0.90	SIS Epidemic: 30x30 grid, R0=1.10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

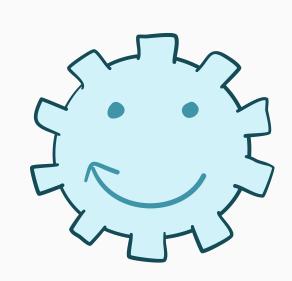
SIS epidemic model



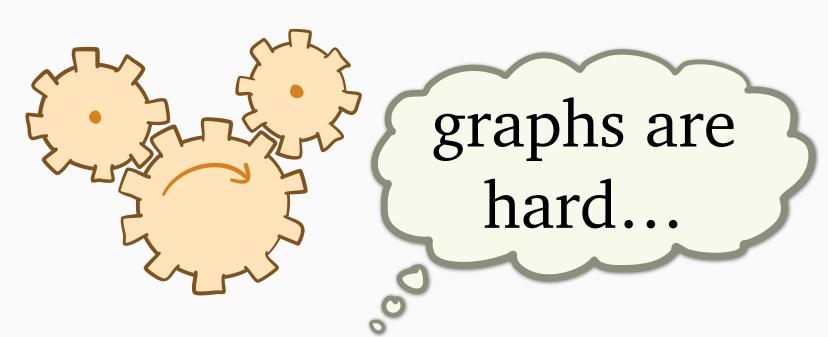
- Set of people connected susceptible les infected raph G
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection*: at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$

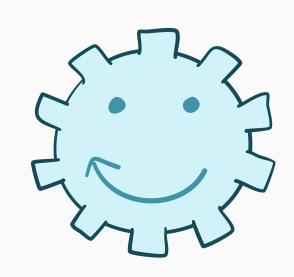
SIS Epidemic: 30x30 grid, R0=0.90	SIS Epidemic: 30x30 grid, R0=1.10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	



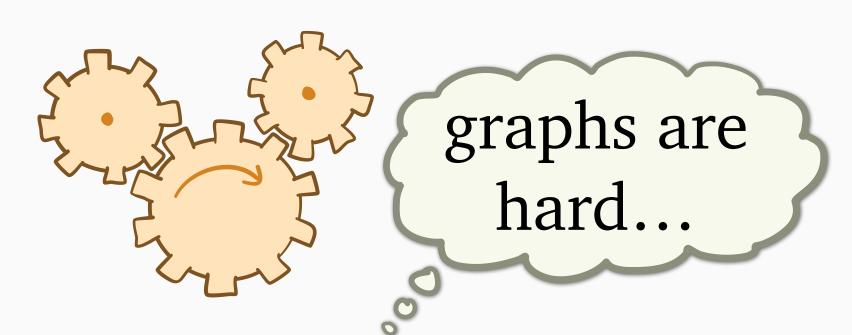


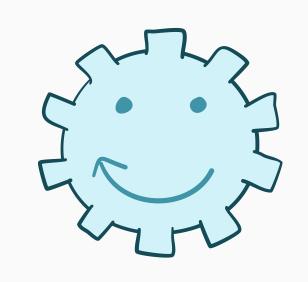
- Social network graph *G*
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$





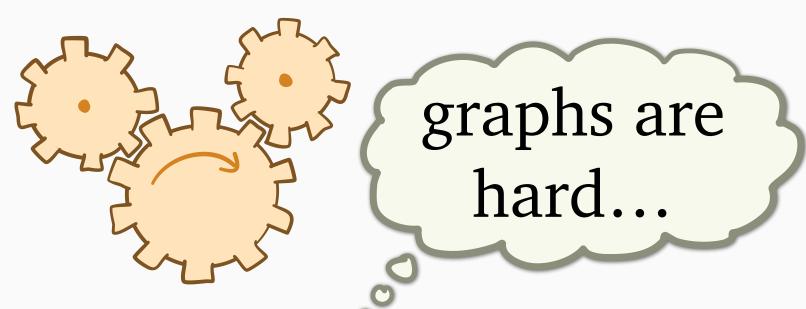
- Social network graph G
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



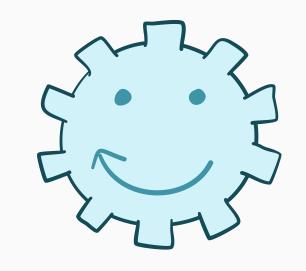


- Social network graph *G*
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$

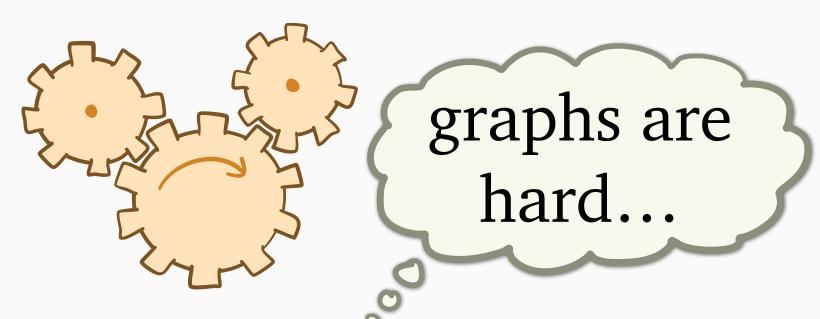
• Track number, not set, of infections



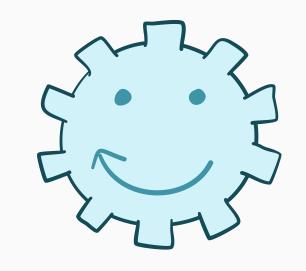
- Each person has infection level in $\{0, 1\}$ k = number of people infected
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection*: at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



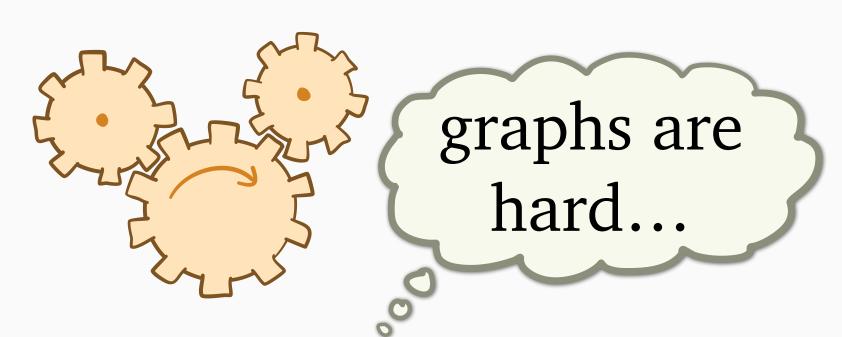
- Track number, not set, of infections



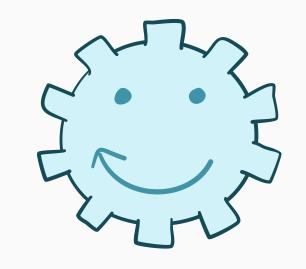
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



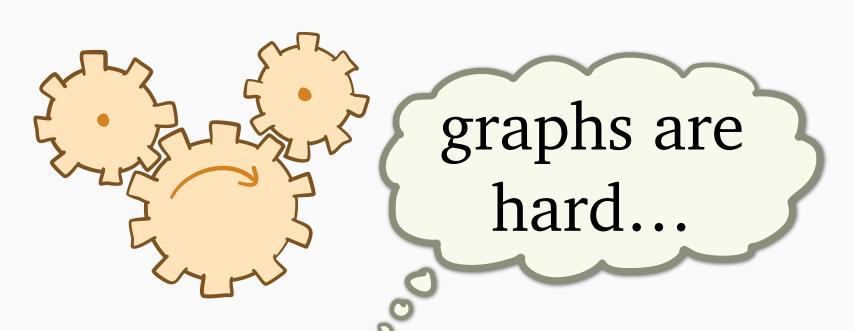
- Track number, not set, of infections
- k = number of people infected
- *Healing:* $k \rightarrow k 1$ at rate μk



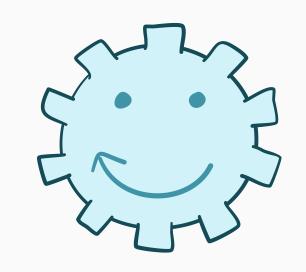
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



- Track number, not set, of infections
- k = number of people infected
- *Healing:* $k \rightarrow k 1$ at rate μk
- Infection: $k \to k + 1$ at rate $\lambda \eta(G)$

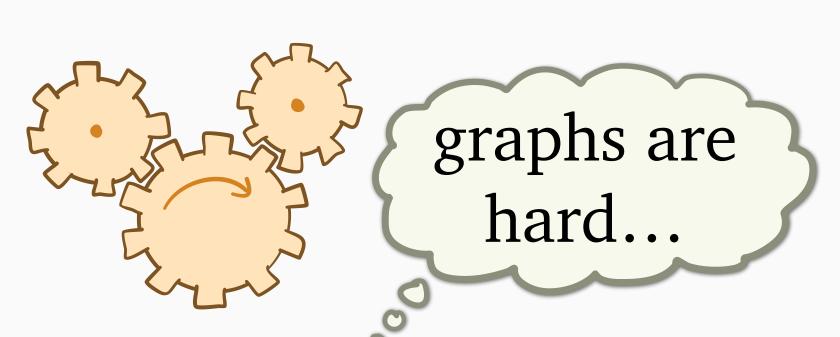


- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



- Track number, not set, of infections
- k = number of people infected
- *Healing:* $k \rightarrow k 1$ at rate μk
- Infection: $k \to k + 1$ at rate $\lambda \eta(G)$

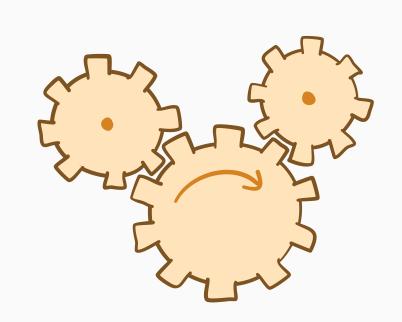
```
\eta(G) = \min_{\text{vertex set } A} \frac{\text{\# edges from } A \text{ to } \overline{A}}{|A|}
```

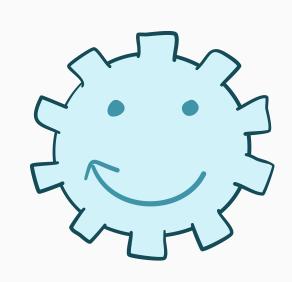


- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$

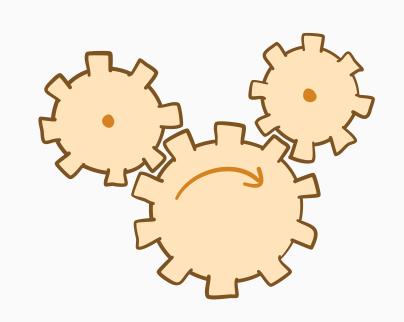
- Track number, not set, of infections
- k = number of people infected
- *Healing:* $k \rightarrow k 1$ at rate μk
- Infection: $k \to k + 1$ at rate $\lambda \eta(G)$

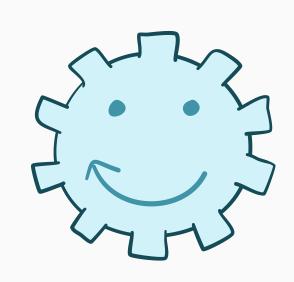
$$\eta(G) = \min_{\text{vertex set } A} \frac{\text{\# edges from } A \text{ to } \overline{A}}{|A|}$$





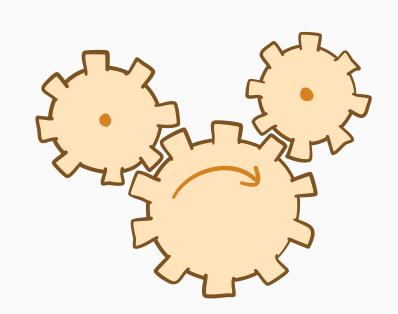
- Social network graph *G*
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



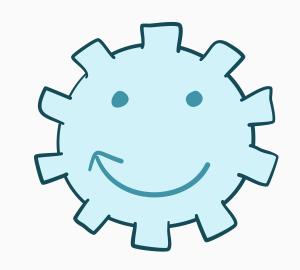


- Social network graph *G*
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$

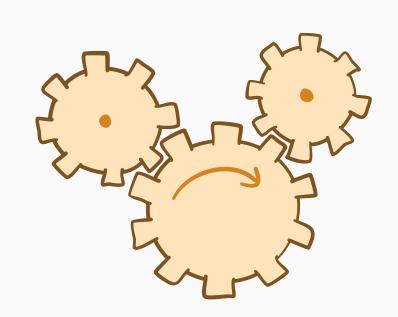
Social network graph G



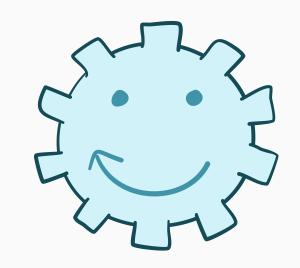
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



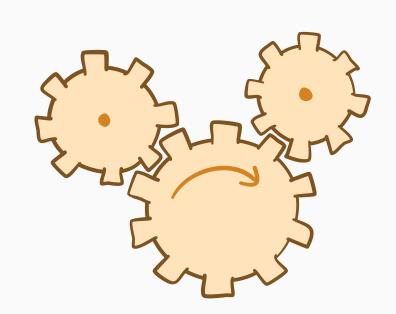
- Social network graph G
- Each person has infection level in {0, 1, 2, ...}



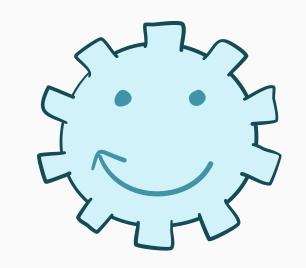
- Social network graph *G*
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



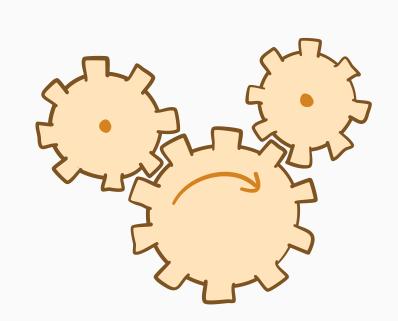
- Social network graph G
- Each person has infection level in {0, 1, 2, ...}
- Healing: i's become (i-1)'s at rate μi



- Social network graph *G*
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$



- Social network graph G
- Each person has infection level in {0, 1, 2, ...}
- Healing: i's become (i-1)'s at rate μi
- *Infection:* at each node, $i \rightarrow i + 1$ at rate λ ·(total infection level of neighbors)

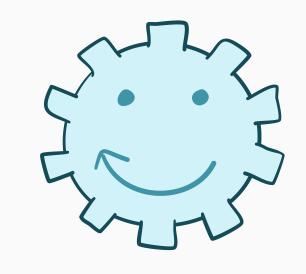


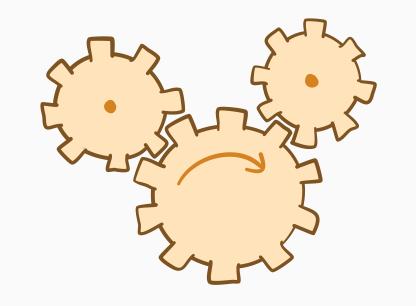
- Social network graph *G*
- Each person has infection level in {0, 1}
- *Healing*: at each node, $1 \rightarrow 0$ at rate μ
- *Infection:* at each node, $0 \rightarrow 1$ at rate $\lambda \cdot (\# \text{ of neighboring 1's})$

- Social network graph *G*
- Each person has infection level in {0, 1, 2, ...}
- Healing: i's become (i-1)'s at rate μi
- *Infection:* at each node, $i \rightarrow i + 1$ at rate λ ·(total infection level of neighbors)

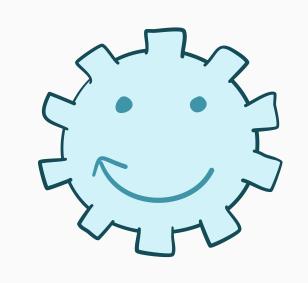
SIS epidemic: results

lower bound





upper bound



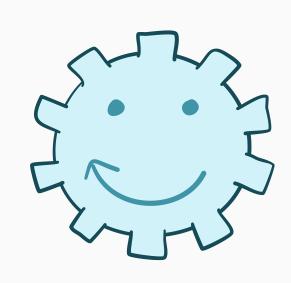
Birth-death Markov chain

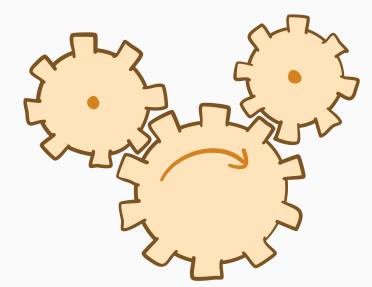
Quasi-birth-death Markov chain

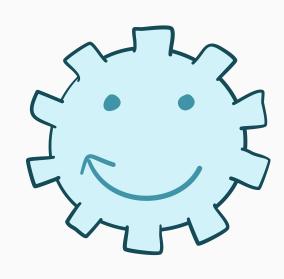
SIS epidemic: results

lower bound

upper bound







Birth-death Markov chain

Quasi-birth-death Markov chain

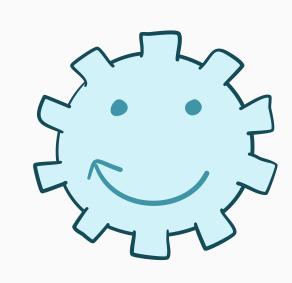
• Infection decays slowly if $\eta(G) > \mu/\lambda$ "bottleneck" ratio of G

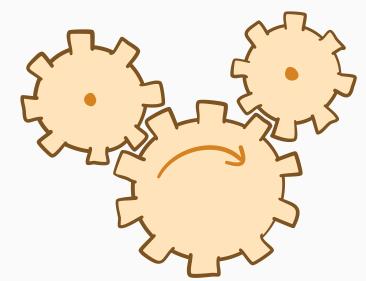
SIS epidemic: results

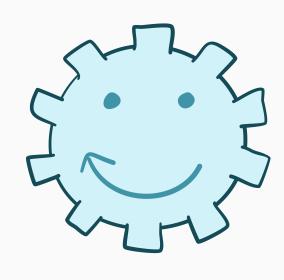
lower bound

SIS model

upper bound







- Birth-death Markov chain
- Infection decays slowly if $\eta(G) > \mu/\lambda$

"bottleneck" ratio of G

- Quasi-birth-death Markov chain
- Infection decays quickly if $\rho(G) < \mu/\lambda$

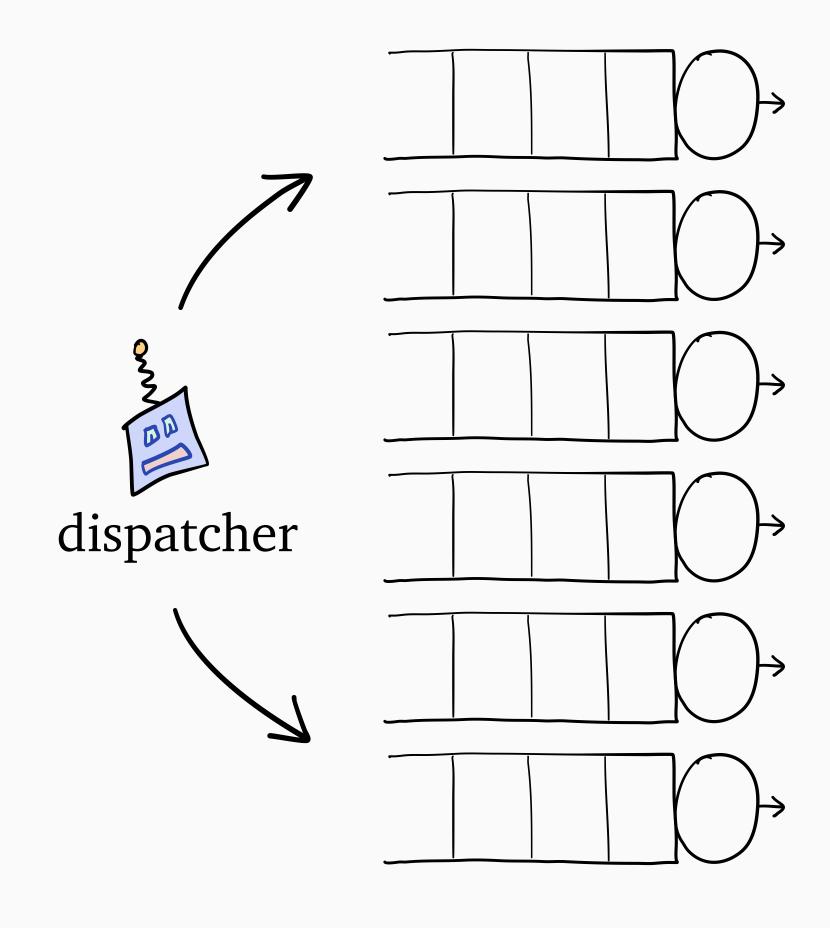
largest eigenvalue of G's adjacency matrix

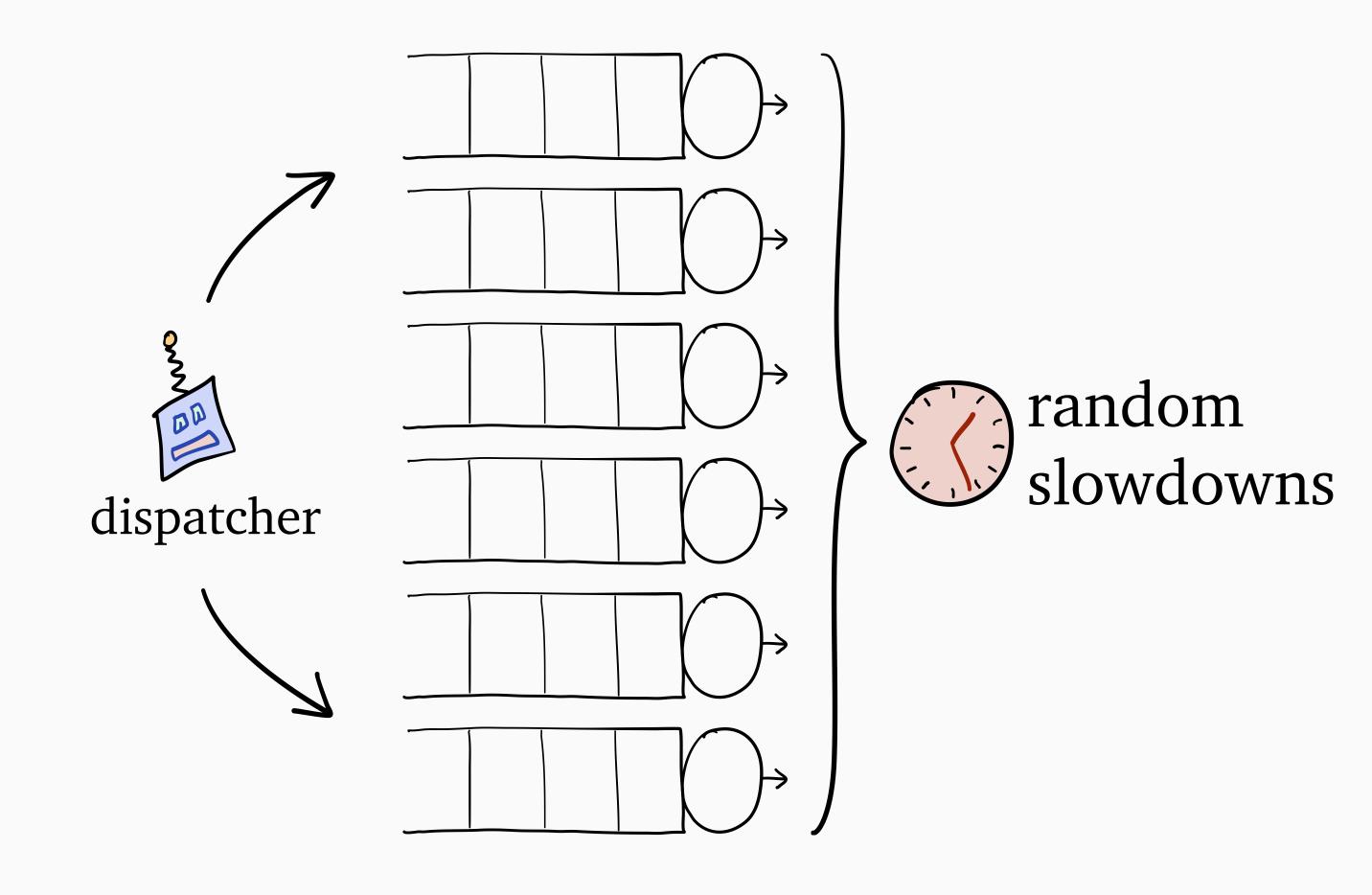
Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2 M/M/k vs. M/M/1	B2
3. Simpler dynamics	A3	B3

