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M/M/Kk in steady-state
9 1

—
N
+ X(00) = » Y= absolutely continuous distribution
» CDF has jumps at points in N » CDF is smooth everywhere in |
_ / \\_

~

Figure: P(X(00) =x), P(x — 0.5 <Y (00) <z +0.5)

Braverman, Dai & Feng: Stein's method for steady-state diffusion approximations (2015) 51
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Stein’s method

Ingredient 2: Every distribution X has a characterizing operator

C[Ag(X)| = 0 for any ‘good’ function g

What about for X(0o0) = steady-state distribution of a ?

- Let A(k), u(k) be the birth/death rates of any state kK € N, and

Ag(x) = Mx)g(x + 1) + p(x)g((z —1)7) — g(x)
then

S[Ag(X (o¢))] = 0

X ~ steady-state of MC on N with generator G <= Ag(k) = G(g(0),¢g(1),...
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Stein’s method

z::} g:} Y : candidate distribution @
g:jzg X(00):
Poisson equation
Recipe for bounding distances between X(00), Y :

» For any h € H, find f such that Ay f(z) = h(z) —

» Then taking expectations, we get

C\h(X(00)) = h(Y)] = E[Ay f(X(00))=Ax f(X(00))]

Generator coupling: if Ax and Ay are ‘close’, then the RHS is small

o4
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State-space collapse
Q>

Qi = # jobs at server i

= System state vector

Q) = avg. # jobs per server = “M/M/1 part” \s 0 &
|

|1Q . [|2 = “variance of queue lengths”

Drift method: use a Lyapunov function to
show E[||Q.]|2] = O(1) asp — 1

Q1
CP \ l
1—p Similar results in switch scheduling

E[N,.]=E[N,]+ o( 1 ) and more—see SIGMETRICS 2021
tutorial by Maguluri and Chen
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State-space collapse

2. Fewer constraints (load balancing, switch scheduling)

3. Simpler dynamics Stein’s method
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In-Depth Study 2:
Gittins in the M/G/k

Scully, Grosof, and Harchol-Balter: The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions (2020) 60



https://ziv.codes/publications/%23the-gittins-policy-is-nearly-optimal-in-the-mgk-under-extremely-general-conditions
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= T = response time

Goal: schedule to minimize
mean response time E[T]
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