Coupling Techniques for Complex Control Problems

Ziv Scully Carnegie Mellon University

Sid Banerjee Cornell University

Coupling Techniques for Complex Control Problems

Ziv Scully Carnegie Mellon University

Sid Banerjee Cornell University

complex system X

complex system X

complex system X

complex system X

Goal: answer a question about *X* (approximate is okay)

easy system Y

complex system X

complex system X

easy system Y

complex system X

easy system Y

answer the question for *Y*

complex system X

Goal: answer a question about *X* (approximate is okay)

easy system Y

answer the question for **Y**

In what sense are *X* and *Y* close?

1. More information

In what sense are *X* and *Y* close?

1. More information

In what sense are *X* and *Y* close?

2. Fewer constraints

1. More information

In what sense are *X* and *Y* close?

2. Fewer constraints

How does Y make X easier?

3. Simpler dynamics

A. Every sample path

1. More information

In what sense are *X* and *Y* close?

2. Fewer constraints

How does Y make X easier?

3. Simpler dynamics

A. Every sample path

B. Steady-state distribution

1. More information

In what sense are *X* and *Y* close?

2. Fewer constraints

How does Y make X easier?

3. Simpler dynamics

	A. Every sample path	B. Steady-state distribution
1. More information	A1	B1
2. Fewer constraints	A2	B2
3. Simpler dynamics	A3	B3

	A. Every sample path	B. Steady-state distribution
1. More information	A1 BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	B3

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	B3

Overview

Part 2

Survey 1: Sample-Path Coupling

Survey 2:
Steady-State Coupling

In-Depth Study 1:
Online Resource Allocation

In-Depth Study 2:
Gittins in the M/G/k

Survey 2: Steady-State Coupling

- $X(\infty) = M/M/k$ in steady-state
- CDF has jumps at points in \mathbb{N}

- $X(\infty) = M/M/k$ in steady-state
- CDF has jumps at points in \mathbb{N}

- Y= absolutely continuous distribution
- CDF is smooth everywhere in \mathbb{R}

- $X(\infty) = M/M/k$ in steady-state
- CDF has jumps at points in \mathbb{N}

- Y= absolutely continuous distribution
- CDF is smooth everywhere in \mathbb{R}

- $X(\infty) = M/M/k$ in steady-state
- CDF has jumps at points in \mathbb{N}

- Y= absolutely continuous distribution
- CDF is smooth everywhere in \mathbb{R}

Figure: $P(\tilde{X}(\infty) = x)$, $\mathbb{P}(x - 0.5 \le Y(\infty) \le x + 0.5)$

Ingredient 1: Distances between distributions have variational definitions

$$d_{\mathcal{H}}(X,Y) = \sup_{h \in \mathcal{H}} |\mathbb{E}[h(X)] - \mathbb{E}[h(Y)]|$$

Ingredient 1: Distances between distributions have variational definitions

$$d_{\mathcal{H}}(X,Y) = \sup_{h \in \mathcal{H}} |\mathbb{E}[h(X)] - \mathbb{E}[h(Y)]|$$

- $\mathcal{H} = \{\text{bounded functions}\} \iff d_{\mathcal{H}} = \text{total variation distance}$
- $\mathcal{H} = \{\text{Lipschitz functions}\} \iff d_{\mathcal{H}} = \text{Wasserstein-1 distance}$

Ingredient 1: Distances between distributions have variational definitions

$$d_{\mathcal{H}}(X,Y) = \sup_{h \in \mathcal{H}} |\mathbb{E}[h(X)] - \mathbb{E}[h(Y)]|$$

- $\mathcal{H} = \{\text{bounded functions}\} \iff d_{\mathcal{H}} = \text{total variation distance}$
- $\mathcal{H} = \{\text{Lipschitz functions}\} \iff d_{\mathcal{H}} = \text{Wasserstein-1 distance}$

Ingredient 2: Every distribution X has a characterizing operator

$$\mathbb{E}[\mathcal{A}g(X)] = 0$$
 for any 'good' function g

Ingredient 1: Distances between distributions have variational definitions

$$d_{\mathcal{H}}(X,Y) = \sup_{h \in \mathcal{H}} |\mathbb{E}[h(X)] - \mathbb{E}[h(Y)]|$$

- $\mathcal{H} = \{\text{bounded functions}\} \iff d_{\mathcal{H}} = \text{total variation distance}$
- $\mathcal{H} = \{\text{Lipschitz functions}\} \iff d_{\mathcal{H}} = \text{Wasserstein-1 distance}$

Ingredient 2: Every distribution X has a characterizing operator

$$\mathbb{E}[\mathcal{A}g(X)] = 0$$
 for any 'good' function g

- $X \sim \mathcal{N}(0,1) \iff \mathcal{A}g(x) = g'(x) xg(x)$
- What if X is the steady-state distribution of a Markov chain?