Classifying coupling techniques

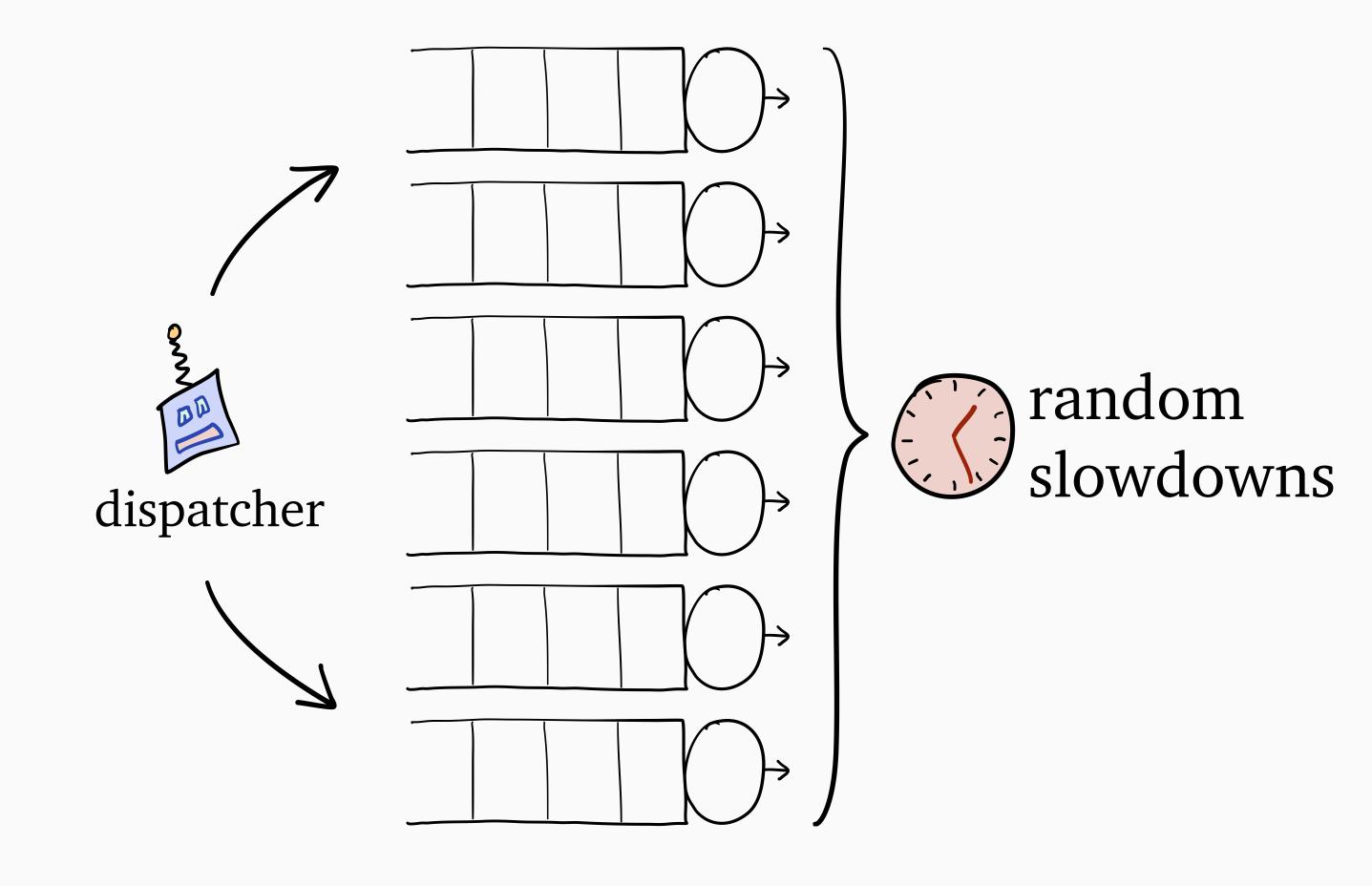
	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2 M/M/k vs. M/M/1	B2
3. Simpler dynamics	SIS epidemics	B3





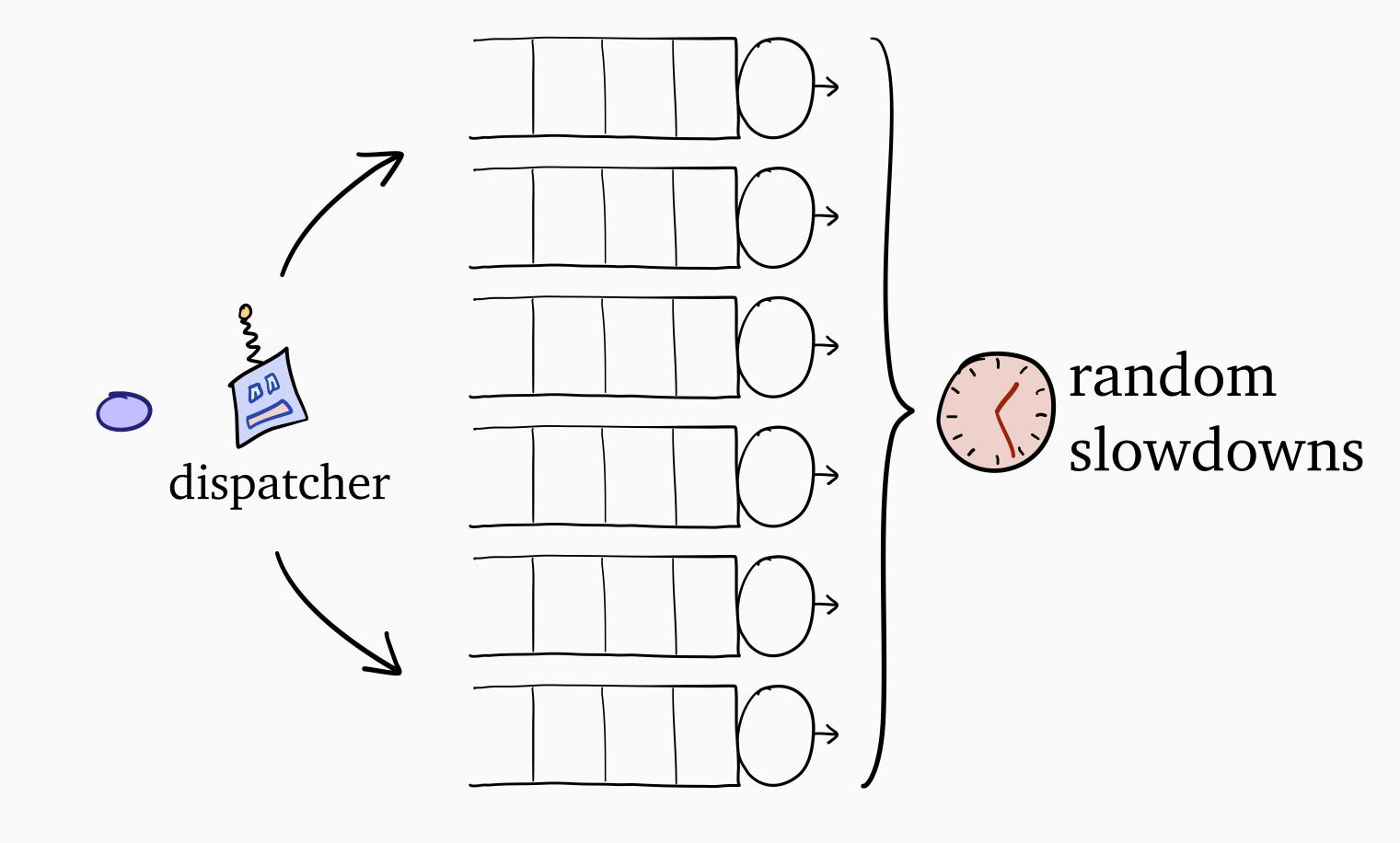
Redundancy-d:

make *d* copies of each job, dispatch them randomly



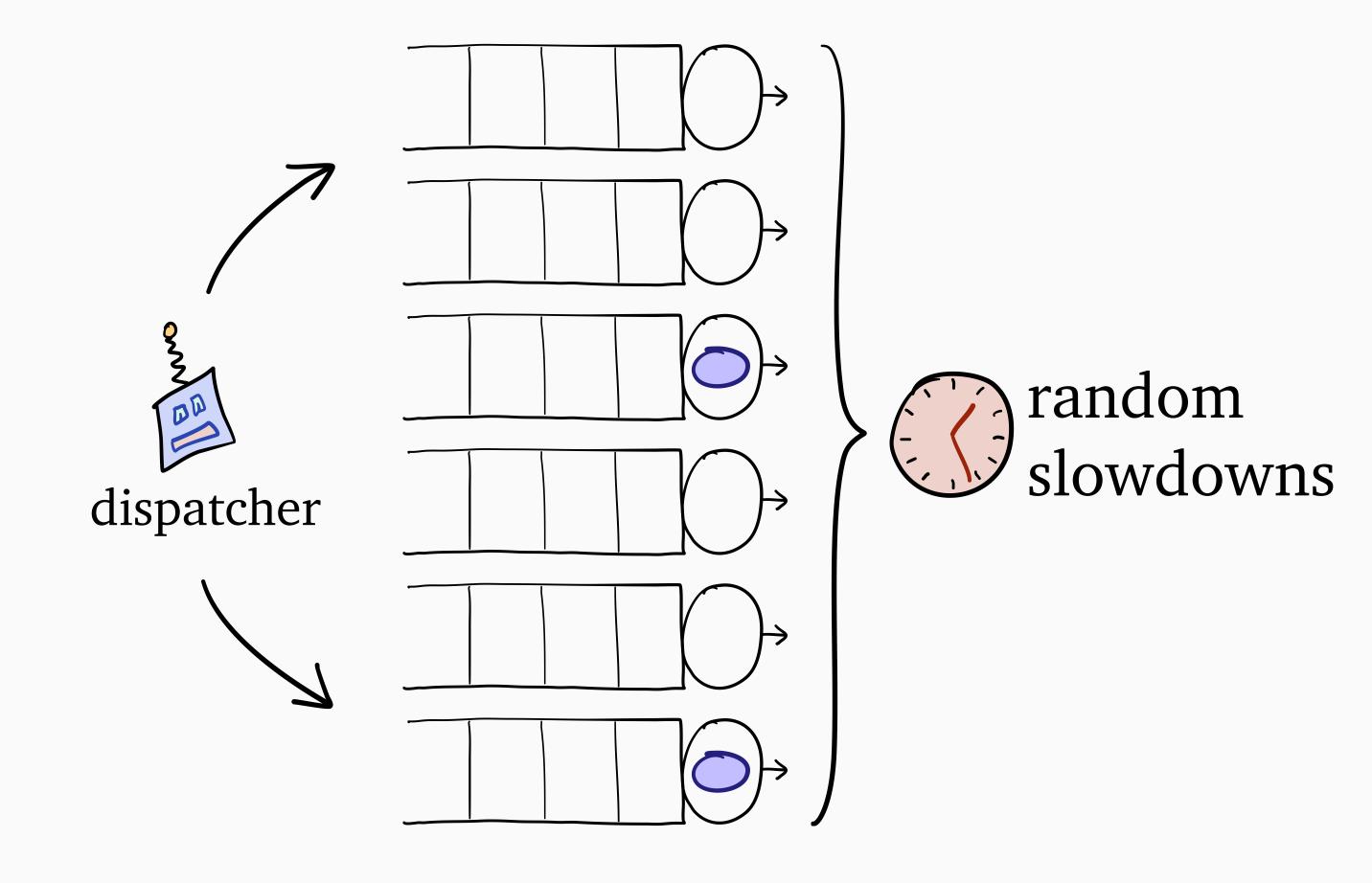
Redundancy-d:

make *d* copies of each job, dispatch them randomly

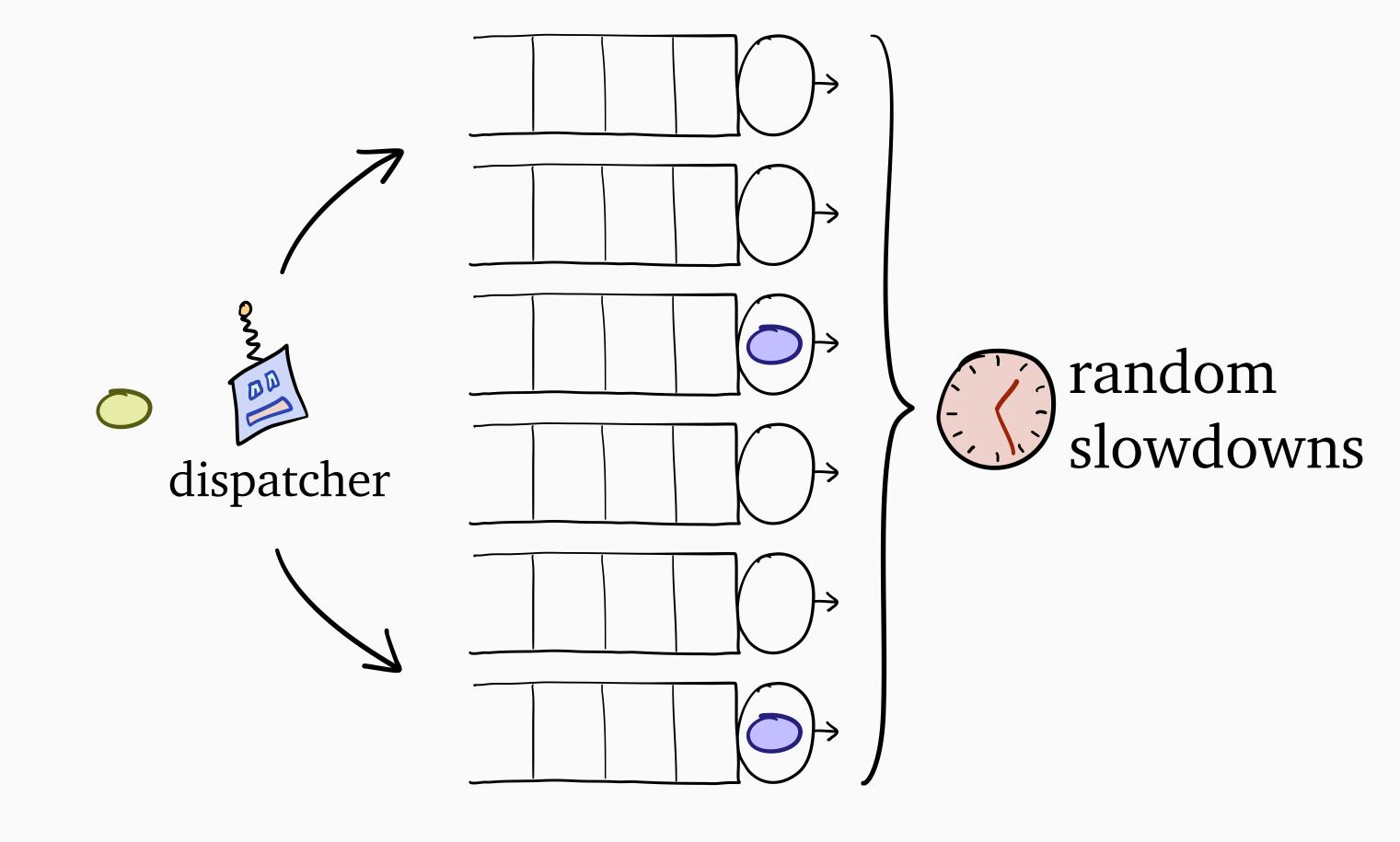


Redundancy-d:

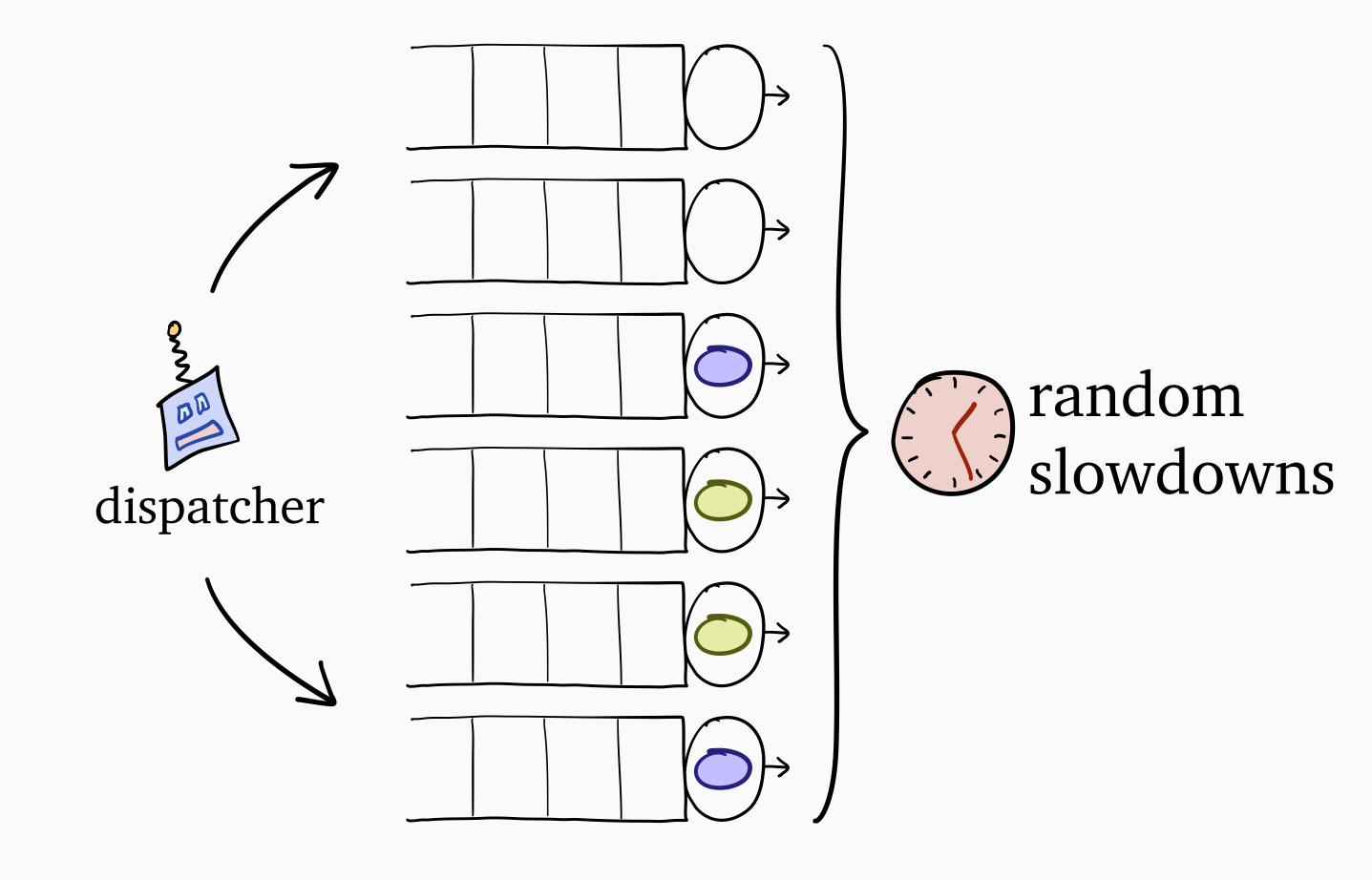
make *d* copies of each job, dispatch them randomly



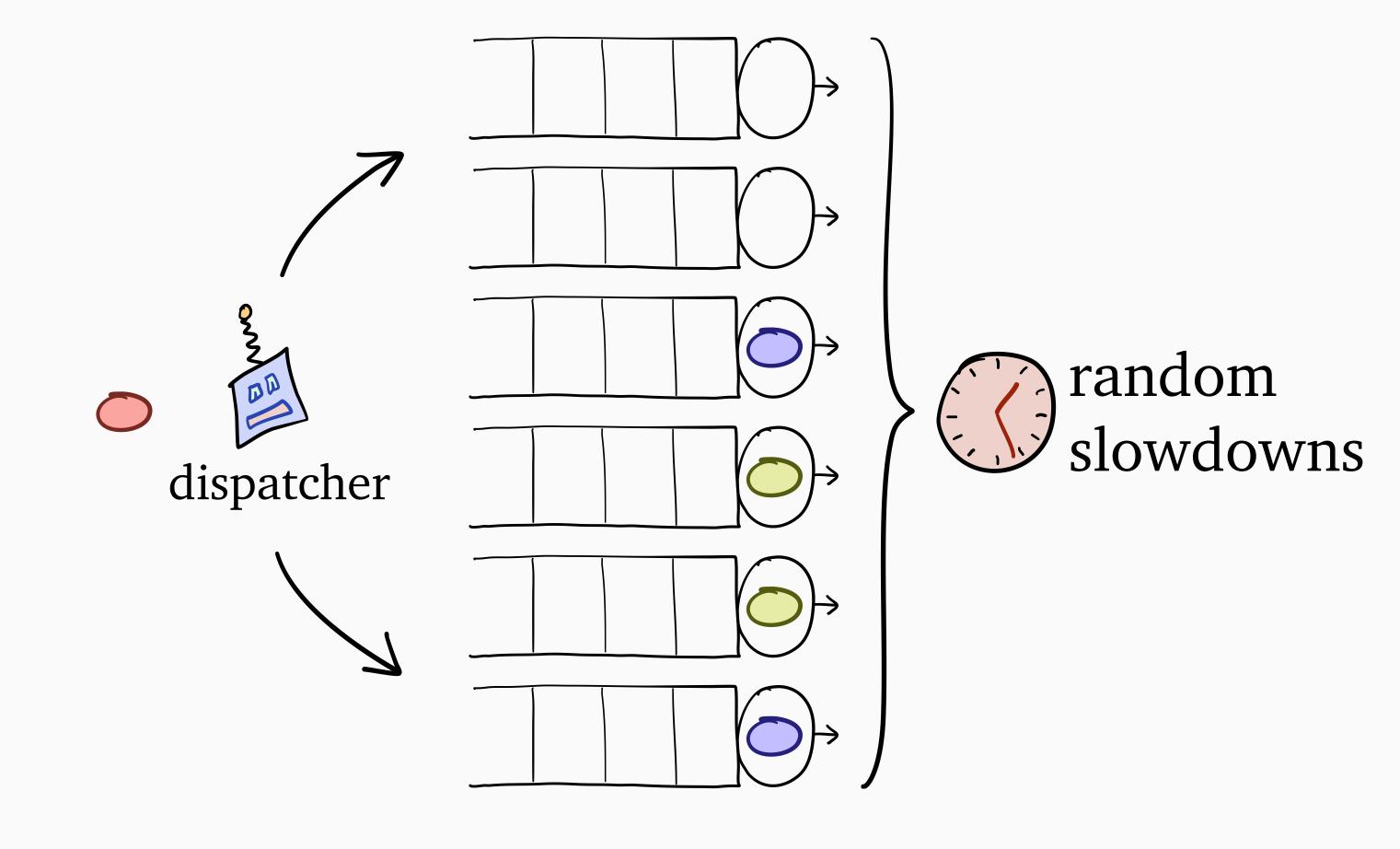
Redundancy-d:



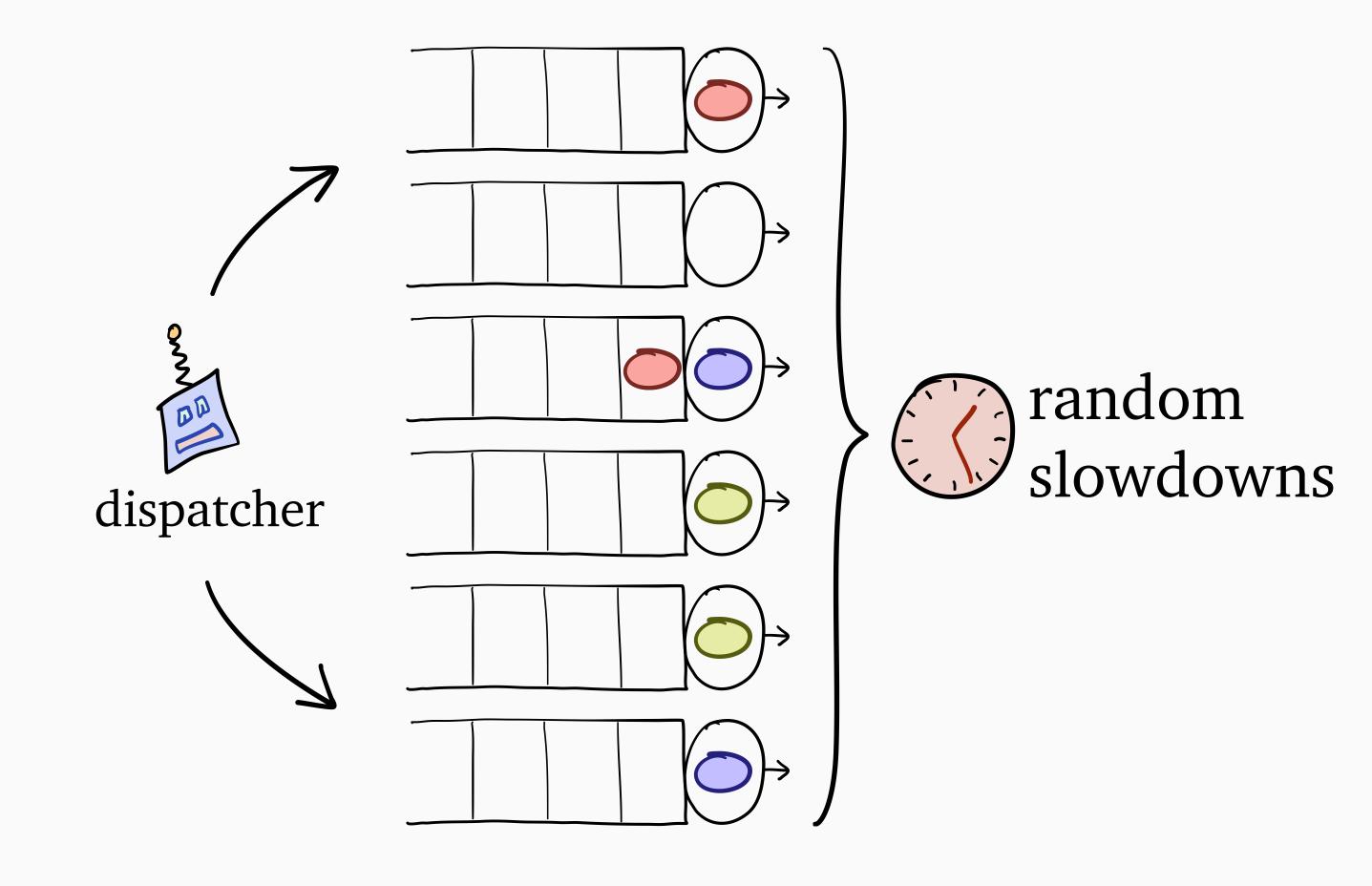
Redundancy-d:



Redundancy-d:



Redundancy-d:

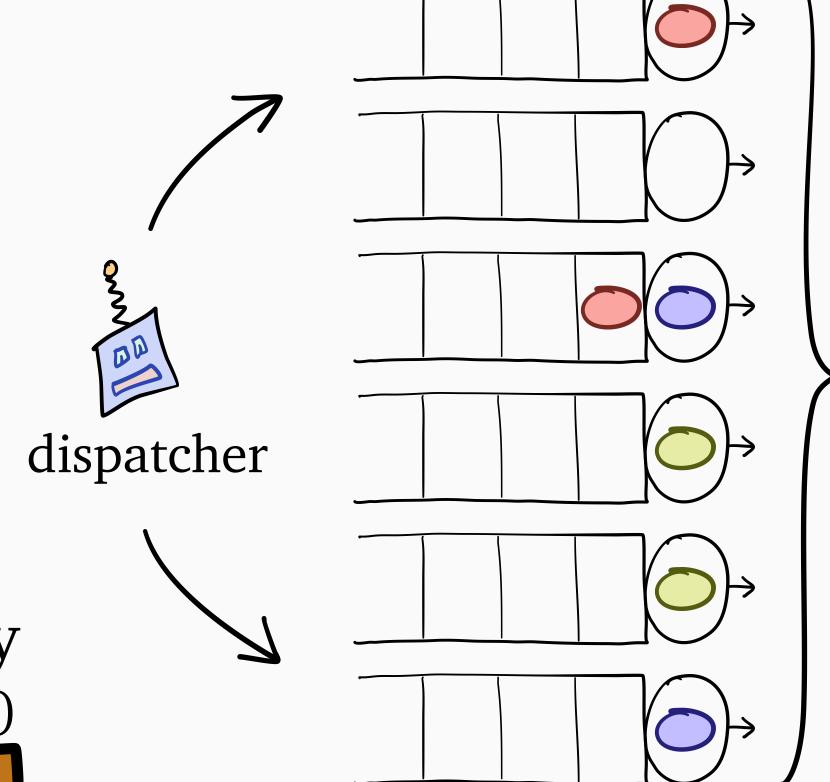


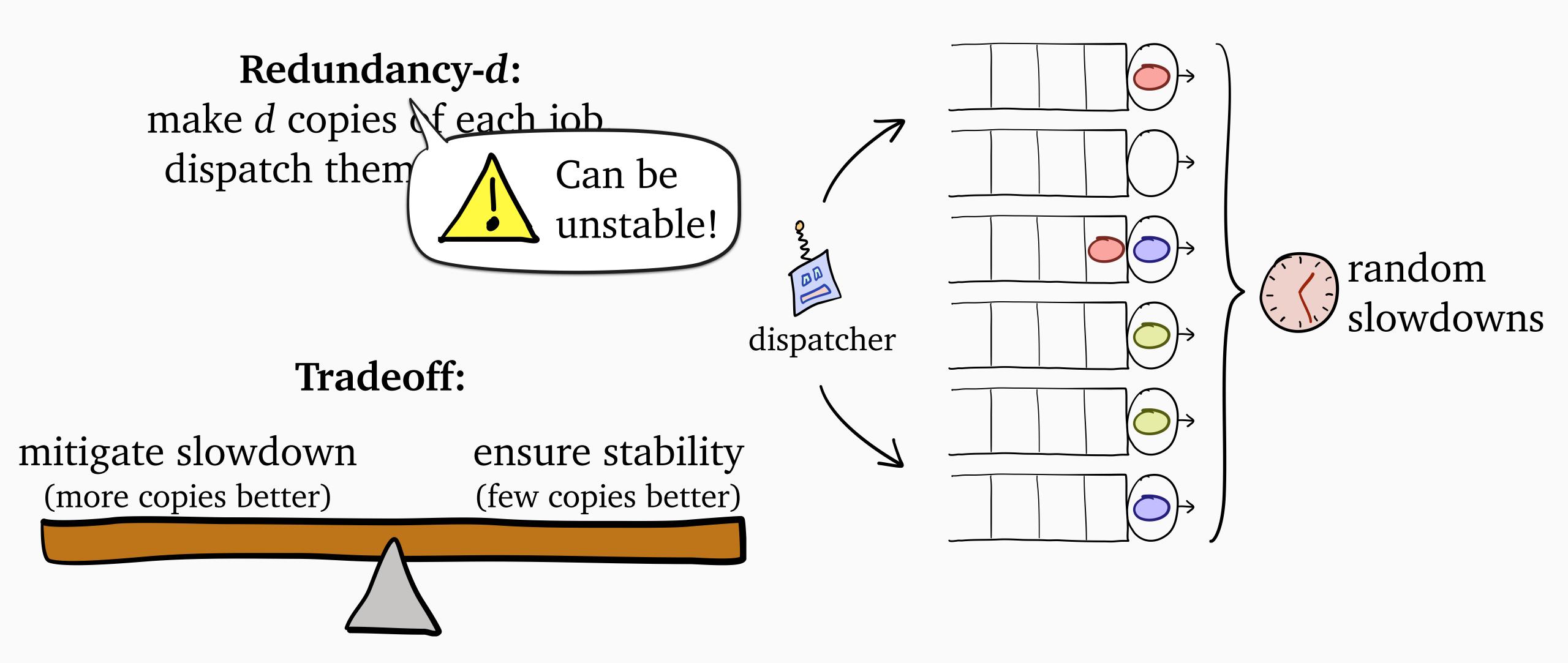
Redundancy-d:

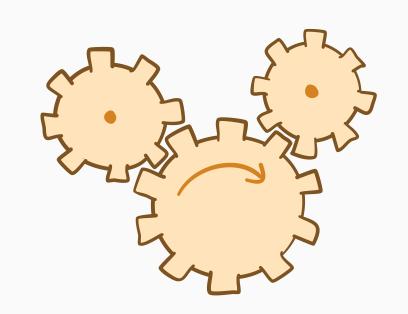
make *d* copies of each job, dispatch them randomly

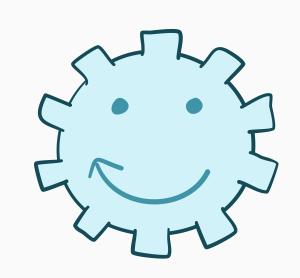
mitigate slowdown (more copies better)

ensure stability (few copies better)

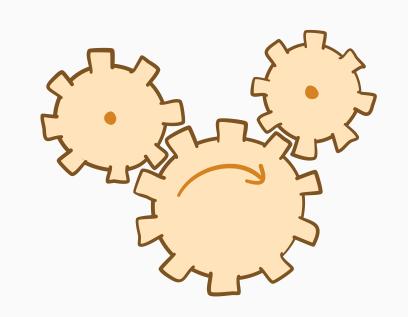


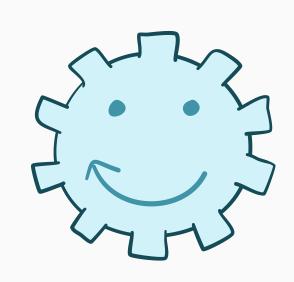




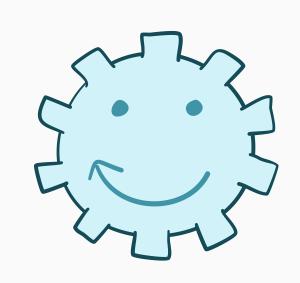


- Load-balancing queueing system with redundancy
- Each job has *size*, but servers have random *slowdowns*

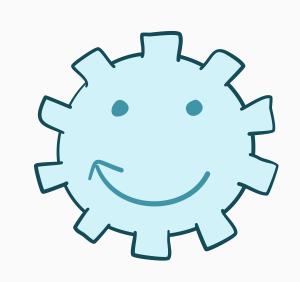




- Load-balancing queueing system with *redundancy*
- Each job has *size*, but servers have random *slowdowns*
- Redundant-to-Idle-Queue (RIQ): make copies of arriving jobs at *all* idle servers (and *only* idle servers)

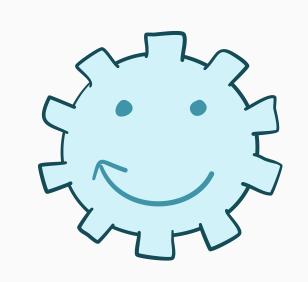


- Load-balancing queueing system with *redundancy*
- Each job has *size*, but servers have random *slowdowns*
- Redundant-to-Idle-Queue (RIQ): make copies of arriving jobs at *all* idle servers (and *only* idle servers)



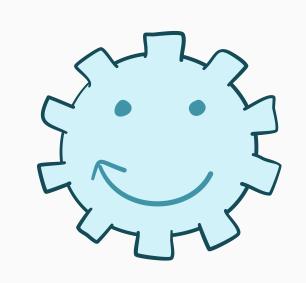
- Load-balancing queueing system with redundancy
- Each job has *size*, but servers have random *slowdowns*
- Redundant-to-Idle-Queue (RIQ): make copies of arriving jobs at *all* idle servers (and *only* idle servers)

• M/G/1 queue with vacations



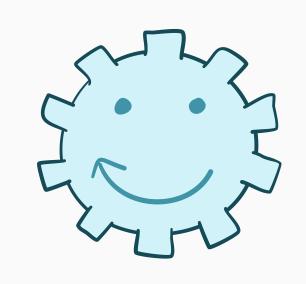
- Load-balancing queueing system with *redundancy*
- Each job has *size*, but servers have random *slowdowns*
- Redundant-to-Idle-Queue (RIQ): make copies of arriving jobs at *all* idle servers (and *only* idle servers)

- M/G/1 queue with vacations
- Whenever a server goes idle, assume a job copy is immediately created (i.e. starts a vacation)



- Load-balancing queueing system with *redundancy*
- Each job has *size*, but servers have random *slowdowns*
- Redundant-to-Idle-Queue (RIQ): make copies of arriving jobs at *all* idle servers (and *only* idle servers)

- M/G/1 queue with vacations
- Whenever a server goes idle, assume a job copy is immediately created (i.e. starts a vacation)
- Upper bound on RIQ system



- Load-balancing queueing system with *redundancy*
- Each job has *size*, but servers have random *slowdowns*
- Redundant-to-Idle-Queue (RIQ): make copies of arriving jobs at *all* idle servers (and *only* idle servers)

- M/G/1 queue with vacations
- Whenever a server goes idle, assume a job copy is immediately created (i.e. starts a vacation)
- Upper bound on RIQ system
- Implies RIQ is maximally stable

Classifying coupling techniques

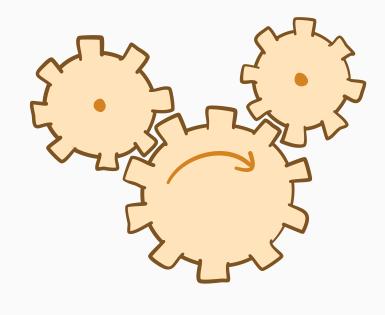
	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2 M/M/k vs. M/M/1	B2
3. Simpler dynamics	SIS epidemics	B3

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2 M/M/k vs. M/M/1	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	B3

Stochastic online knapsack

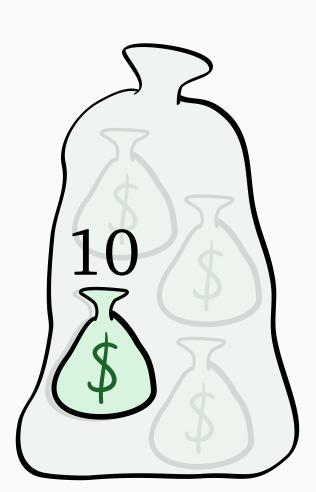


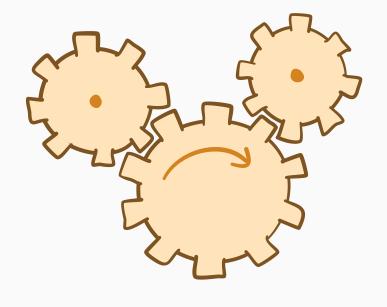


- T items arrive sequentially, with values $V_1, V_2, ..., V_T$
- Value distributions known to controller
- Can select up to B items

Stochastic online knapsack

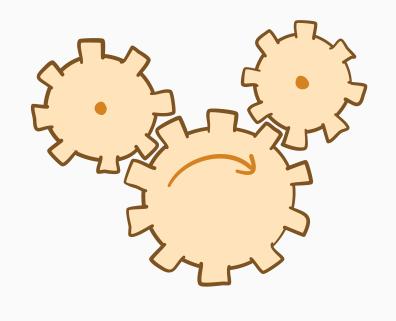
• •





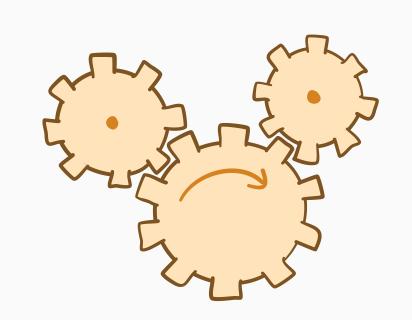
- T items arrive sequentially, with values $V_1, V_2, ..., V_T$
- Value distributions known to controller
- Can select up to B items

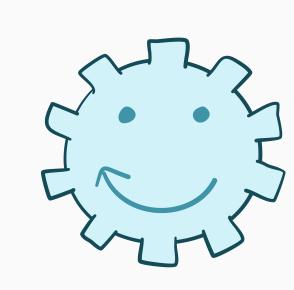
Stochastic online knapsack



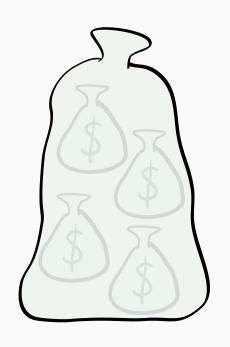
- T items arrive sequentially, with values $V_1, V_2, ..., V_T$
- Value distributions known to controller
- Can select up to B items

"Weakly-coupled" problems





- Multiple "easy" control problems stitched together by joint constraints
- E.g. Online Knapsack:
 - T items arrive sequentially, with values $V_1, V_2, ..., V_T$
 - Can select up to B items

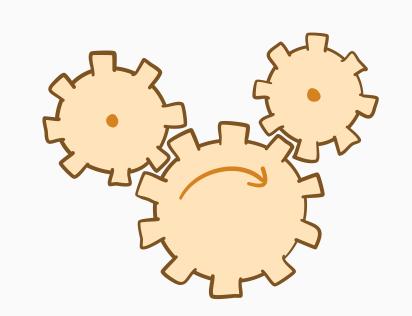


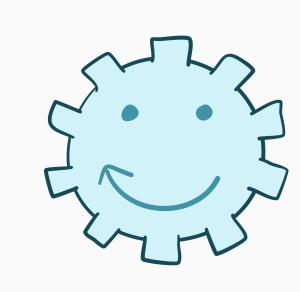
$$V_1 = 10$$

 $V_2 = ?$

 $V_T = ?$

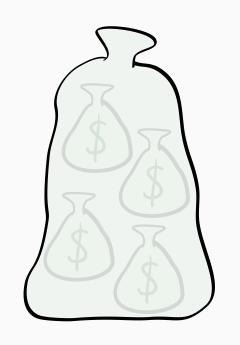
"Weakly-coupled" problems

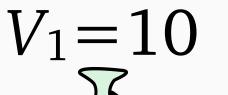


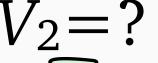


- Multiple "easy" control problems stitched together by joint constraints
- Separate easy problems...

- E.g. Online Knapsack:
 - T items arrive sequentially, with values $V_1, V_2, ..., V_T$
 - Can select up to B items

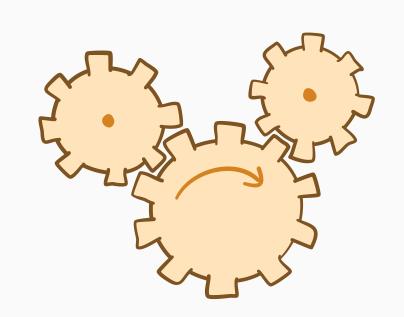


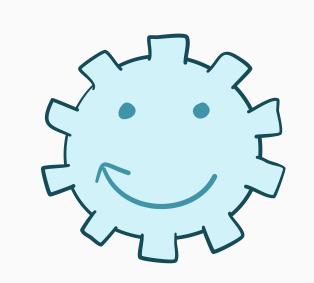




 $V_T = ?$

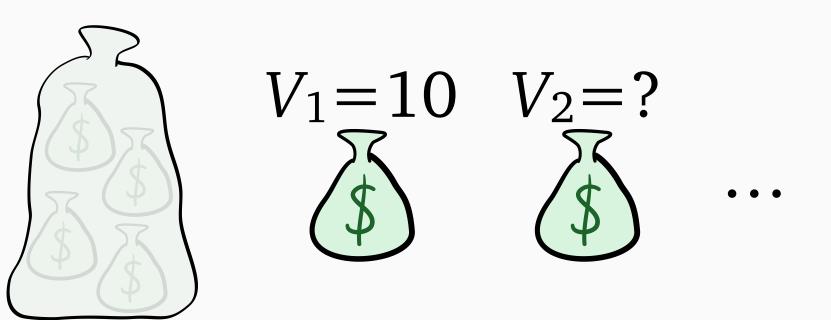
"Weakly-coupled" problems



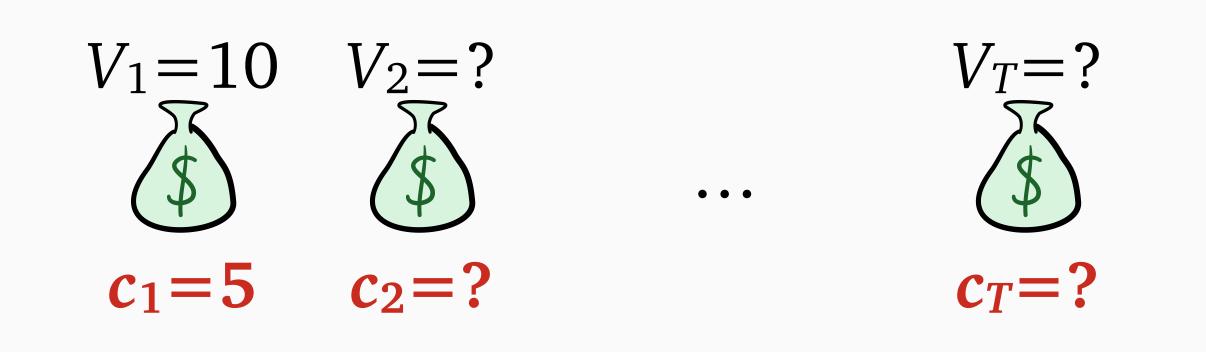


- Multiple "easy" control problems stitched together by joint constraints
- Separate easy problems...

- E.g. Online Knapsack:
 - T items arrive sequentially, with values $V_1, V_2, ..., V_T$
 - Can select up to B items

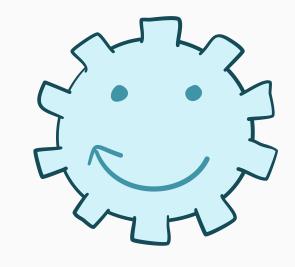


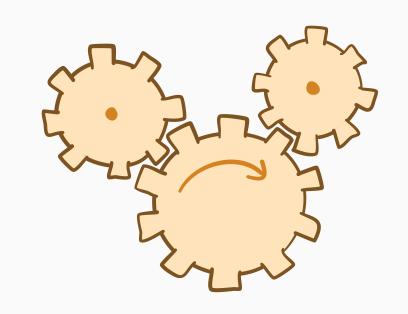
E.g. Online Purchasing:
 Select items from incoming stream, with values and costs
 (no budget or limit on # items accepted)

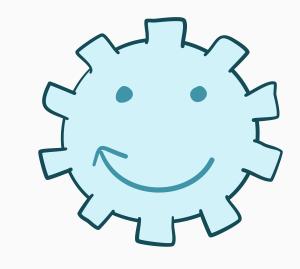


Online knapsack: results

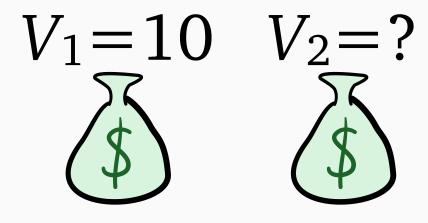
$$\frac{1}{2}$$

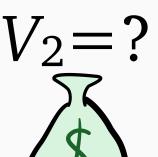


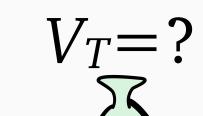




Online knapsack



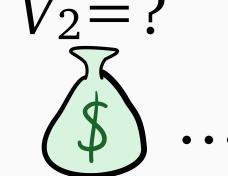




Online purchasing

$$V_1 = 10$$
 $V_2 = ?$

$$c_1 = \lambda$$

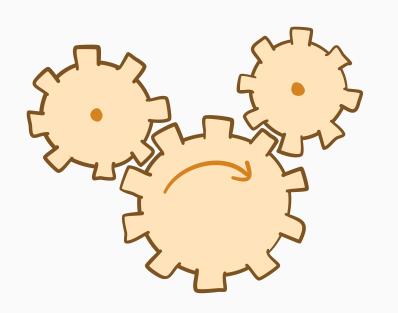


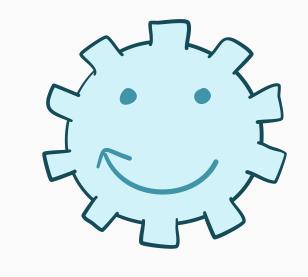
$$c_2 = \lambda$$

$$V_T=?$$

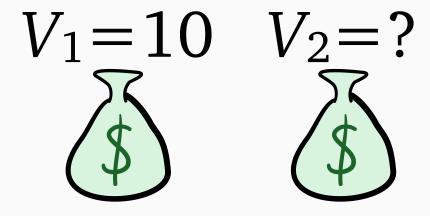
$$c_T = \lambda$$

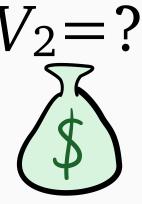
Online knapsack: results





Online knapsack

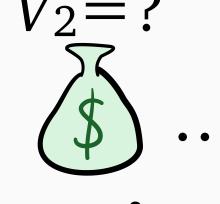




Online purchasing

$$V_1 = 10$$
 $V_2 = ?$

$$c_1 = \lambda$$



$$c_2 = \lambda$$

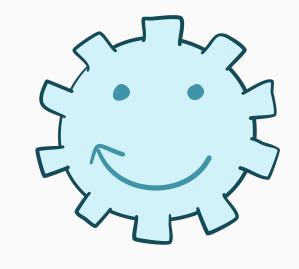
$$V_T = ?$$

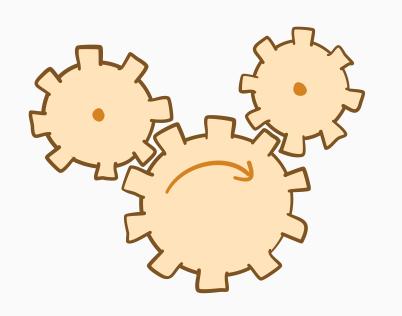
$$c_T = \lambda$$

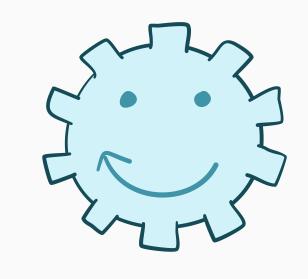
Can choose a 'cost' λ s.t. accepting all $V_t > \lambda$ while space available gives a 2-approximation

Online knapsack: results

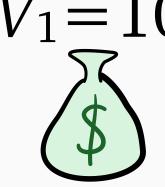
$$\frac{1}{2}$$

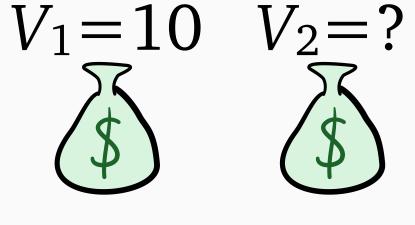


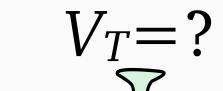




Online knapsack







"balanced" threshold

Online purchasing

$$V_1 = 10$$

 $c_1 = \lambda$

 $V_2 = ?$

$$V_T = ?$$

$$c_T = \lambda$$

$$c_2 = \lambda$$

Can choose a 'cost' λ s.t. accepting all $V_t > \lambda$ while space available gives a 2-approximation

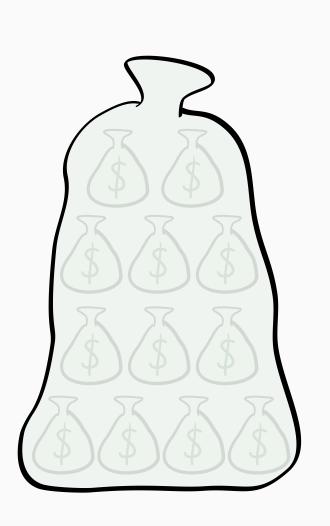
Classifying coupling techniques

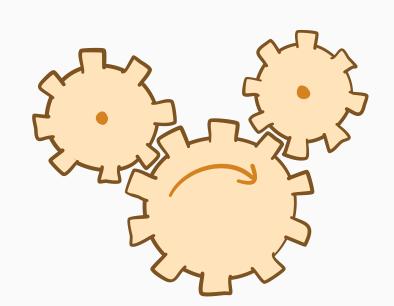
	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2 M/M/k vs. M/M/1	B2
3. Simpler dynamics	A3 Queues with redundancy SIS epidemics	B3

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	Queues with redundancy SIS epidemics	B3

BIG online knapsacks

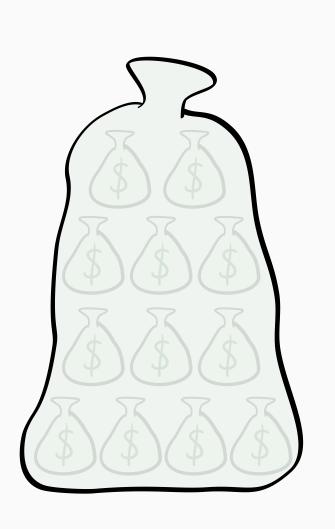


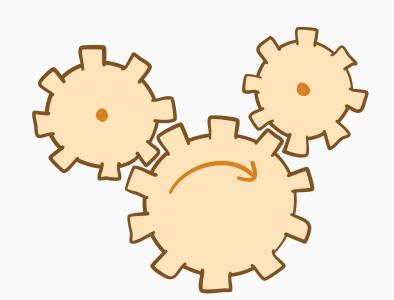


- T items arrive sequentially, with values $V_1, V_2, ..., V_T$
- Can select up to B items
- Both B and T are large (with say B = 0.1 T)

Should we be happy with a 2-approximation?

BIG online knapsacks





- T items arrive sequentially, with values $V_1, V_2, ..., V_T$
- Can select up to B items
- Both B and T are large (with say B = 0.1 T)

Should we be happy with a 2-approximation?

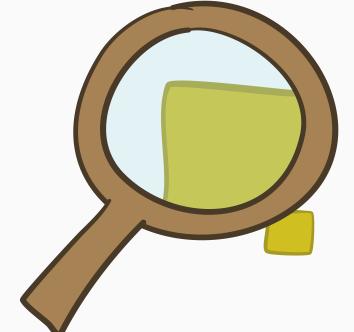
That means our regret grows linearly with T

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	B3

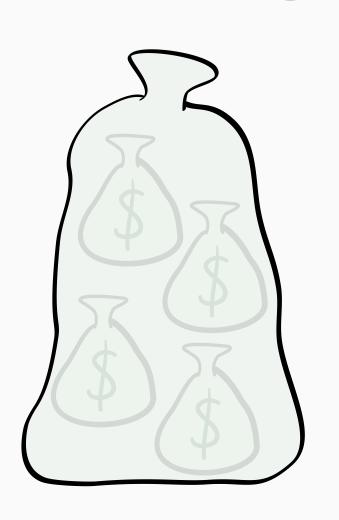
Classifying coupling techniques

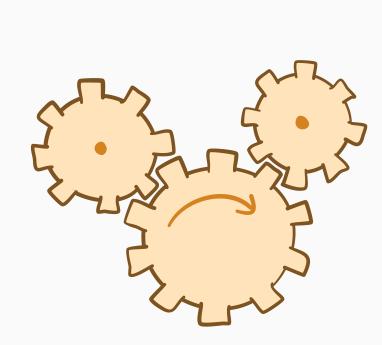
	Λ Γ	
	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (stay tuned!)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	B3



In-Depth Study 1:
Online Resource Allocation

The (stochastic) online knapsack



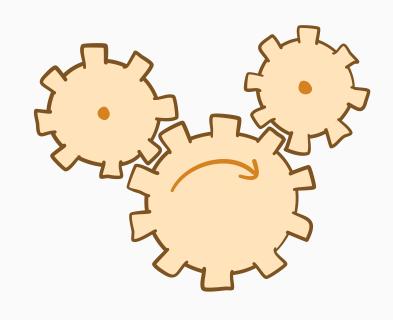


- T items arrive sequentially, with values $V_1, V_2, ..., V_T$
- Can select up to B items
- Values are i.i.d from distribution

$$V_t = \begin{cases} 5 & \text{with probability } p_5 \\ 10 & \text{with probability } p_{10} \\ 20 & \text{with probability } p_{20} \end{cases}$$

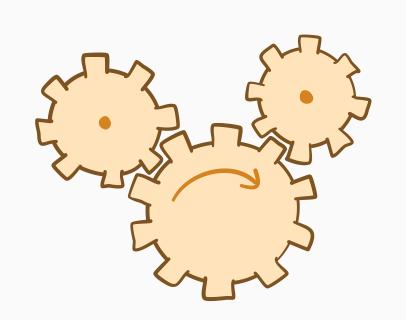
The (stochastic) online knapsack

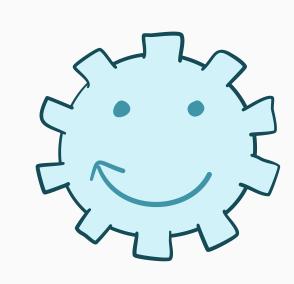
- T items arrive sequentially, with values $V_1, V_2, ..., V_T$
- Can select up to B items
- Values are i.i.d from distribution



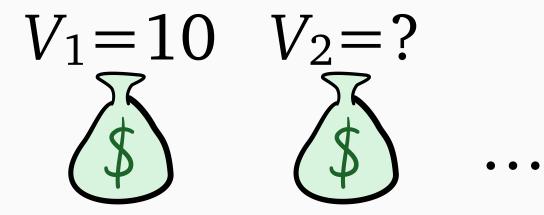
$$V_t = \begin{cases} 5 & \text{with probability } p_5 \\ 10 & \text{with probability } p_{10} \\ 20 & \text{with probability } p_{20} \end{cases}$$

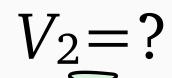
Prophet benchmarks





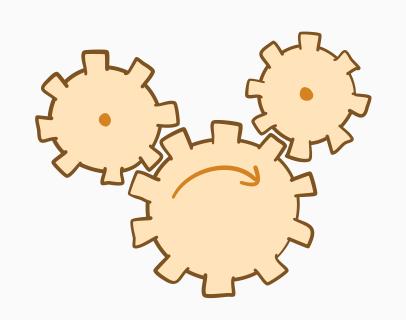
- Uncertainty about the future
- Online Knapsack

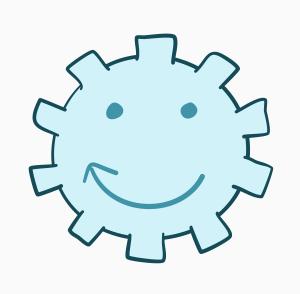




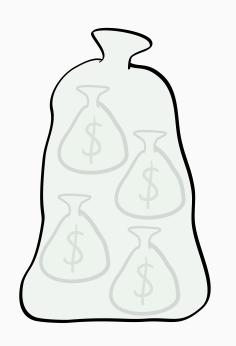
Prophet benchmarks

Knows the future!

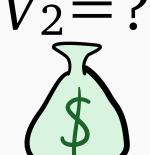


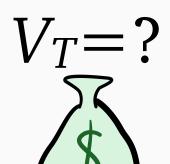


- Uncertainty about the future
- Online Knapsack

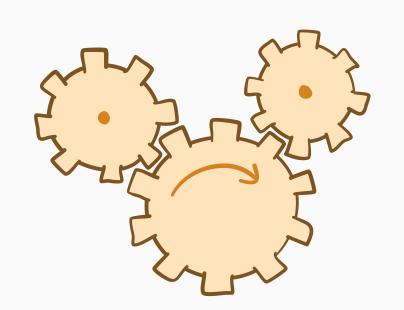


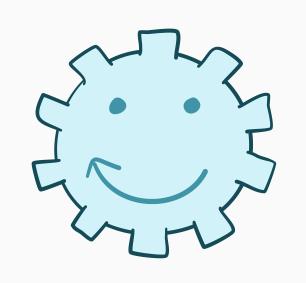
$$V_1 = 10$$
 $V_2 = ?$...