Ingredient 2: Every distribution X has a characterizing operator

$$\mathbb{E}[\mathcal{A}g(X)] = 0$$
 for any 'good' function g

What about for $X(\infty) \equiv$ steady-state distribution of a birth-death chain?

Ingredient 2: Every distribution X has a characterizing operator

$$\mathbb{E}[\mathcal{A}g(X)] = 0$$
 for any 'good' function g

What about for $X(\infty) \equiv$ steady-state distribution of a birth-death chain?

- Let $\lambda(k)$, $\mu(k)$ be the birth/death rates of any state $k \in \mathbb{N}$, and

$$Ag(x) = \lambda(x)g(x+1) + \mu(x)g((x-1)^{+}) - g(x)$$

then

$$\mathbb{E}[\mathcal{A}g(X(\infty))] = 0$$

Ingredient 2: Every distribution X has a characterizing operator

$$\mathbb{E}[\mathcal{A}g(X)] = 0$$
 for any 'good' function g

What about for $X(\infty) \equiv$ steady-state distribution of a birth-death chain?

- Let $\lambda(k)$, $\mu(k)$ be the birth/death rates of any state $k \in \mathbb{N}$, and

$$Ag(x) = \lambda(x)g(x+1) + \mu(x)g((x-1)^{+}) - g(x)$$

then

$$\mathbb{E}[\mathcal{A}g(X(\infty))] = 0$$

 $X \sim \text{steady-state of MC on } \mathbb{N} \text{ with generator } G \iff \mathcal{A}g(k) = G(g(0), g(1), \ldots)^T$

Recipe for bounding distances between $X(\infty)$, Y:

• For any $h \in \mathcal{H}$, find f such that $\mathcal{A}_Y f(z) = h(z) - \mathbb{E}[h(Y)]$

Stein's method

Poisson equation

Recipe for bounding distances between $X(\infty)$, Y:

• For any $h \in \mathcal{H}$, find f such that $\mathcal{A}_Y f(z) = h(z) - \mathbb{E}[h(Y)]$

Stein's method

Recipe for bounding distances between $X(\infty)$, Y:

- For any $h \in \mathcal{H}$, find f such that $\mathcal{A}_Y f(z) = h(z) \mathbb{E}[h(Y)]$
- Then taking expectations, we get

$$\mathbb{E}[h(X(\infty)) - h(Y)] = \mathbb{E}[A_Y f(X(\infty)) - A_X f(X(\infty))]$$

Poisson equation

Stein's method

Recipe for bounding distances between $X(\infty)$, Y:

- For any $h \in \mathcal{H}$, find f such that $\mathcal{A}_Y f(z) = h(z) \mathbb{E}[h(Y)]$
- Then taking expectations, we get

$$\mathbb{E}[h(X(\infty)) - h(Y)] = \mathbb{E}[A_Y f(X(\infty)) - A_X f(X(\infty))]$$

Generator coupling: if A_X and A_Y are 'close', then the RHS is small

Poisson equation

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	B3

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	Stein's method

k servers of speed μ/k

k servers of speed μ/k

Load: $\rho = \lambda/\mu$

Join the Shortest Queue (JSQ):

always dispatch job to server with fewest jobs

k servers of speed μ/k

Load: $\rho = \lambda/\mu$

Join the Shortest Queue (JSQ):

always dispatch job to server with fewest jobs

With just 2 servers, already a famously hard Markov chain

k servers of speed μ/k

Load: $\rho = \lambda/\mu$

Load: $\rho = \lambda/\mu$

Join the Shortest Queue (JSQ):

always dispatch job to server with fewest jobs

With just 2 servers, already a famously hard Markov chain

M/M/1 is simple lower bound

Load: $\rho = \lambda/\mu$

Join the Shortest Queue (JSQ):

always dispatch job to server with fewest jobs

With just 2 servers, already a famously hard Markov chain

discrete time, but same idea

Clear that $E[N_k] \ge E[N_1]$

Clear that $E[N_k] \ge E[N_1]$

Question: upper bound on $E[N_k]$?