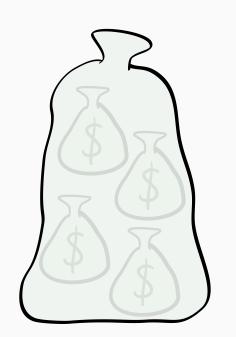


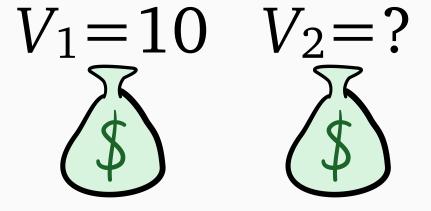
Prophet benchmarks

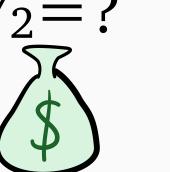




- Uncertainty about the future
- Online Knapsack

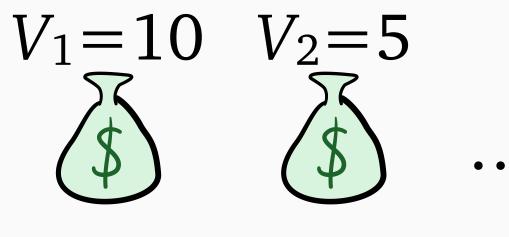


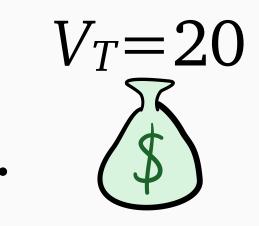


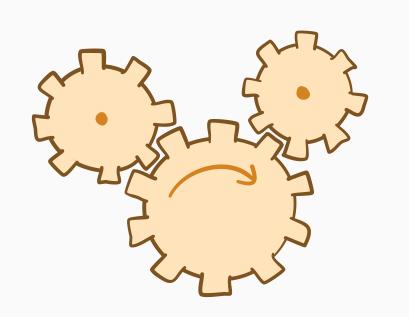


- Knows the future!
- Offline Knapsack

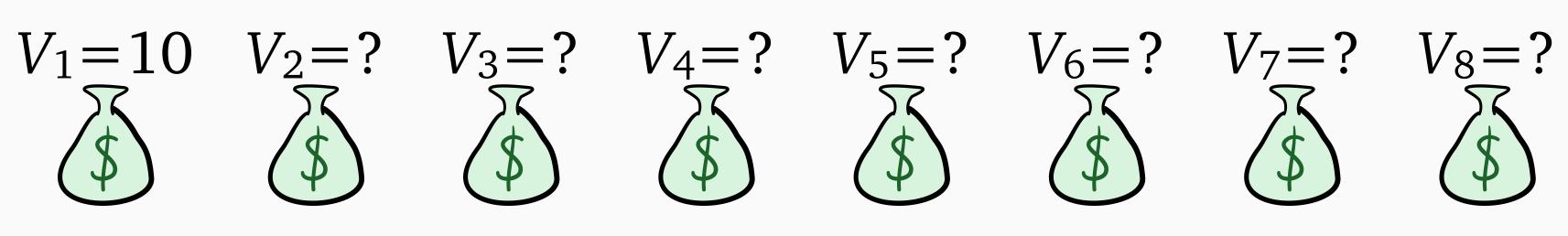


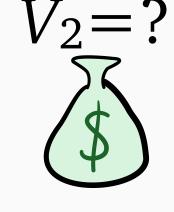


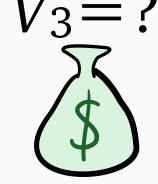


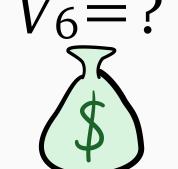


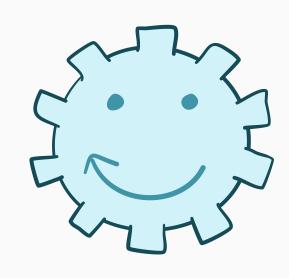


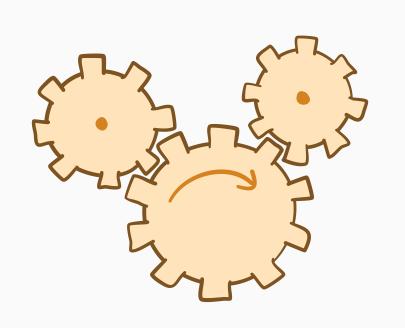


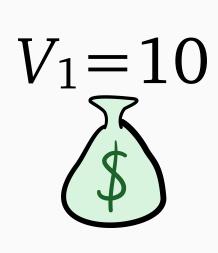


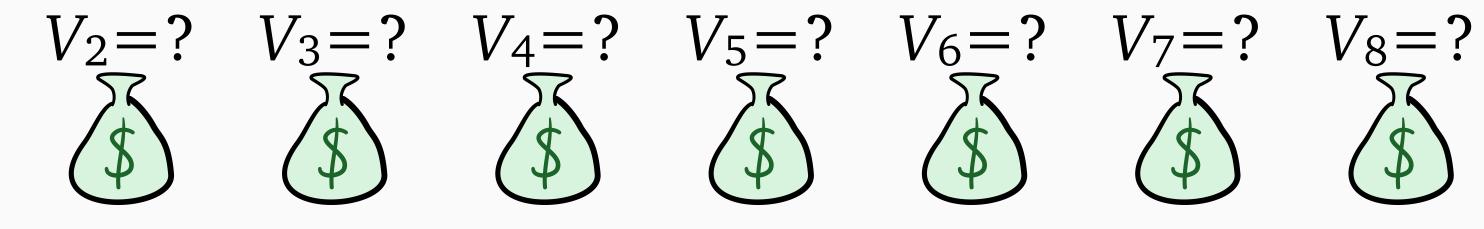


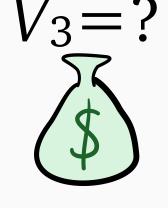


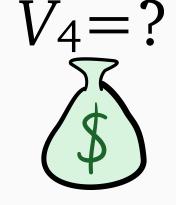


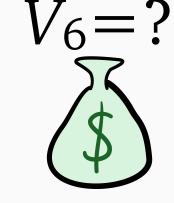


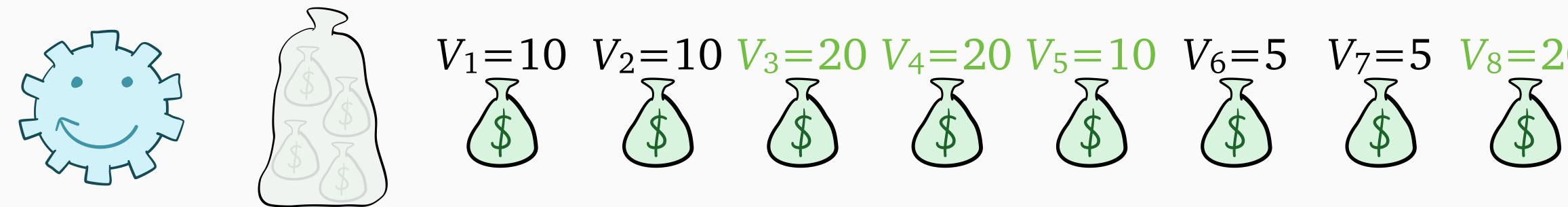


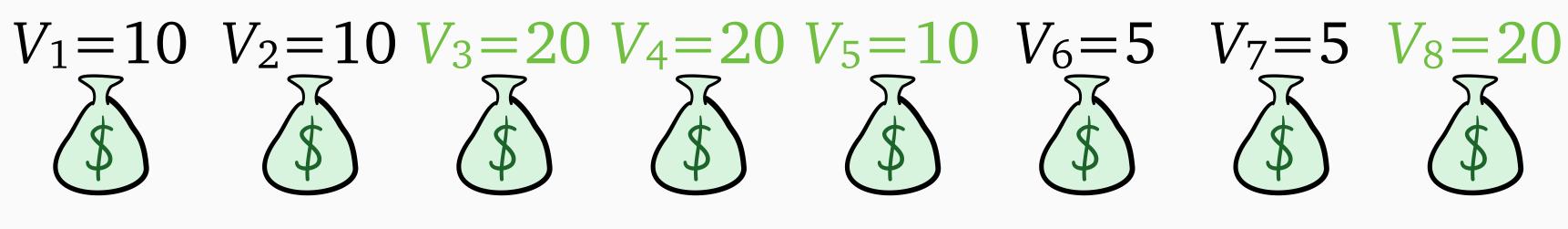


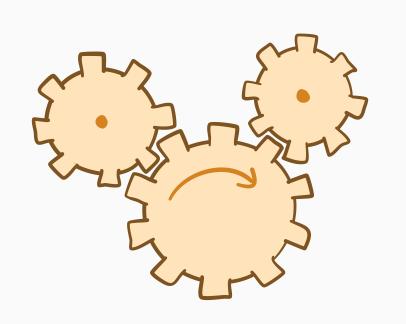




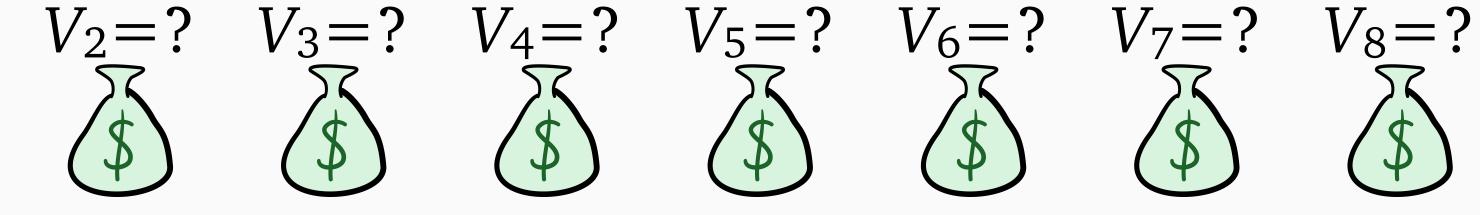


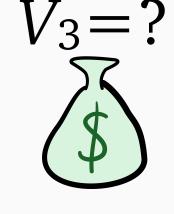


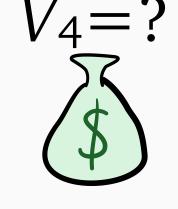


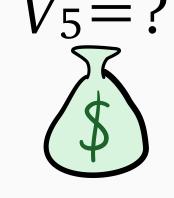




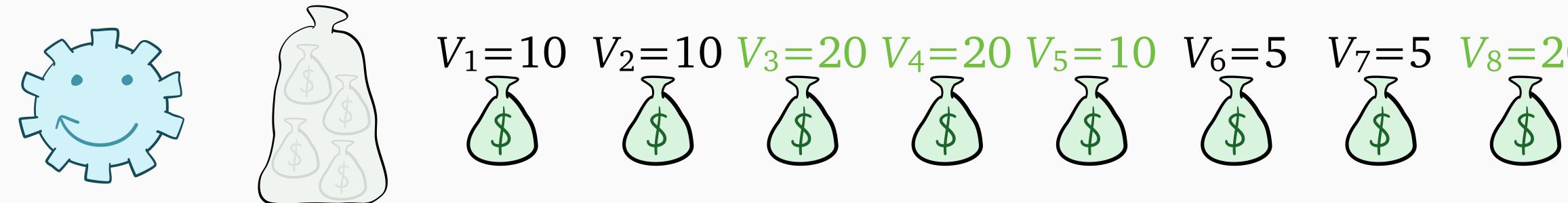


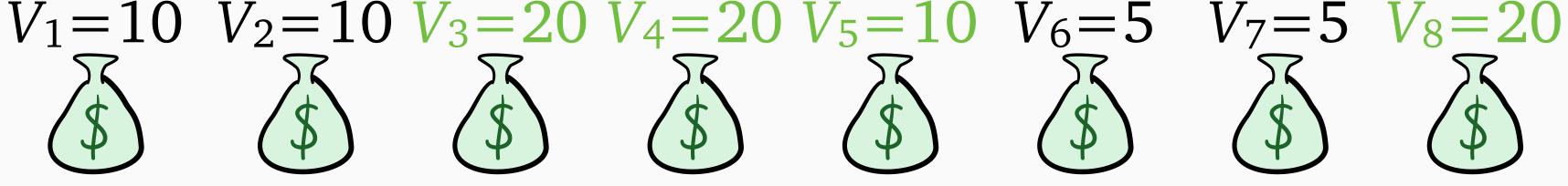


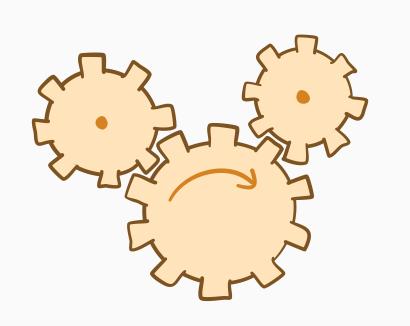




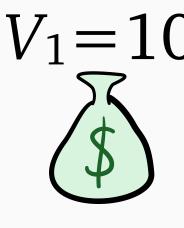
$$\frac{R^{ON}(0)=0}{t}$$

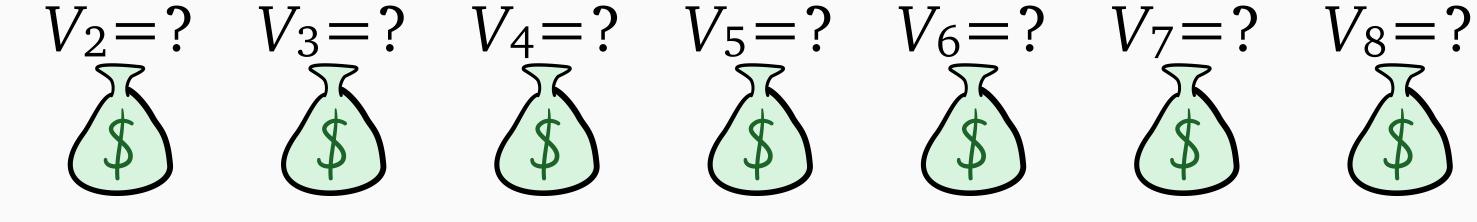


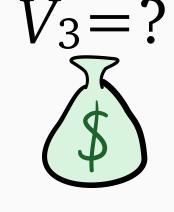


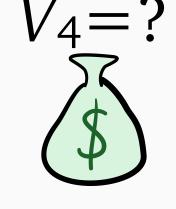






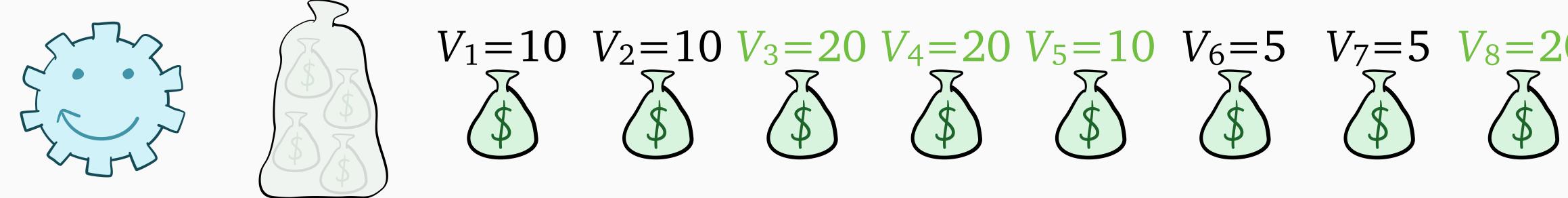


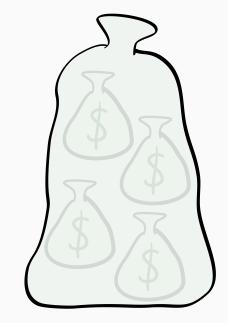


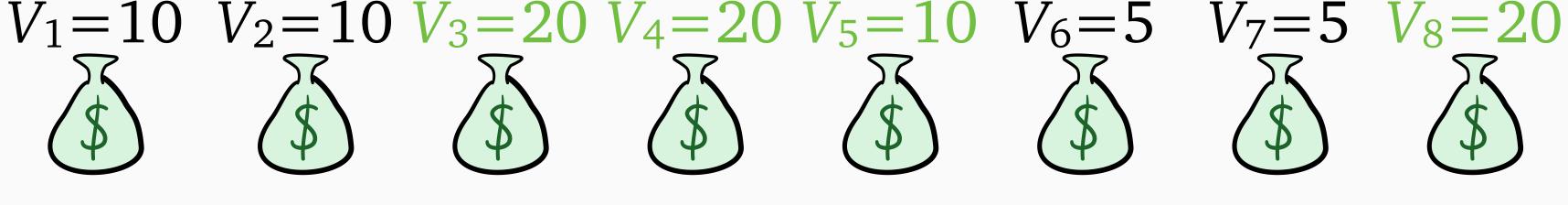


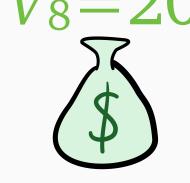
$$\frac{R^{ON}(0)=0}{t}$$

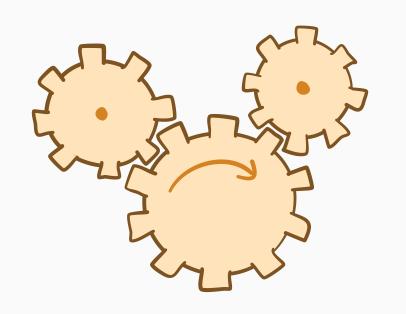
$$T-t$$
 B_t $\Phi^{OFF}(8,4)=70$

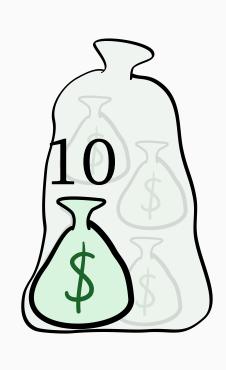


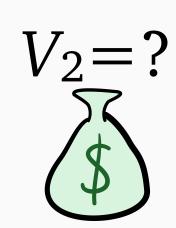


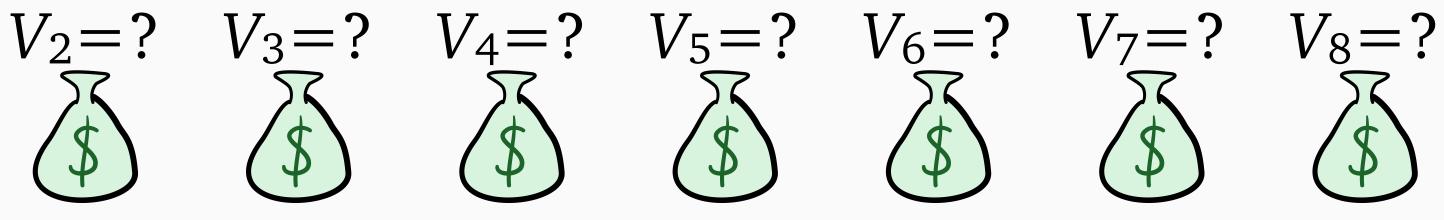


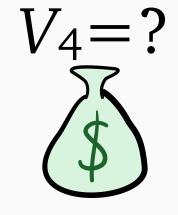


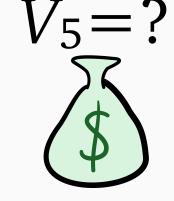


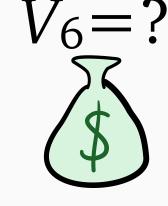






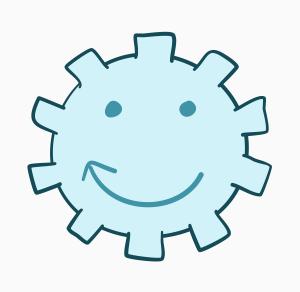


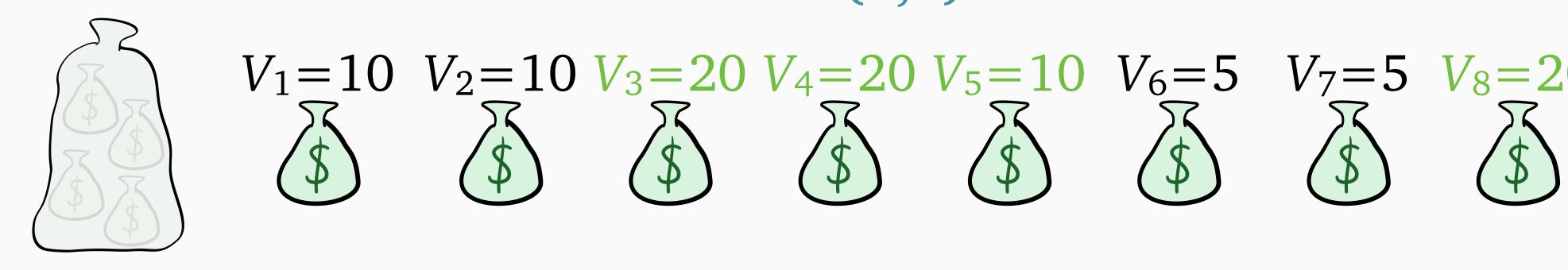


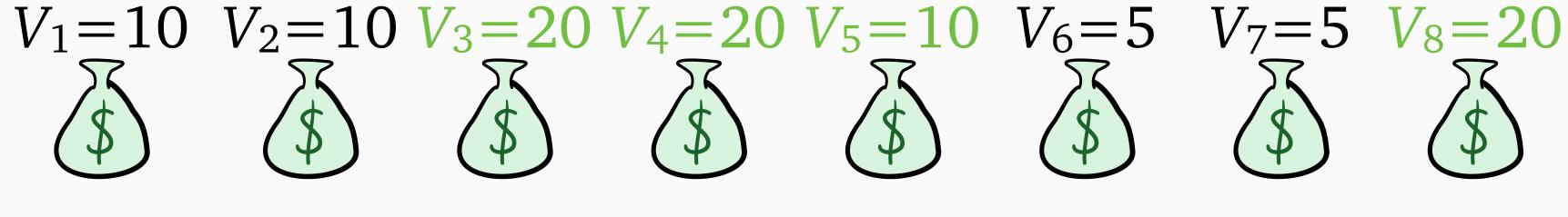


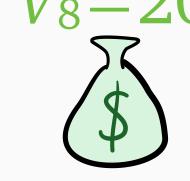
$$R^{ON}(1) = 10$$

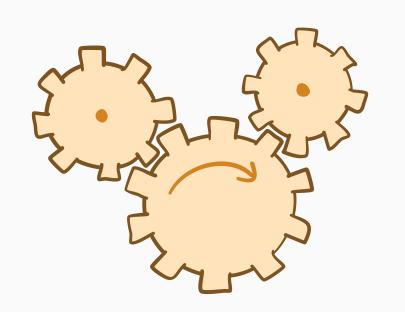
 $\Phi^{OFF}(8,4) = 70$

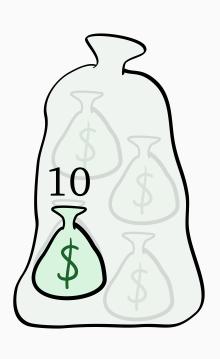


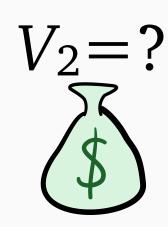


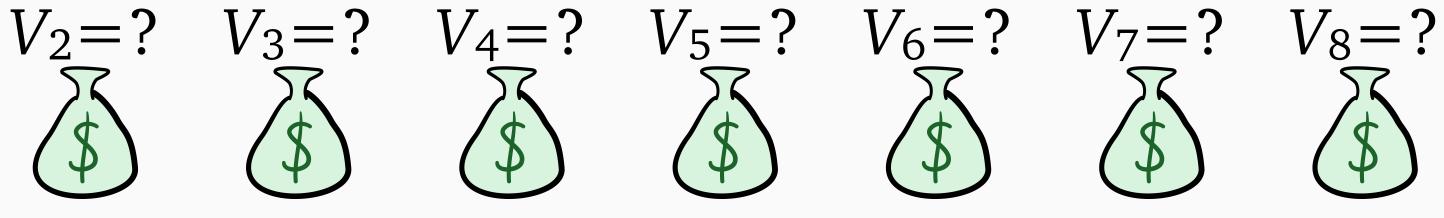


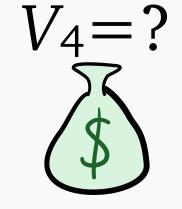


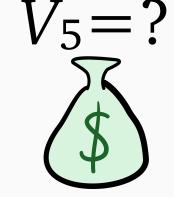


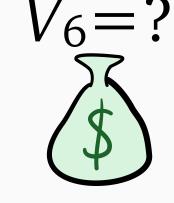






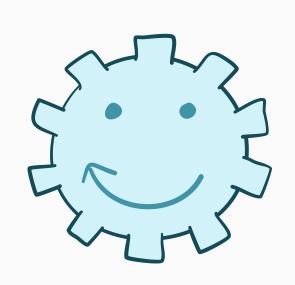


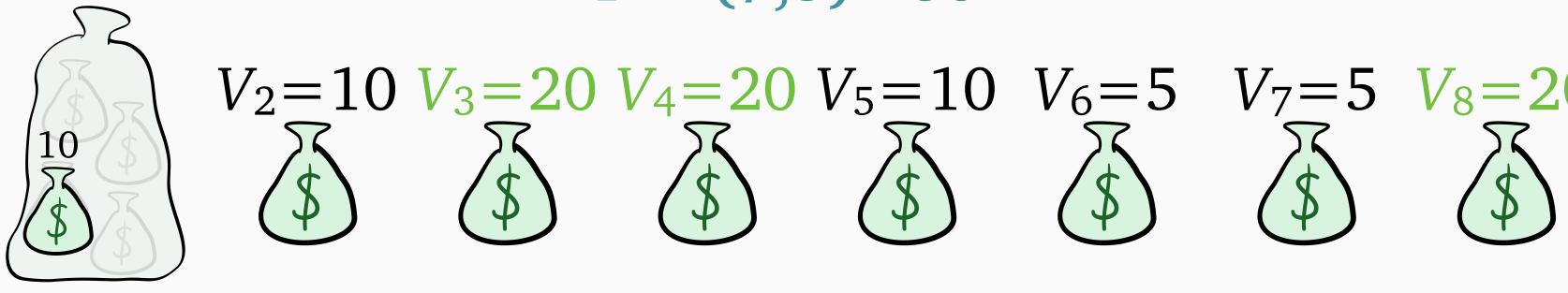


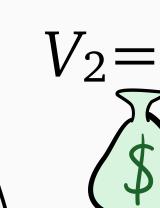


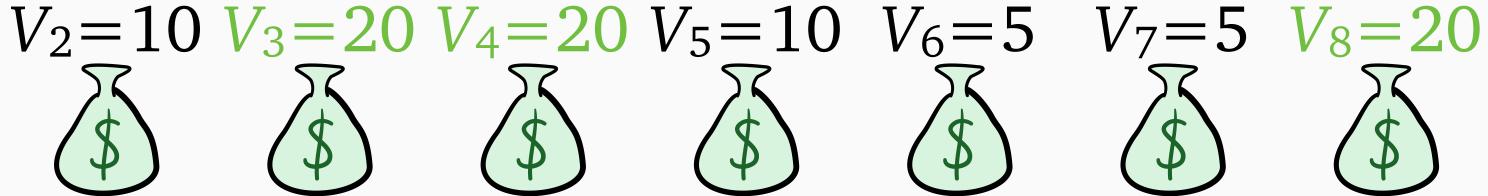
$$R^{ON}(1) = 10$$

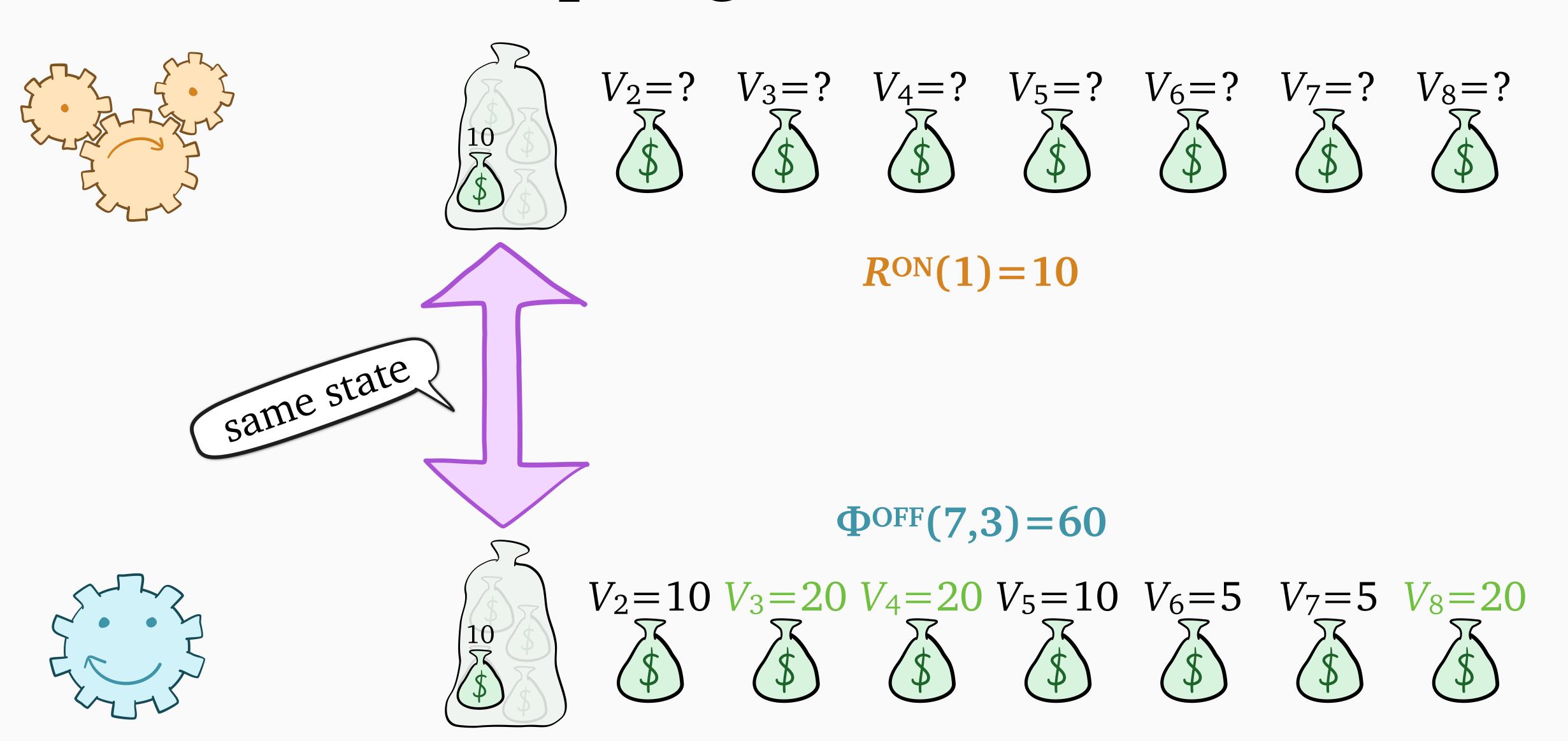
 $\Phi^{OFF}(7,3) = 60$

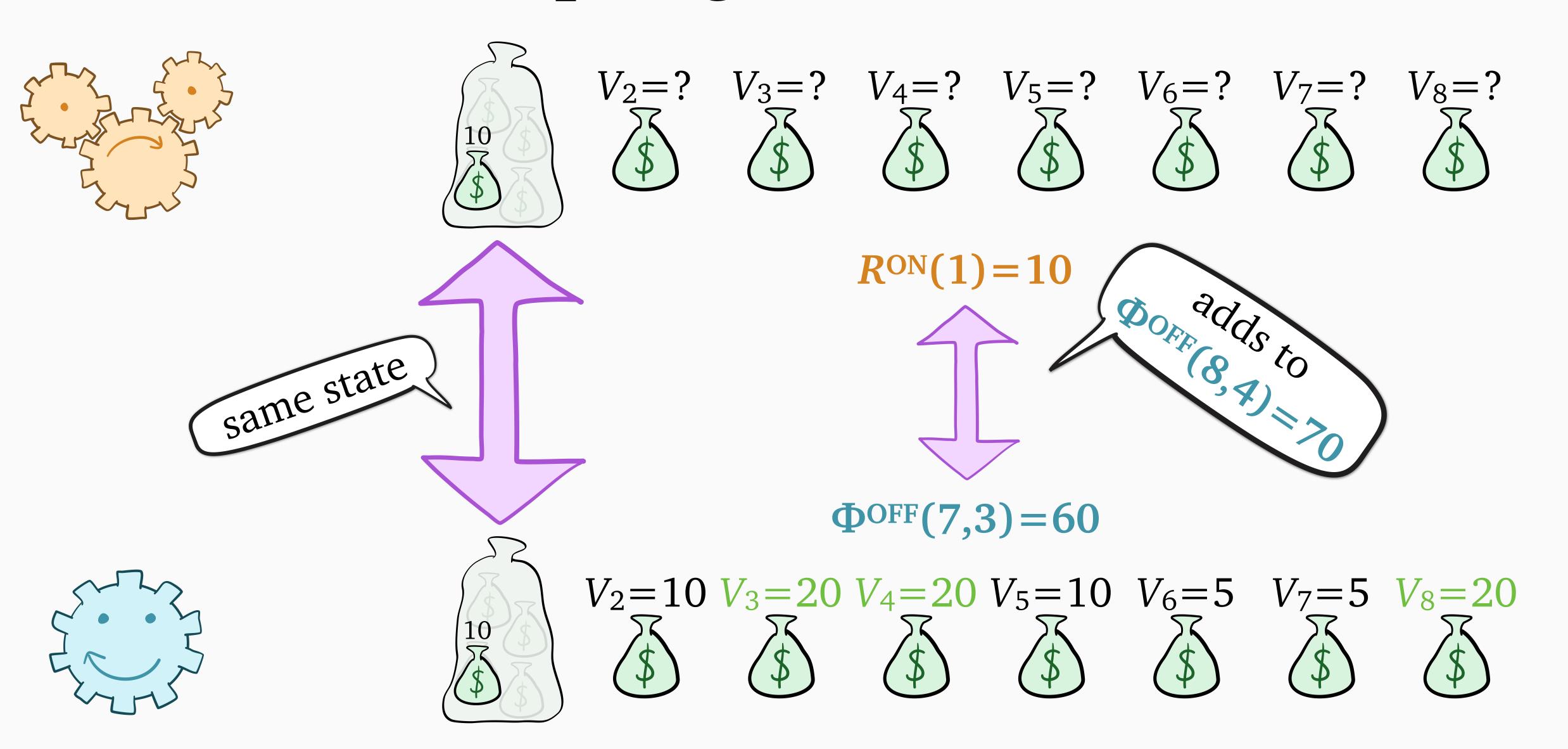


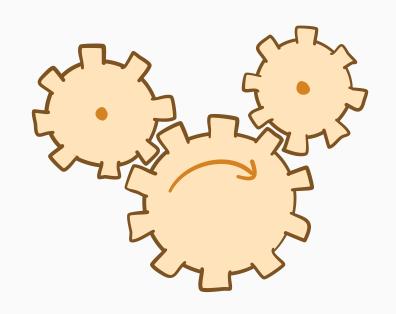


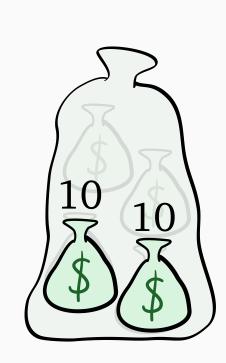


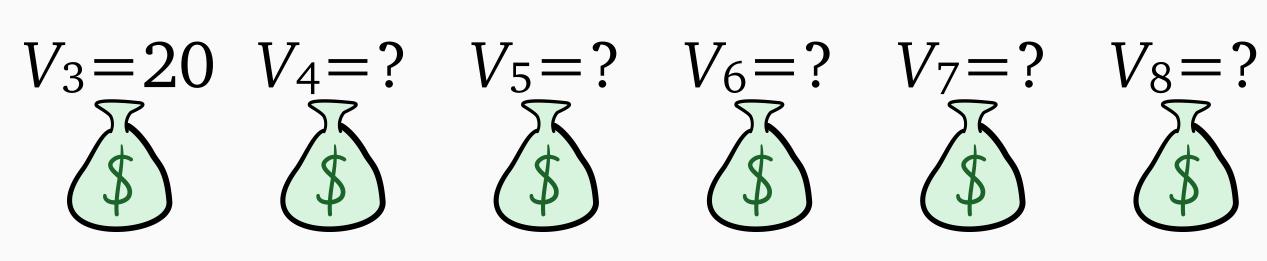


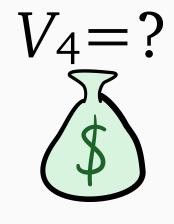


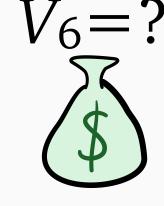




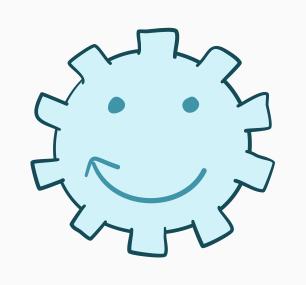


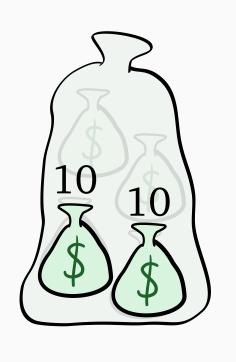


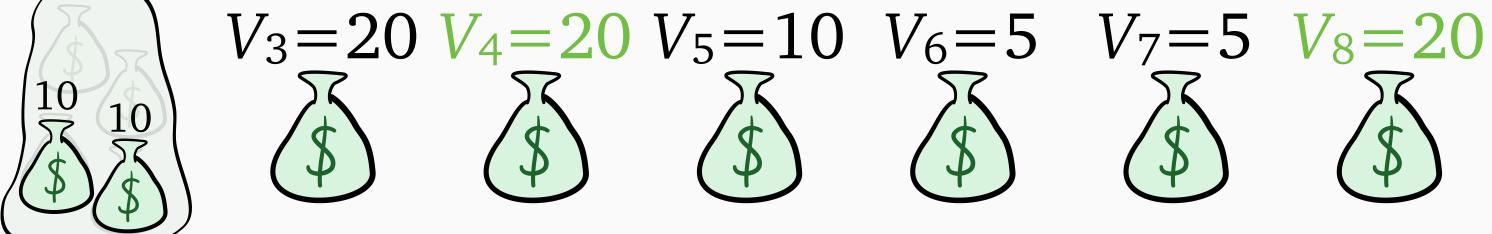


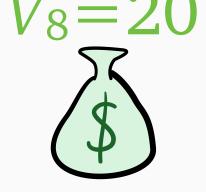


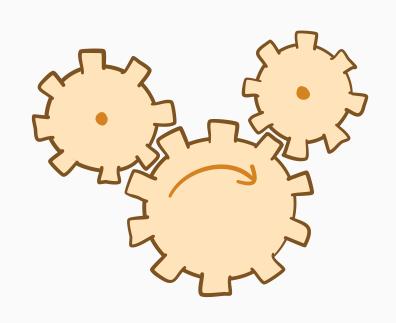
$$R^{\text{ON}}(2) = 20$$

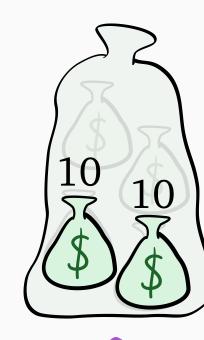


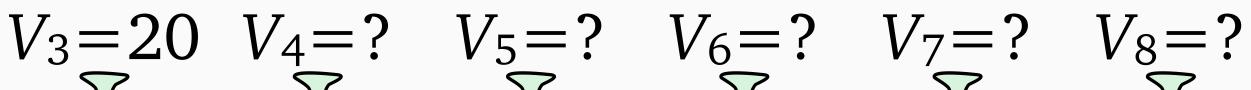


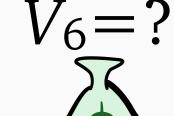


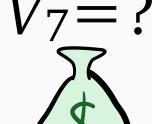


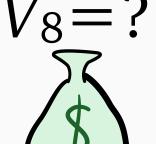


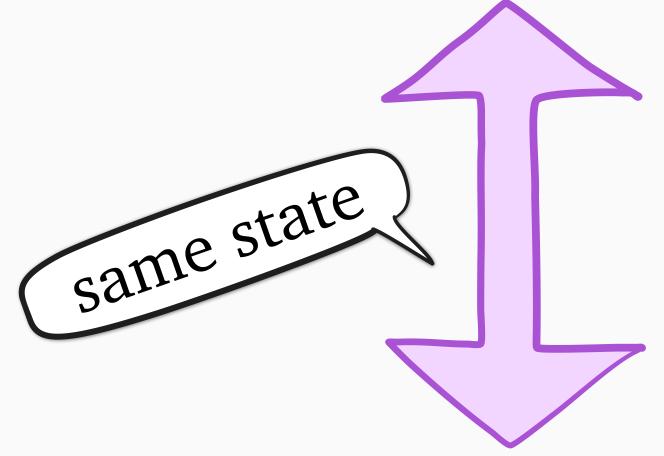




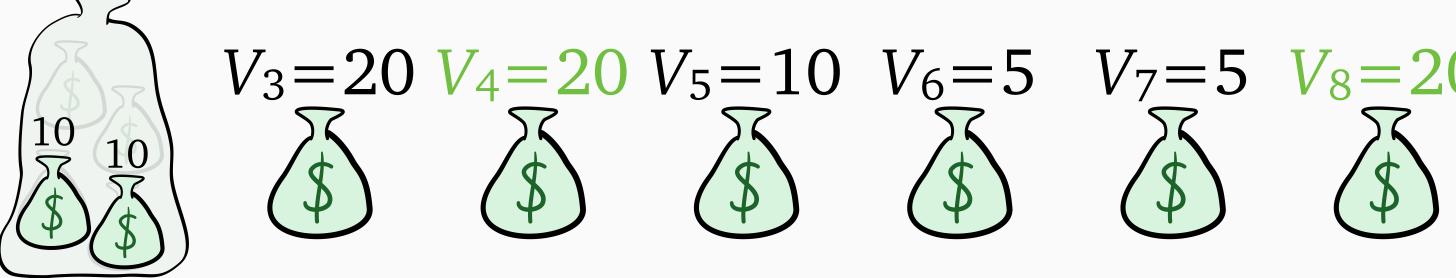


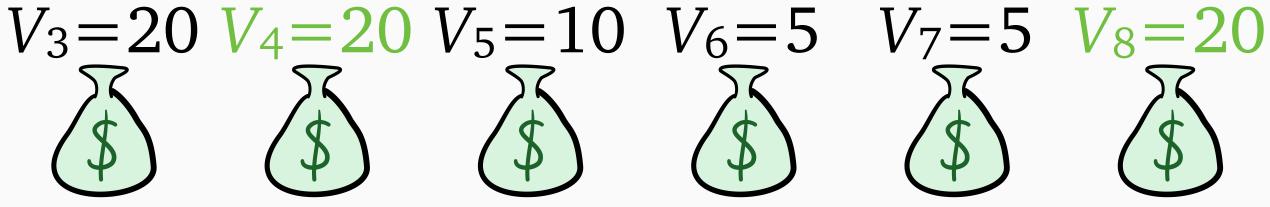


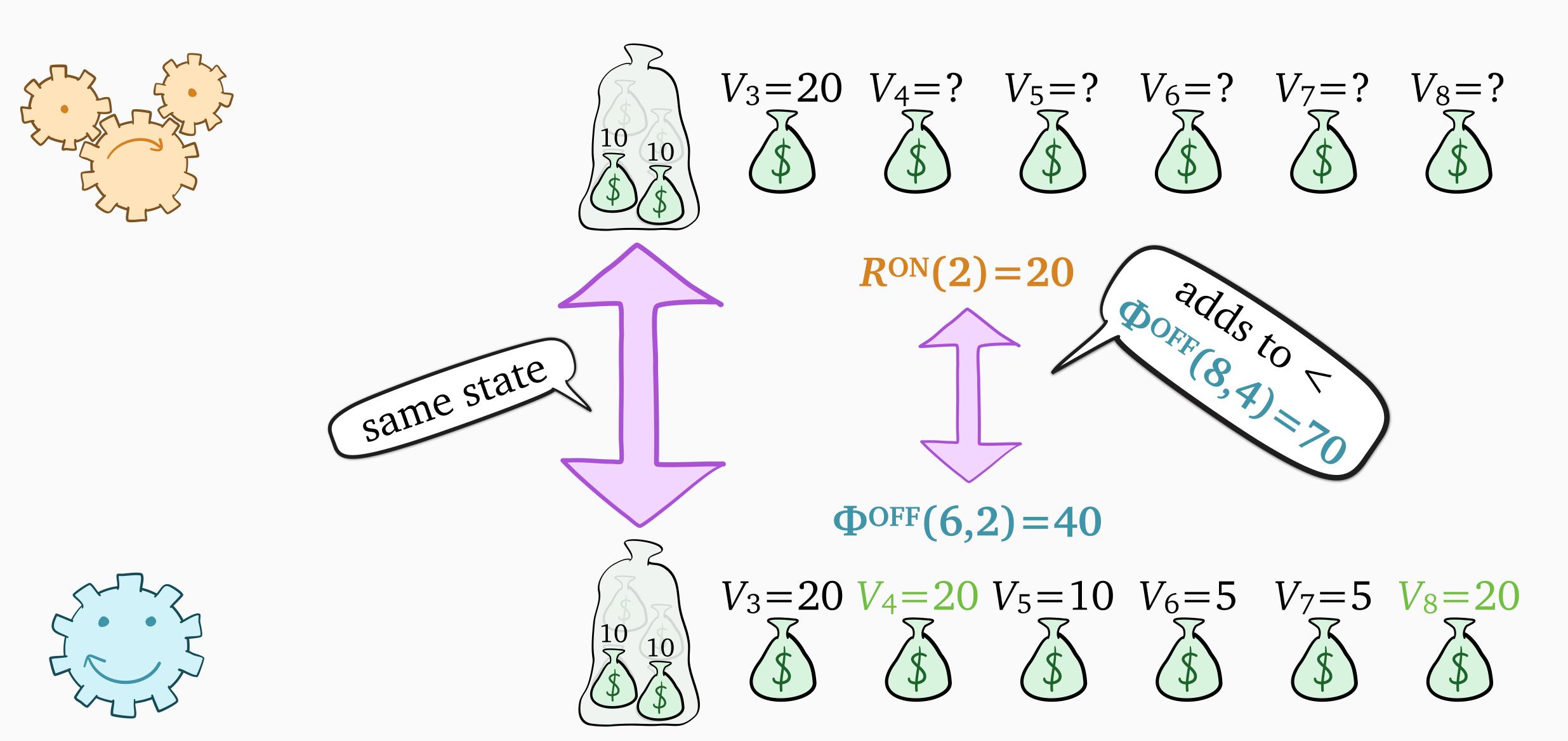


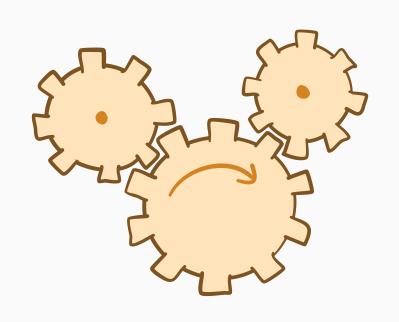


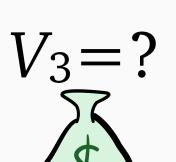
 $\Phi^{OFF}(6,2)=40$

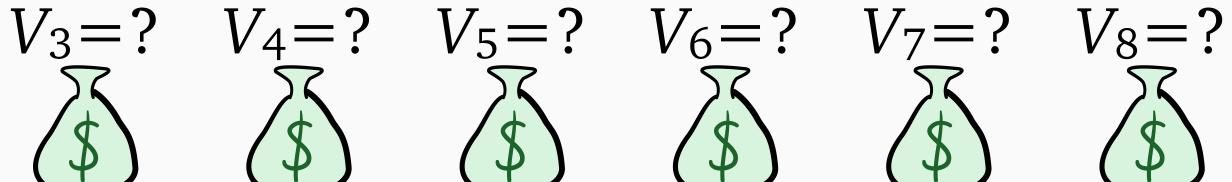


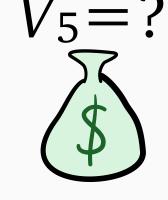


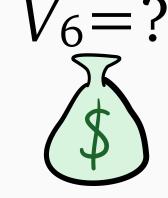


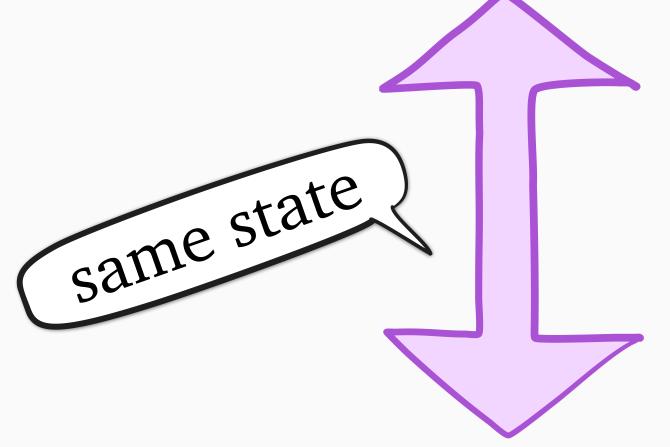




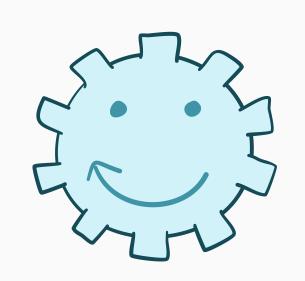


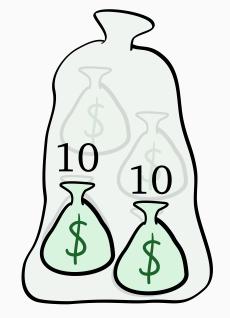


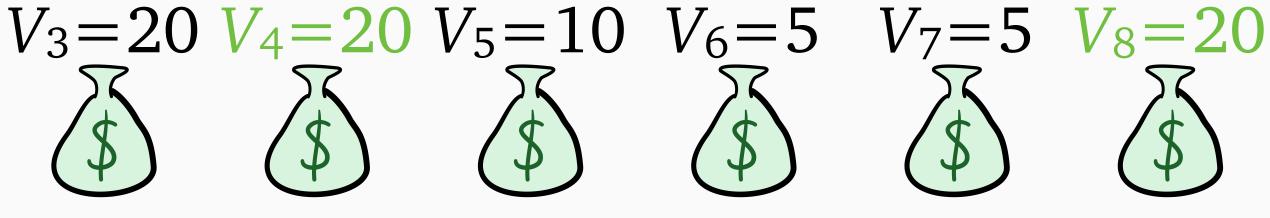


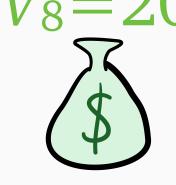


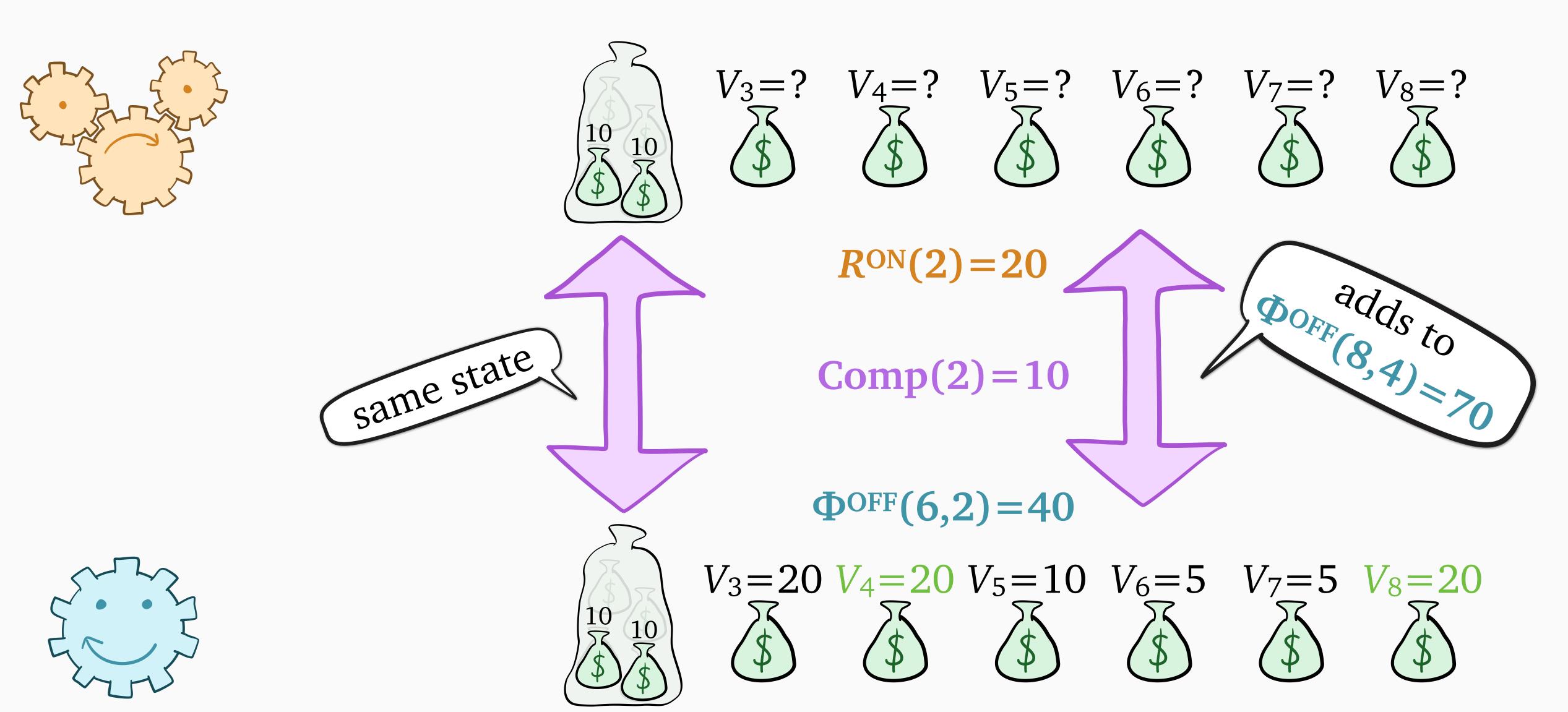
$$Comp(2) = 10$$

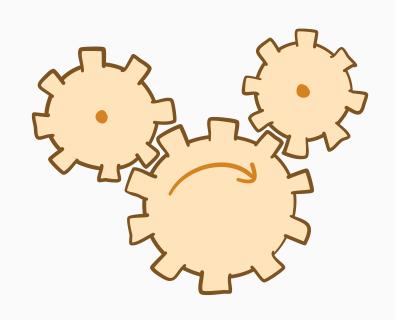


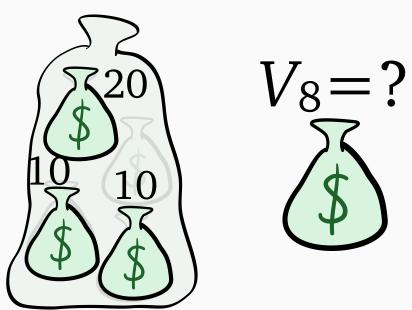








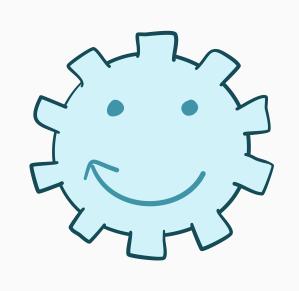


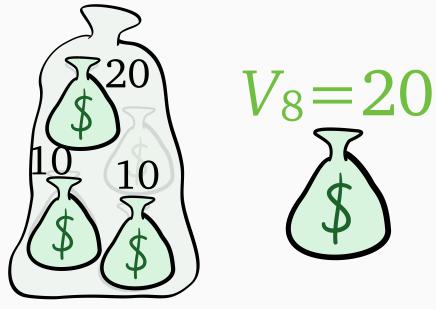


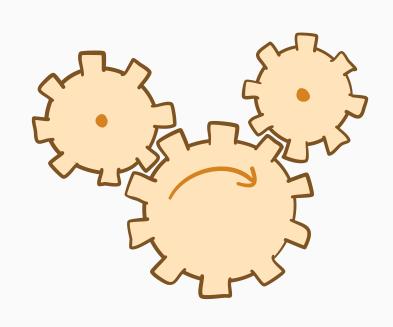
adds to
$$\Phi^{OFF}(8,4) = 70$$

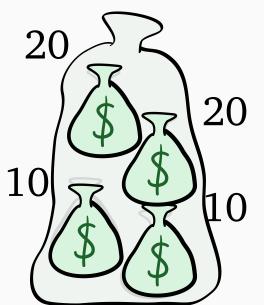
$$Comp(1) + ... + Comp(7) = 10$$

$$\Phi^{OFF}(1,1) = 20$$





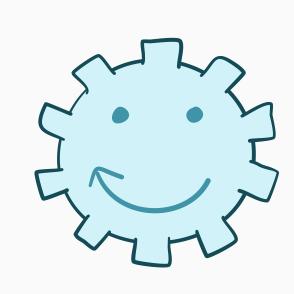


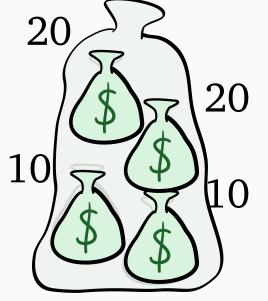


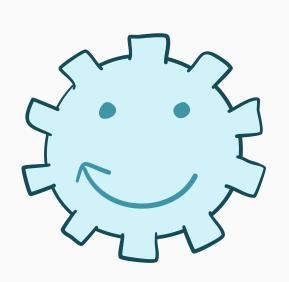
adds to
$$\Phi^{OFF}(8,4) = 70$$

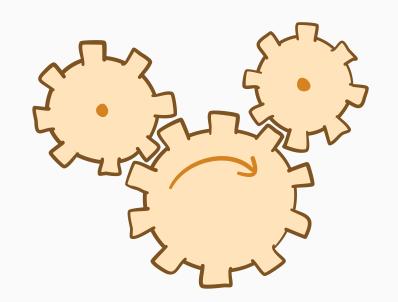
$$Comp(1) + ... + Comp(8) = 10$$

$$\Phi^{OFF}(0,0) = 0$$

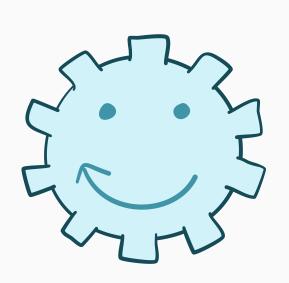


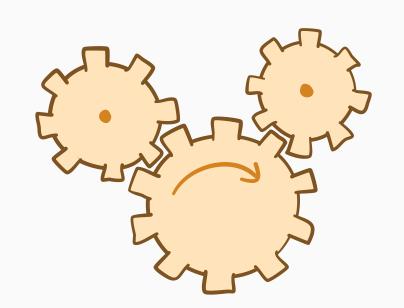






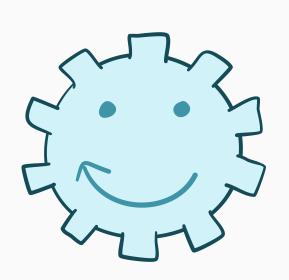
 $\Phi^{\text{OFF}}(8,4) - \Phi^{\text{OFF}}(0,0) = R^{\text{ON}}(8) + (Comp(1) + Comp(2) + ... + Comp(8))$

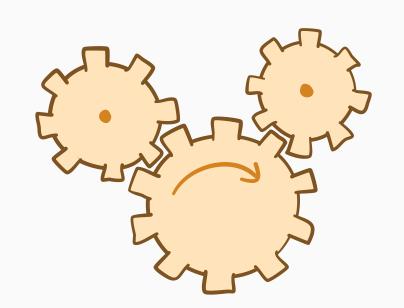




 $\Phi^{\text{OFF}}(8,4) - \Phi^{\text{OFF}}(0,0) = R^{\text{ON}}(8) + (Comp(1) + Comp(2) + ... + Comp(8))$

where Comp(t) = $\Phi^{OFF}(T-t,B_t) - R^{ON}(t)$

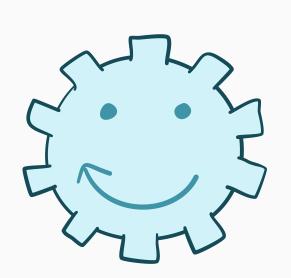


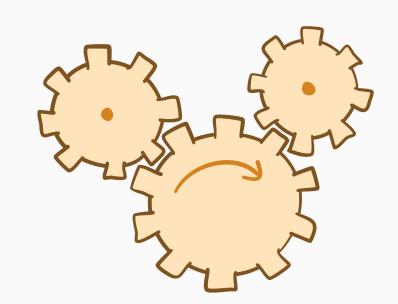


 $\Phi^{\text{OFF}}(8,4) - \Phi^{\text{OFF}}(0,0) = R^{\text{ON}}(8) + (Comp(1) + Comp(2) + ... + Comp(8))$

where Comp $(t) = \Phi^{OFF}(T-t,B_t) - R^{ON}(t)$

= "Compensation" provided to OFFLINE for following ONLINE





 $\Phi^{\text{OFF}}(8,4) - \Phi^{\text{OFF}}(0,0) = R^{\text{ON}}(8) + (Comp(1) + Comp(2) + ... + Comp(8))$

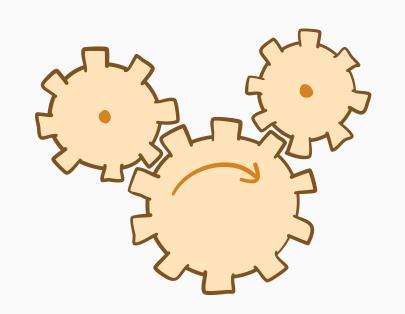
ONLINE state

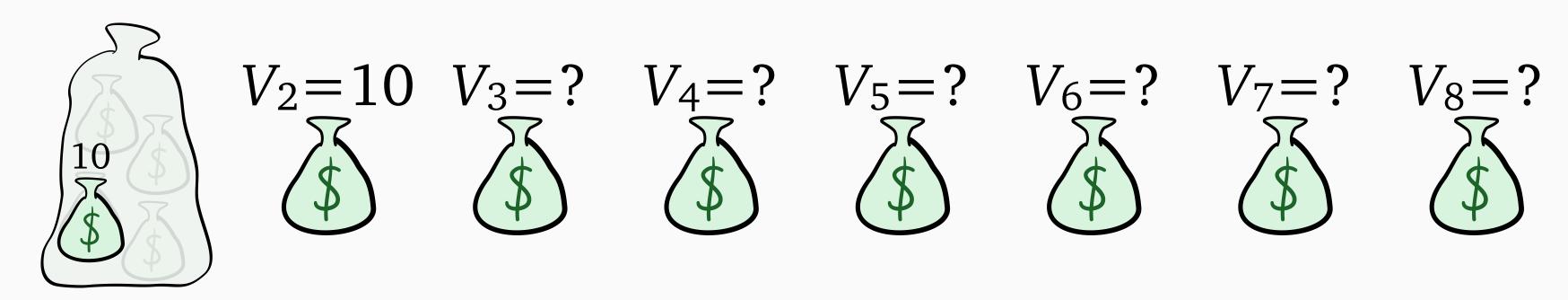
where Comp $(t) = \Phi^{OFF}(T-t,B_t) - R^{ON}(t)$

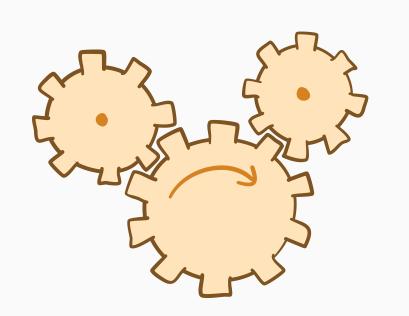
= "Compensation" provided to OFFLINE for following ONLINE

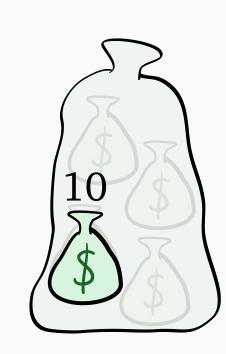
Notes: In computing Comp(t)

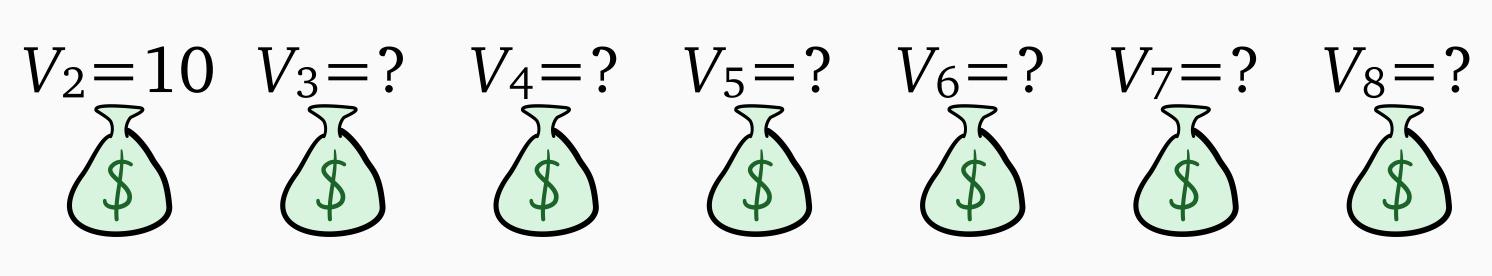
- Past arrivals/actions are forgotten (only ONLINE's current state matters)
- Future arrivals are incorporated via OFFLINE (Comp(t) is a rand. var.)