Clear that $E[N_k] \ge E[N_1]$

Question: upper bound on $E[N_k]$?

Intuition: should be close to $E[N_1]$, because JSQ does a good job of keeping servers busy

Clear that $E[N_k] \ge E[N_1]$

Question: upper bound on $E[N_k]$?

Intuition: should be close to $E[N_1]$, because JSQ does a good job of keeping servers busy

Theorem:

$$\mathbf{E}[N_k] = \mathbf{E}[N_1] + \frac{\mathbf{E}[(1 - B_k)N_k]}{1 - \rho}$$

Clear that $E[N_k] \ge E[N_1]$

Question: upper bound on $E[N_k]$?

Intuition: should be close to $E[N_1]$, because JSQ does a good job of keeping servers busy

$$\mathbf{E}[N_k] = \mathbf{E}[N_1] + \frac{\mathbf{E}[(1 - B_k)N_k]}{1 - \rho}$$

Clear that $E[N_k] \ge E[N_1]$

Question: upper bound on $E[N_k]$?

Intuition: should be close to $E[N_1]$, because JSQ does a good job of keeping servers busy

$$\mathbf{E}[N_k] = \mathbf{E}[N_1] + \frac{\mathbf{E}[(1 - B_k)N_k]}{1 - \rho}$$

$$\leq \mathbf{E}[N_1] + \sqrt{\frac{\mathbf{E}[\text{"variance of queue lengths"}]}{1-\rho}}$$

 $Q_i = \#$ jobs at server i


```
Q_i = \# jobs at server i
```

Q = system state vector


```
Q_i = \# jobs at server i
```

Q = system state vector

 $Q_{\parallel} = \text{avg. } \# \text{ jobs per server} = \text{"}M/M/1 \text{ part"}$


```
Q_i = \# jobs at server i
Q = \text{system state vector}
Q_{\parallel} = \text{avg. } \# jobs per server = "M/M/1 part"
\|Q_{\perp}\|^2 = \text{"variance of queue lengths"}
```



```
Q_i = \# jobs at server i
```

Q = system state vector

 $Q_{\parallel} = avg. \# jobs per server = "M/M/1 part"$

 $\|\mathbf{Q}_{\perp}\|^2$ = "variance of queue lengths"

 $Q_i = \#$ jobs at server i

Q = system state vector

 Q_{\parallel} = avg. # jobs per server = "M/M/1 part"

 $\|\mathbf{Q}_{\perp}\|^2$ = "variance of queue lengths"

Drift method: use a Lyapunov function to show $\mathbf{E}[\|\mathbf{Q}_{\perp}\|^2] = O(1)$ as $\rho \to 1$

 $Q_i = \#$ jobs at server i

Q = system state vector

 Q_{\parallel} = avg. # jobs per server = "M/M/1 part"

 $\|\mathbf{Q}_{\perp}\|^2$ = "variance of queue lengths"

Drift method: use a Lyapunov function to show $\mathbf{E}[\|\mathbf{Q}_{\perp}\|^2] = O(1)$ as $\rho \to 1$

 $Q_i = \#$ jobs at server i

Q = system state vector

 Q_{\parallel} = avg. # jobs per server = "M/M/1 part"

 $\|\mathbf{Q}_{\perp}\|^2$ = "variance of queue lengths"

Drift method: use a Lyapunov function to show $\mathbf{E}[\|\mathbf{Q}_{\perp}\|^2] = O(1)$ as $\rho \to 1$

 $Q_i = \#$ jobs at server i

Q = system state vector

 Q_{\parallel} = avg. # jobs per server = "M/M/1 part"

 $\|\mathbf{Q}_{\perp}\|^2$ = "variance of queue lengths"

Drift method: use a Lyapunov function to show $\mathbf{E}[\|\mathbf{Q}_{\perp}\|^2] = O(1)$ as $\rho \to 1$

Similar results in switch scheduling and more—see SIGMETRICS 2021 tutorial by Maguluri and Chen

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	B2
3. Simpler dynamics	SIS epidemics Queues with redundancy	Stein's method

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	A1 BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	State-space collapse (load balancing, switch scheduling)
3. Simpler dynamics	SIS epidemics Queues with redundancy	Stein's method

In-Depth Study 2: Gittins in the M/G/k

In-Depth Study 2: Gittins in the M/G/k

Goal: schedule to minimize $mean\ response\ time\ E[T]$

SRPT: always serve job of least remaining size

Gittins: assign each job a rank based on age and *S* (lower is better)