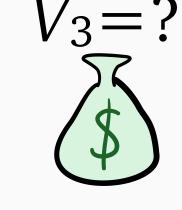








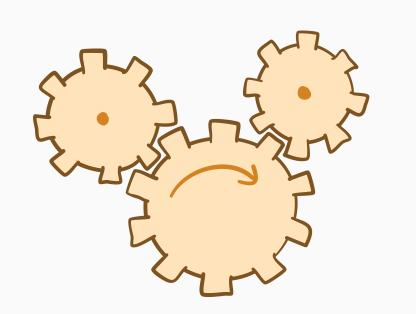


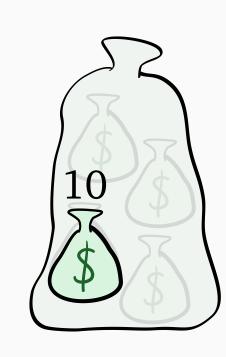


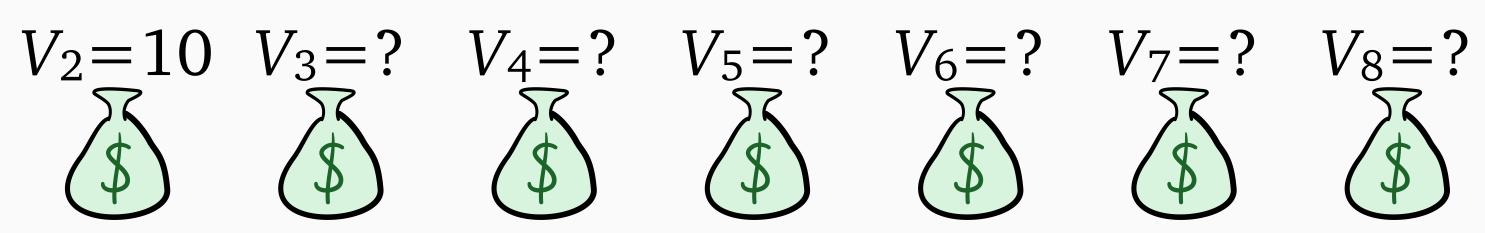


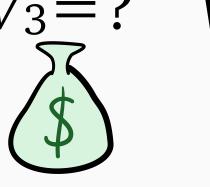
If **ONLINE** wants to accept V_2

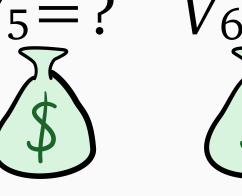
- Comp(2) = 10 IFF at least 3 future arrivals have value 20
- Comp(2) = 0 otherwise

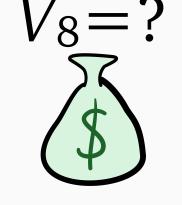










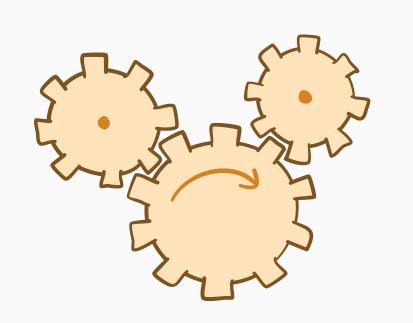


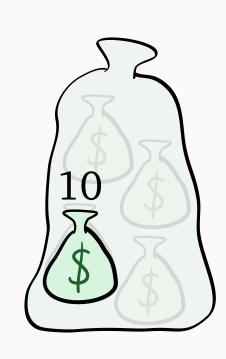
If **ONLINE** wants to accept V_2

- Comp(2) = 10 IFF at least 3 future arrivals have value 20
- Comp(2) = 0 otherwise

If **ONLINE** wants to reject V_2

- Comp(2) = 10 IFF at most 2 future arrivals have values in $\{10,20\}$
- Comp(2) = 0 otherwise





$$V_2=10$$
 $V_3=?$ $V_4=?$ $V_5=?$ $V_6=?$ $V_7=?$ $V_8=?$

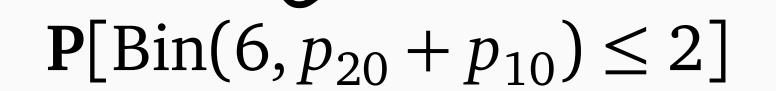
If ONLINE wants to accept V_2

- Comp(2) = 10 IFF at least 3 future arrivals have value 20
- Comp(2) = 0 otherwise

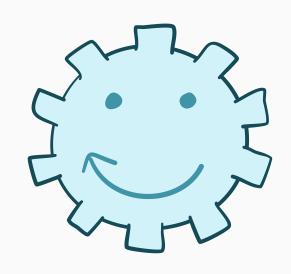
 $P[Bin(6, p_{20}) \ge 3]$

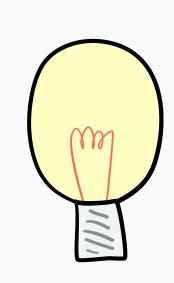
If ONLINE wants to reject V₂

- Comp(2) = 10 IFF at most 2 future arrivals have values in $\{10,20\}$
- Comp(2) = 0 otherwise

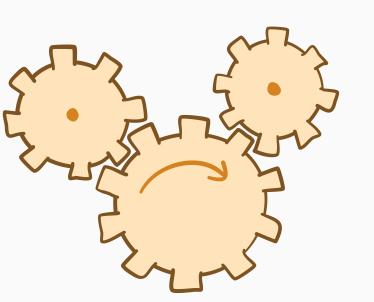


Compensated coupling: online knapsack

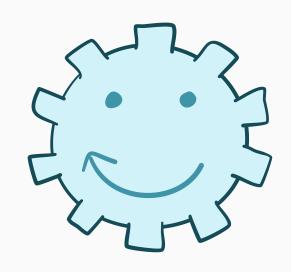


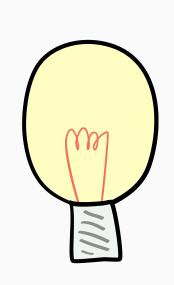


The Bayes selector:

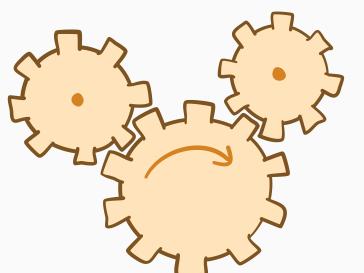


Compensated coupling: online knapsack

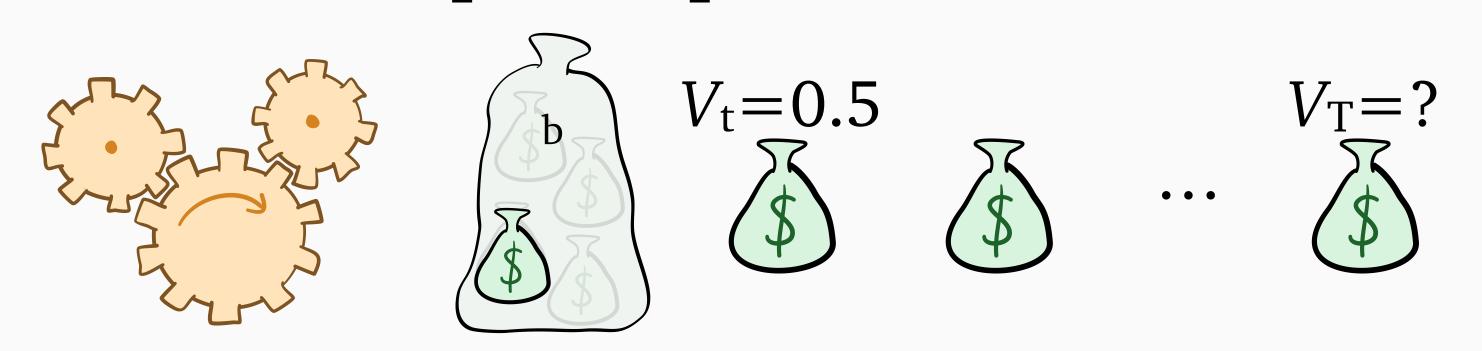


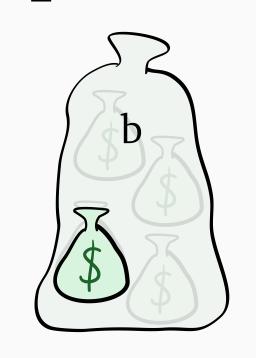


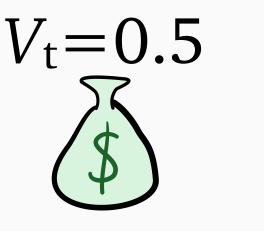
The Bayes selector:

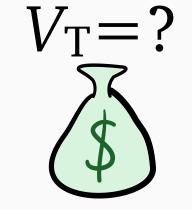


For online knapsack with k types, Bayes selector has $\mathbb{E}[\text{Regret}] \leq k v_{\text{max}}/p_{\text{min}}$

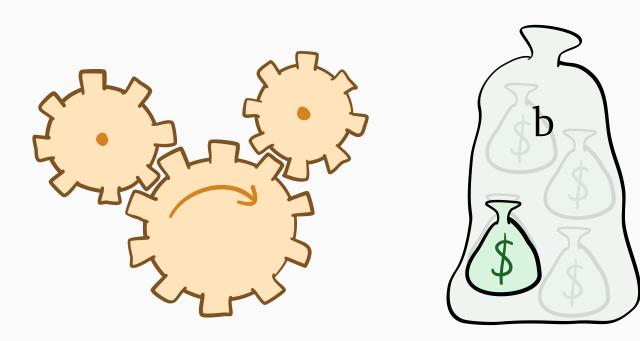


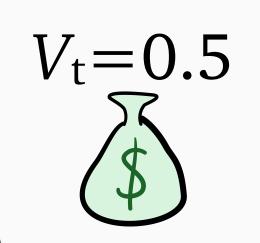


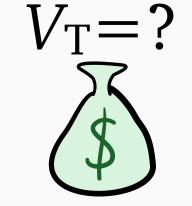




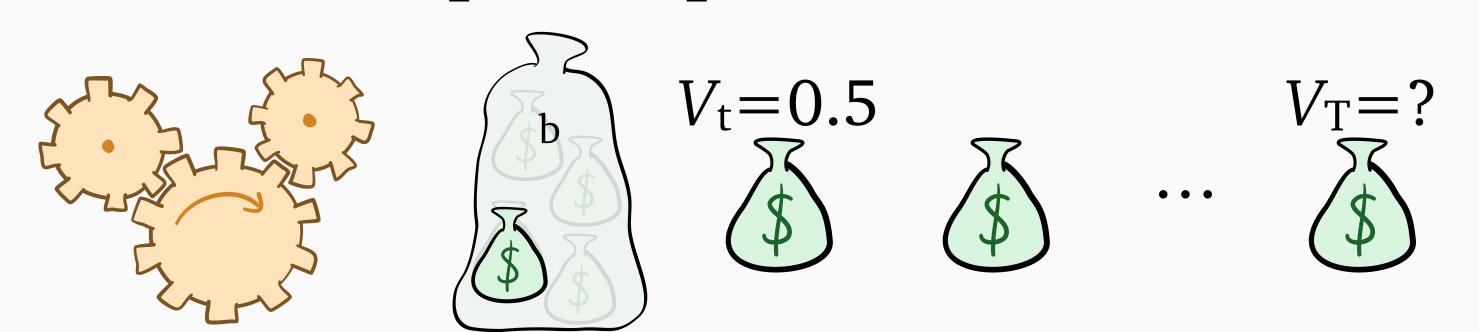
- ONLINE : Accept if $V_t \ge \theta$
- Let h=T-t, and define $V_{[b]}^h = \{b^{th} \text{ largest value in } V[t+1], V[t+2], \dots, V[T]\}$

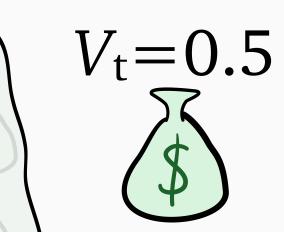




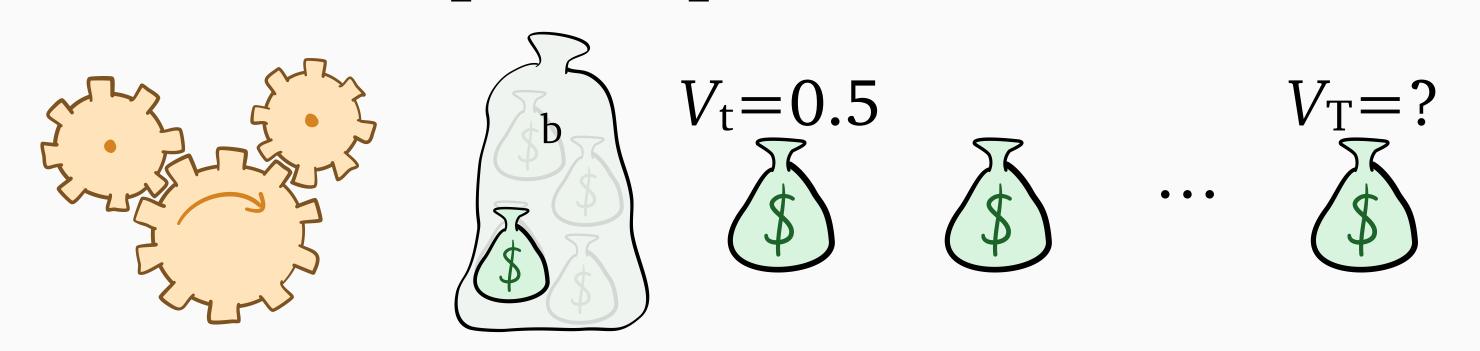


- ONLINE : Accept if $V_t \ge \theta$
- Let h=T-t, and define $V_{[b]}^h = \{b^{th} \text{ largest value in } V[t+1], V[t+2], \dots, V[T]\}$

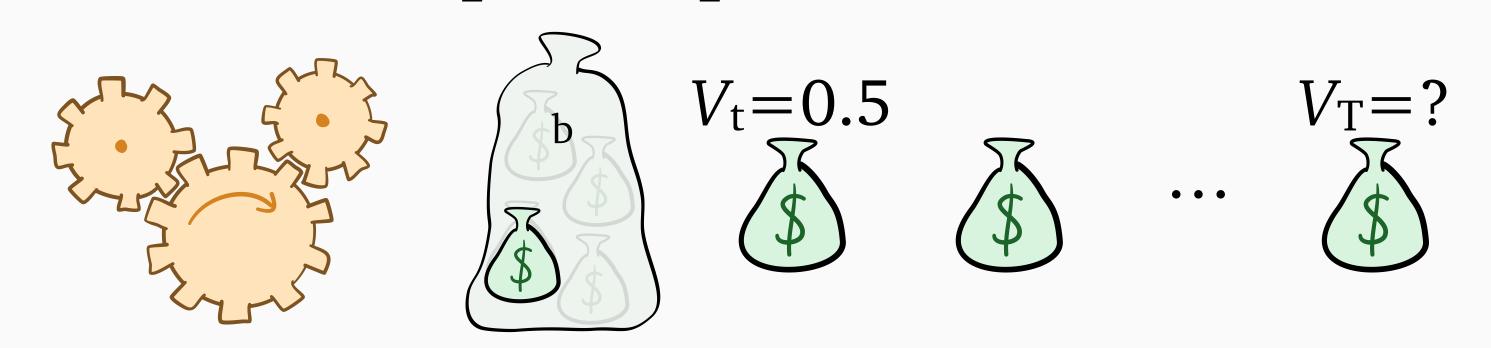




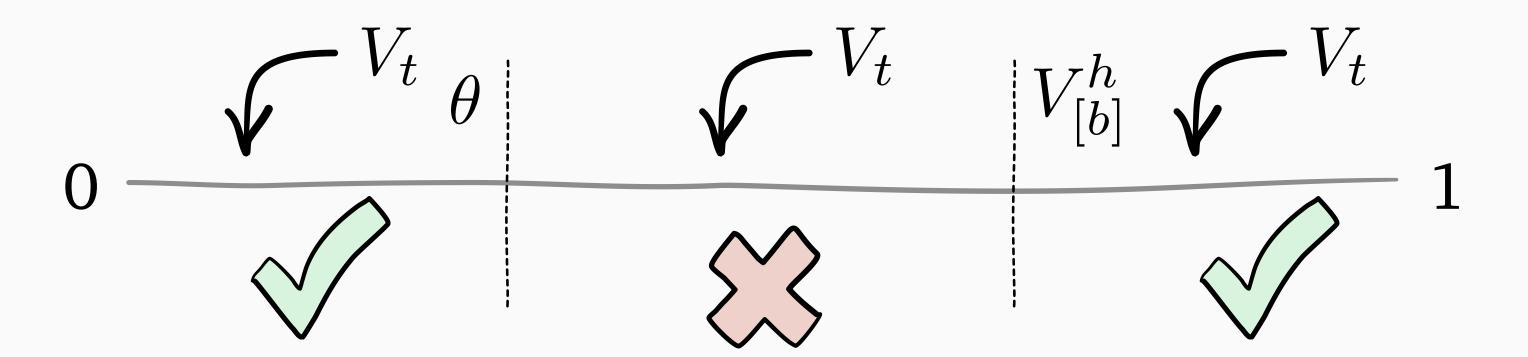
- ONLINE : Accept if $V_t \ge \theta$
- Let h=T-t, and define $V_{[b]}^h = \{b^{th} \text{ largest value in } V[t+1], V[t+2], \dots, V[T]\}$

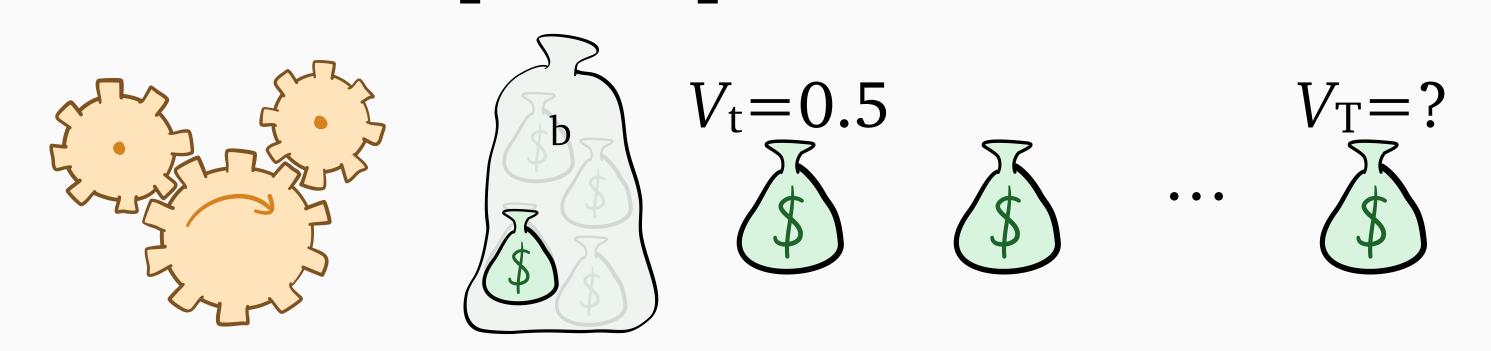


- ONLINE : Accept if $V_t \ge \theta$
- Let h=T-t, and define $V_{[b]}^h = \{b^{th} \text{ largest value in } V[t+1], V[t+2], \dots, V[T]\}$

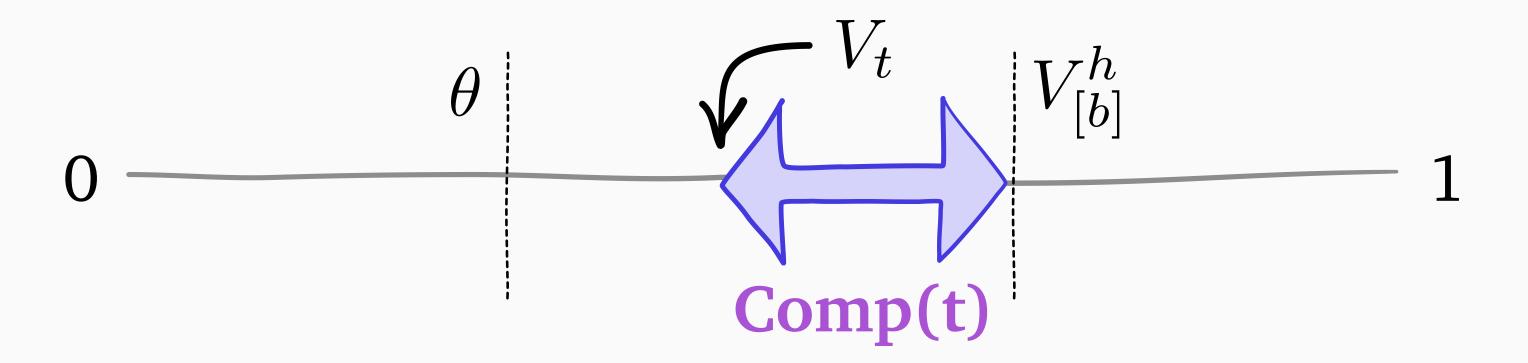


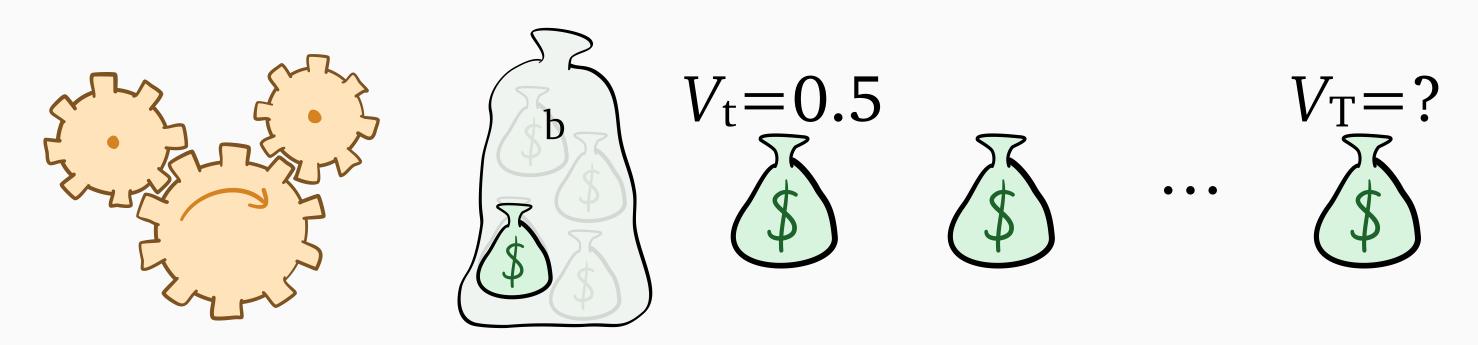
- ONLINE : Accept if $V_t \ge \theta$
- Let h=T-t, and define $V_{[b]}^h = \{b^{th} \text{ largest value in } V[t+1], V[t+2], \dots, V[T]\}$





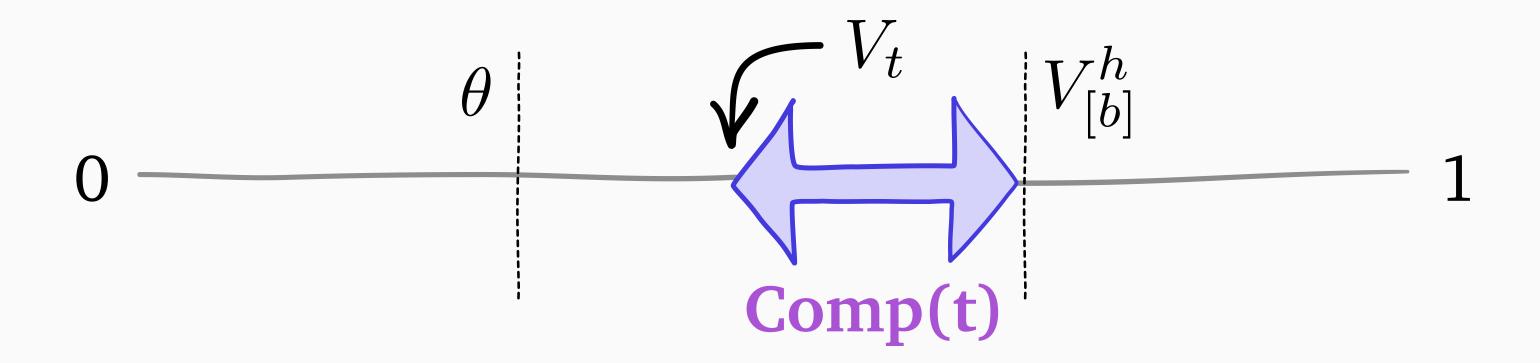
- ONLINE : Accept if $V_t \ge \theta$
- Let h=T-t, and define $V_{[b]}^h = \{b^{th} \text{ largest value in } V[t+1], V[t+2], \dots, V[T]\}$

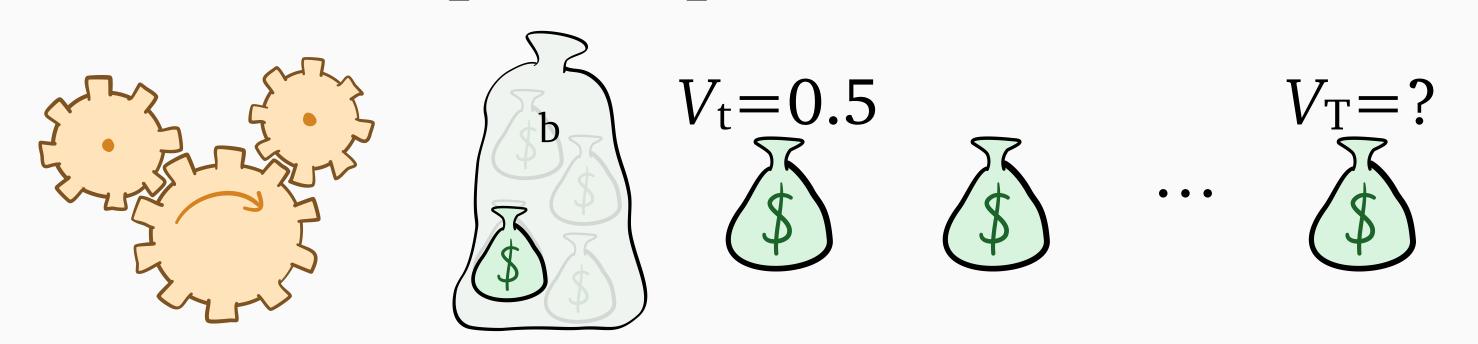


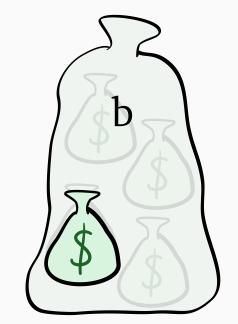


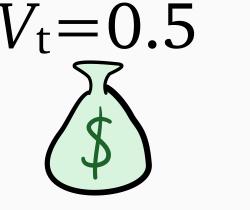
- ONLINE : Accept if $V_t \ge \theta$
- Let h=T-t, and define $V_{[b]}^h = \{b^{th} \text{ largest value in } V[t+1], V[t+2], \dots, V[T]\}$

Comp
$$(t) = |V_{[b]}^h - V_t| \mathbb{1}_{V_t \in [\theta, V_{[b]}^h]}$$

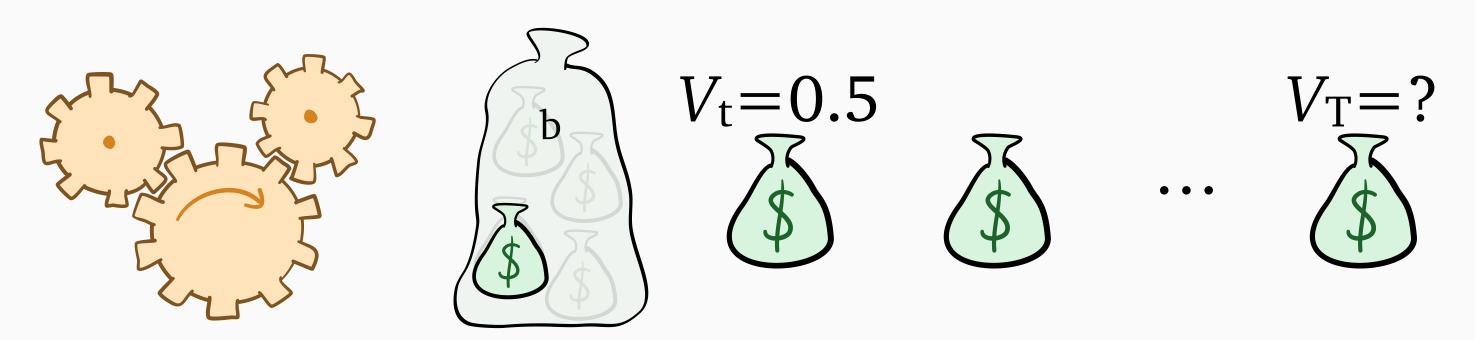








- ONLINE : Accept if $V_t \ge \theta$
- Let h=T-t, and define $V_{[b]}^h = \{b^{th} \text{ largest value in } V[t+1], V[t+2], \dots, V[T]\}$

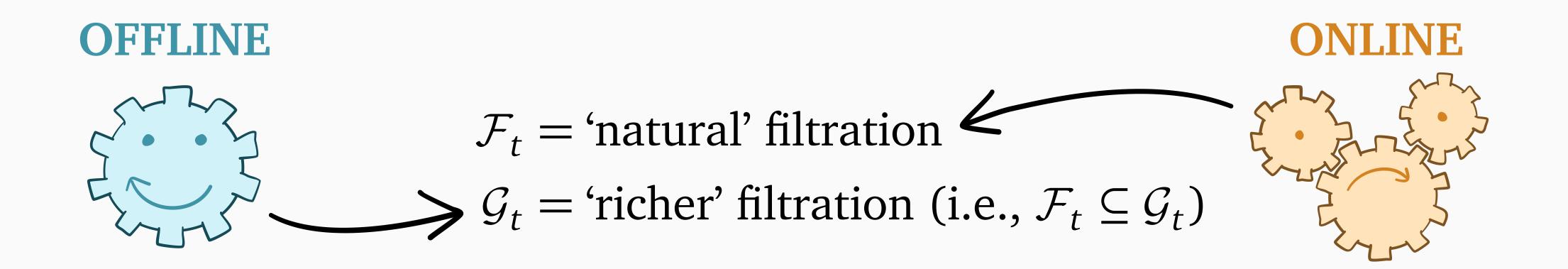


- ONLINE : Accept if $V_t \ge \theta$
- Let h=T-t, and define $V_{[b]}^h = \{b^{th} \text{ largest value in } V[t+1], V[t+2], \dots, V[T]\}$

$$\mathbb{E}[\operatorname{Comp}(t)] = \mathbb{E}\left[\mathbb{E}[|V_{[b]}^h - V_t|\mathbb{1}_{V_t \in [\theta, V_{[b]}^h]}|V_t] \middle| V_{[b]}^h\right]$$
$$= \mathbb{E}\left[(V_{[b]}^h - \theta)^2/2|V_{[b]}^h\right] \leq Var(V_{[b]}^h) = \Theta(1/h)$$

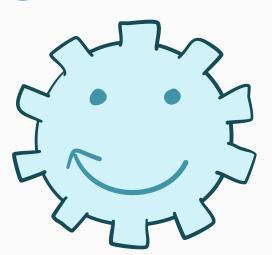
$$\mathbb{E}[\text{Regret}] = \Theta(\log T)$$

Coupling to easy system with more information

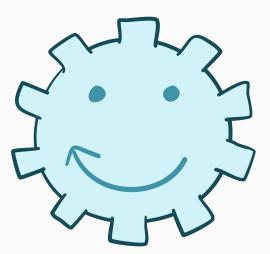


```
\Phi^{\text{OFF}}(), Q^{\text{OFF}}(,): value/Q functions for OFFLINE \Phi^{\text{ON}}(), Q^{\text{ON}}(,): value/Q functions for ONLINE S_t, A_t: state/action taken by ONLINE in time slot t
```

OFFLINE

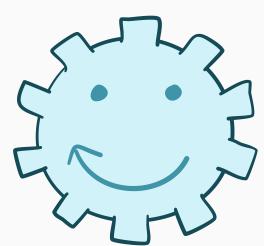


OFFLINE



$$\Phi^{OFF}(S_1) = R_1(S_1, A_1) + \Phi^{OFF}(S_2) + Comp(1)$$

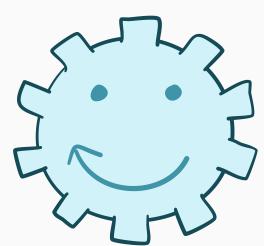
OFFLINE



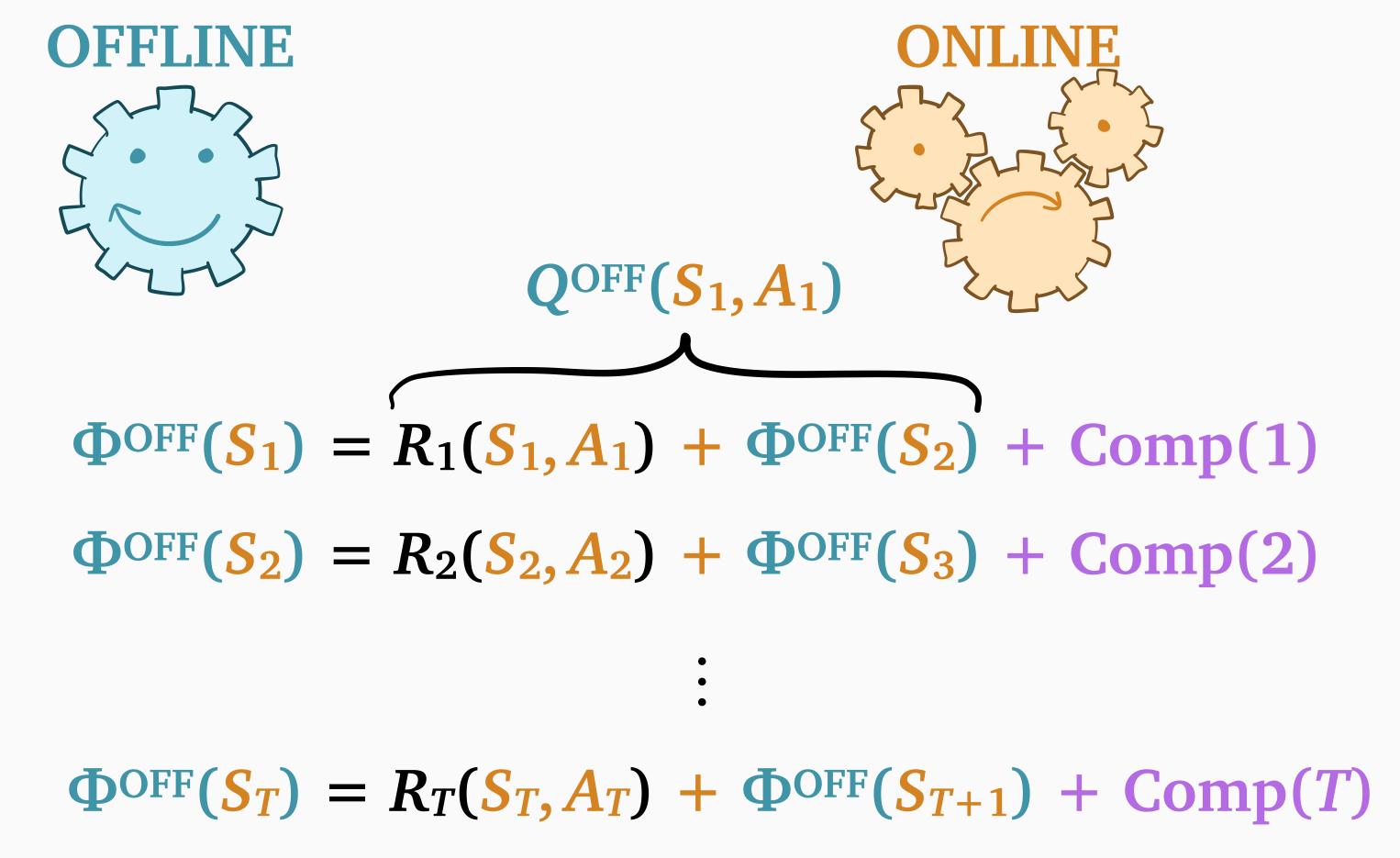
$$\Phi^{\text{OFF}}(S_1) = R_1(S_1, A_1) + \Phi^{\text{OFF}}(S_2) + \text{Comp}(1)$$

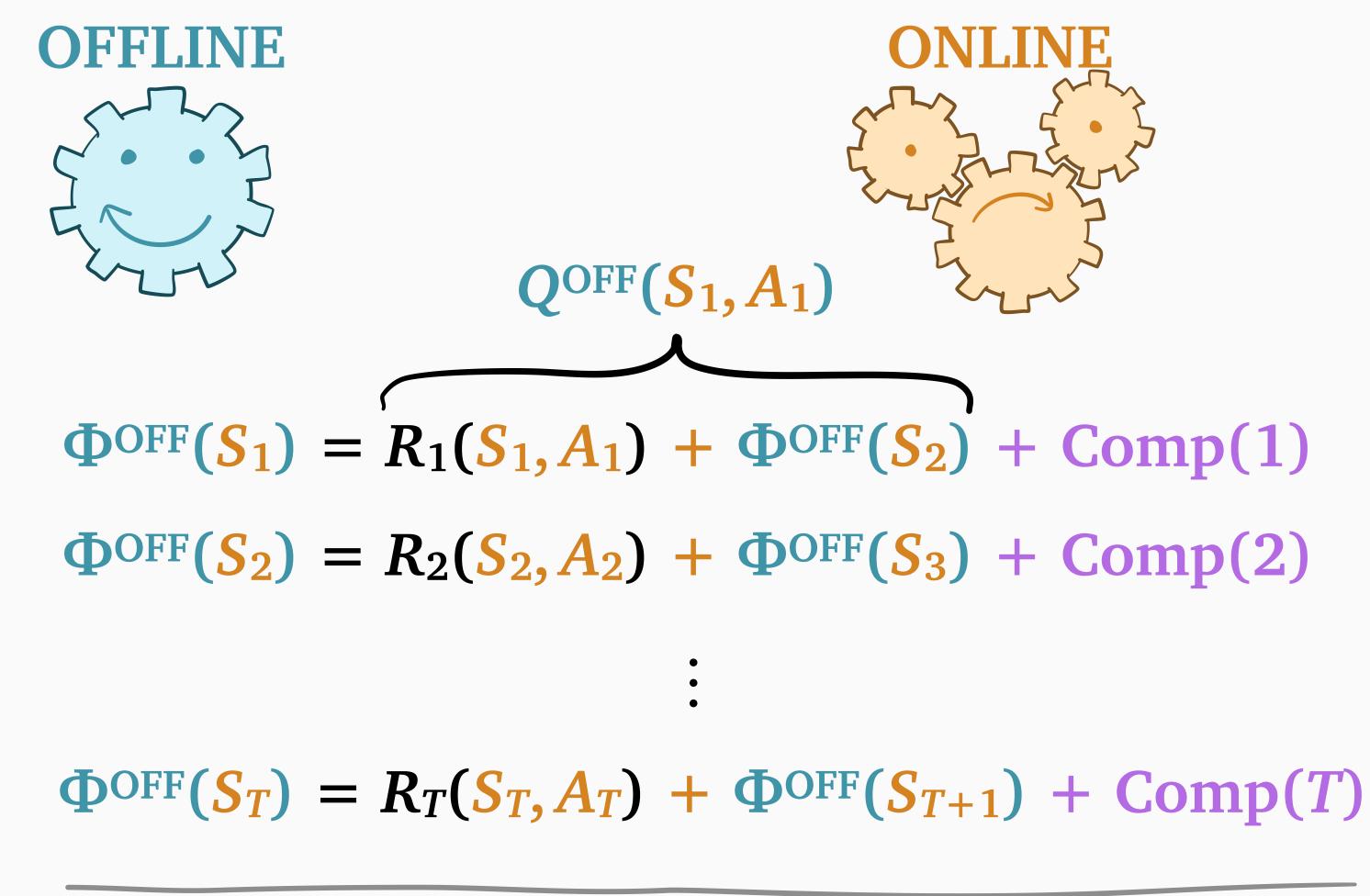
 $\Phi^{\text{OFF}}(S_2) = R_2(S_2, A_2) + \Phi^{\text{OFF}}(S_3) + \text{Comp}(2)$

OFFLINE

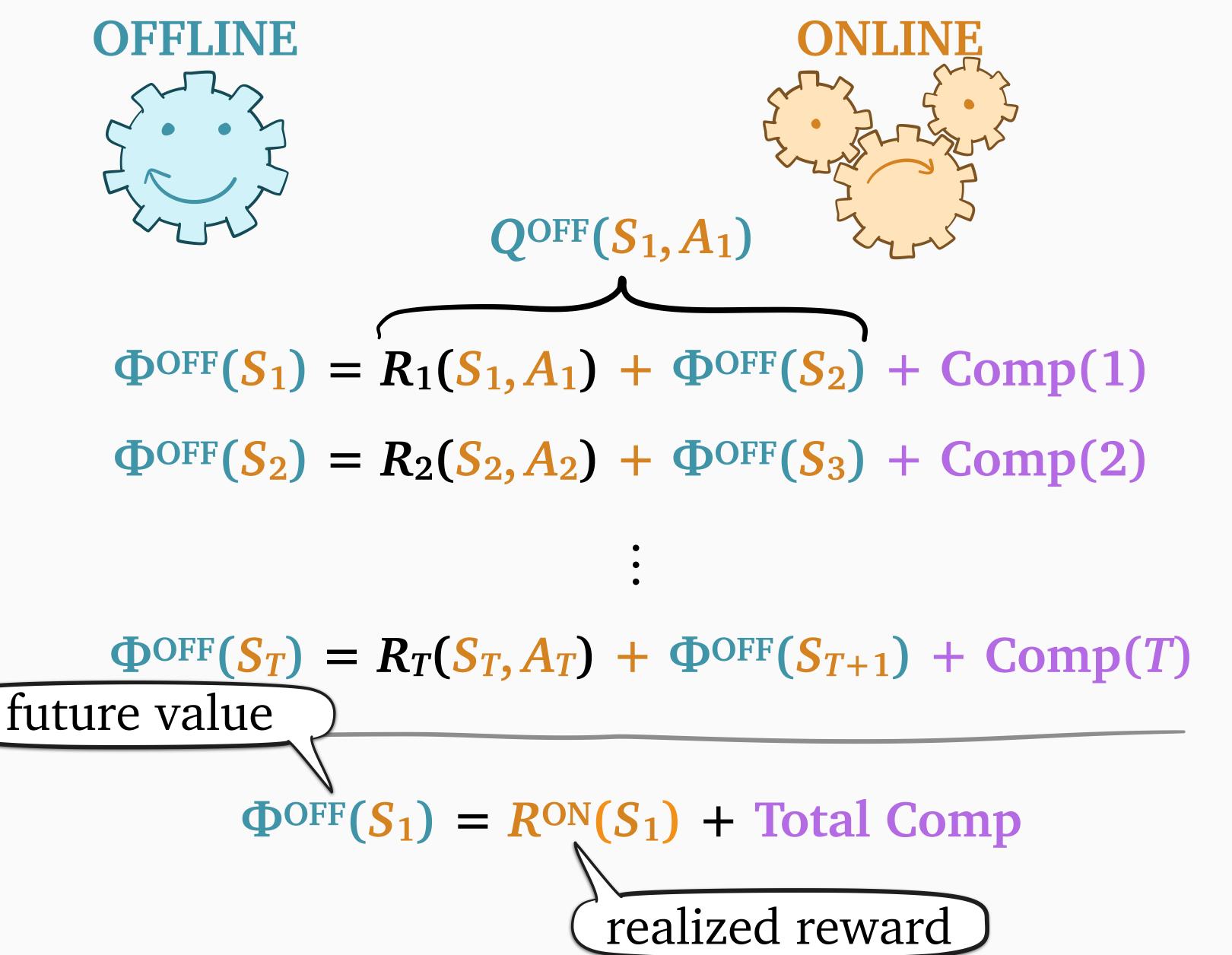



```
\Phi^{\text{OFF}}(S_1) = R_1(S_1, A_1) + \Phi^{\text{OFF}}(S_2) + \text{Comp}(1)
\Phi^{\text{OFF}}(S_2) = R_2(S_2, A_2) + \Phi^{\text{OFF}}(S_3) + \text{Comp}(2)
\vdots
\Phi^{\text{OFF}}(S_T) = R_T(S_T, A_T) + \Phi^{\text{OFF}}(S_{T+1}) + \text{Comp}(T)
```

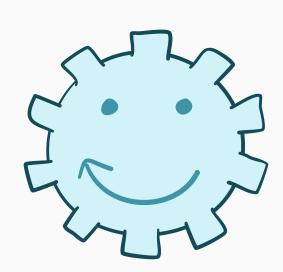




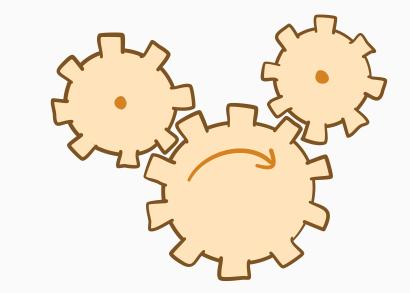
 $\Phi^{\text{OFF}}(S_1) = (R_1(S_1, A_1) + ... + R_T(S_T, A_T)) + (Comp(1) + Comp(T))$

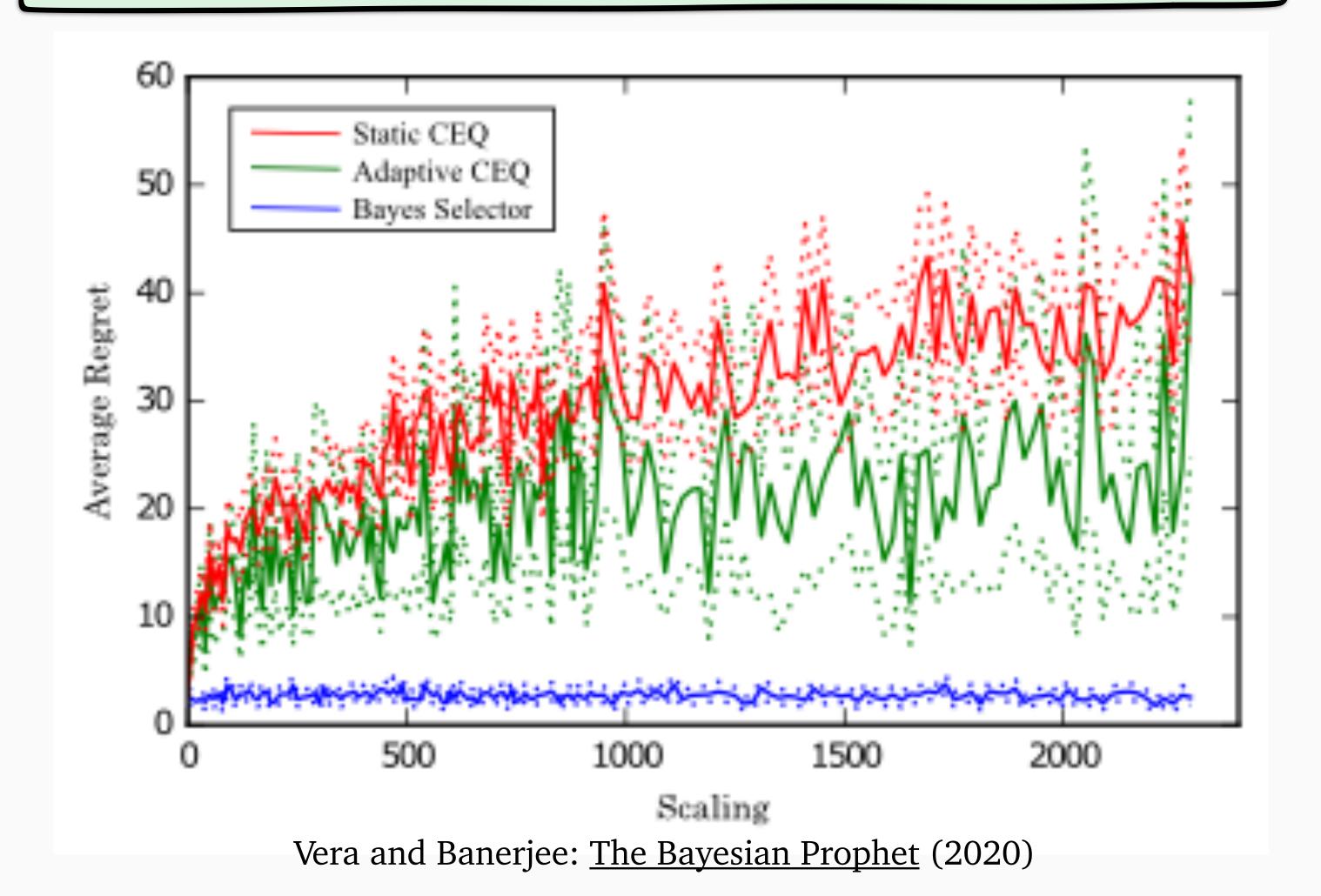


Compensated coupling: network revenue management

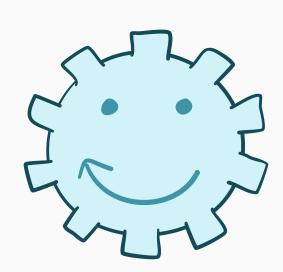


For NRM with d resources, finite types $\mathbb{E}[\text{Regret}] = \Theta(d)$

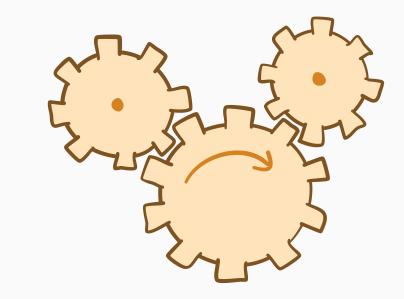


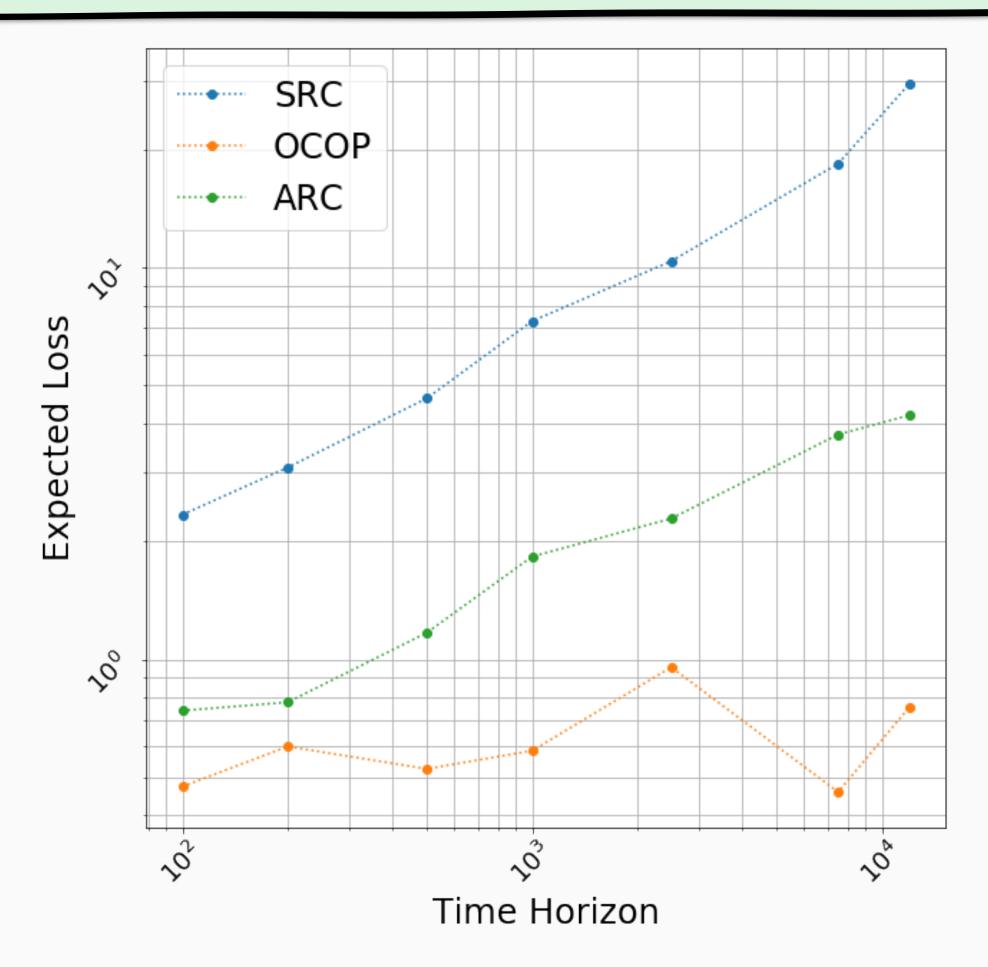


Compensated coupling: online bin packing



For online bin-packing with finite types $\mathbb{E}[\text{Regret}] \leq \Theta(1)$





Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	B3

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	B3

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2 De Continued.
3. Simpler dynamics	SIS epidemics Queues with redundancy	B3

Overview

Part 1

Part 2

Survey 1:

Sample-Path Coupling

Survey 2: Steady-State Coupling

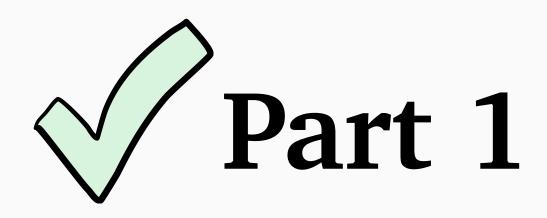


In-Depth Study 1:

Online Resource Allocation

In-Depth Study 2:
Gittins in the M/G/k

Overview



Part 2

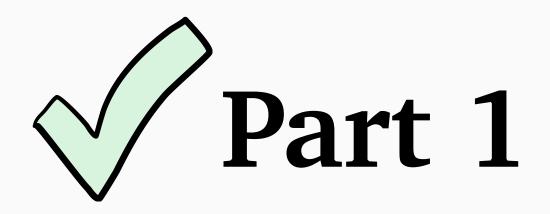
Survey 1: Sample-Path Coupling

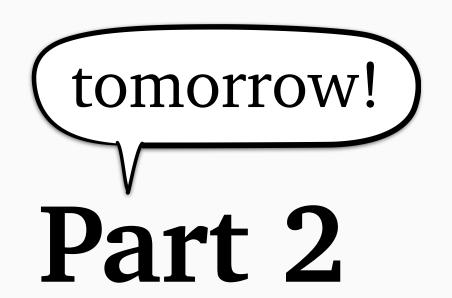
Survey 2:
Steady-State Coupling

In-Depth Study 1:
Online Resource Allocation

In-Depth Study 2:
Gittins in the M/G/k

Overview





Survey 1:

Sample-Path Coupling

Survey 2: Steady-State Coupling

In-Depth Study 1:

Online Resource Allocation

In-Depth Study 2:
Gittins in the M/G/k