Gittins: assign each job a rank based on age and *S* (lower is better)

Gittins: assign each job a rank based on age and *S* (lower is better)

Gittins minimizes E[T] (Gittins 1989)

Job size distribution:

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

Gittins policy

k servers, each speed 1/k

k servers, each speed 1/k

k servers, each speed 1/k

k servers, each speed 1/k

Scheduling policy:

picks which k jobs to serve

Multiserver Gittins:

serves the *k* jobs with the *k* lowest ranks

M/G/k

M/G/k

M/G/k

M/G/1

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	State-space collapse (load balancing, switch scheduling)
3. Simpler dynamics	SIS epidemics Queues with redundancy	Stein's method

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 SRPT in the M/G/k (Grosof et al. 2018)	State-space collapse (load balancing, switch scheduling)
3. Simpler dynamics	SIS epidemics Queues with redundancy	Stein's method

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 SRPT in the M/G/k (Grosof et al. 2018)	State-space collapse (load balancing, switch scheduling) SRPT/Gittins in the M/G/k
3. Simpler dynamics	SIS epidemics Queues with redundancy	Stein's method

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

Theorem: under SRPT and Gittins,

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_k]}{\mathbf{E}[T_1]} = 1 \quad \text{if } \mathbf{E}[S^2(\log S)^+] < \infty$$

Theorem: under SRPT and Gittins,

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_k]}{\mathbf{E}[T_1]} = 1 \quad \text{if } \mathbf{E}[S^2(\log S)^+] < \infty$$

Theorem: under SRPT and Gittins,

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_k]}{\mathbf{E}[T_1]} = 1 \quad \text{if } \mathbf{E}[S^2(\log S)^+] < \infty$$

Theorem: under SRPT and Gittins,

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_k]}{\mathbf{E}[T_1]} = 1 \quad \text{if } \mathbf{E}[S^2(\log S)^+] < \infty$$

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs that have remaining size $\leq r$

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs that have remaining size $\leq r$

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs that have remaining size $\leq r$

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

mean response time in M/G/k

mean response time in M/G/k

mean response time in M/G/k

mean response time in M/G/1

mean r-work
in M/G/1

mean response time in M/G/k

mean response

mean response time in M/G/1

mean r-work
in M/G/1

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof:

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof: remaining size x

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof: remaining size x

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof:

remaining size x

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof:

remaining size x

One job's *r*-work:

 $\frac{1}{2} x \quad r < x: r\text{-work} = 0$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof: (remaining size x)

One job's *r*-work:

 $\frac{1}{x} \quad r < x: r\text{-work} = 0$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof:

(remaining size x)

$$\begin{cases} x & r < x: r\text{-work} = 0 \end{cases}$$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof:

remaining size x

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof:

remaining size x

$$\begin{cases} x & r < x: r\text{-work} = 0 \end{cases}$$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof:

remaining size x

One job's *r*-work:

All jobs' *r*-work:

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof:

remaining size x

One job's *r*-work:

All jobs' r-work:

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \frac{1}{\lambda} \int_0^\infty \mathbf{E}[W(r)] d(1/r)$$

Proof:

remaining size x)

One job's *r*-work:

All jobs' r-work:

In steady-state system, for any f, $\mathbf{E}[f(W)]$ constant w.r.t. time

In steady-state system, for any f, $\mathbf{E}[f(W)]$ constant w.r.t. time

In steady-state system, for any f, $\mathbf{E}[f(W)]$ constant w.r.t. time

$$\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$$

 $\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W + S)^2 - W^2]$

In steady-state system, for any f,

 $\mathbf{E}[f(W)]$ constant w.r.t. time

B =service rate, a.k.a. fraction of servers busy

 $\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$

$$\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W+S)^2 - W^2]$$

Theorem:

$$\mathbf{E}[\mathbf{W}_k] = \mathbf{E}[\mathbf{W}_1] + \frac{\mathbf{E}[(1 - \mathbf{B}_k)\mathbf{W}_k]}{1 - \rho}$$

In steady-state system, for any f,

 $\mathbf{E}[f(W)]$ constant w.r.t. time

we use $f(w) = w^2$

B = service rate, a.k.a.

fraction of servers busy

 $\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$

$$\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W+S)^2 - W^2]$$

Theorem:

When S is exponential, compares $E[N_k]$ to $E[N_1]$

 $\mathbf{E}[\mathbf{W}_k] = \mathbf{E}[\mathbf{W}_1] + \frac{\mathbf{E}[(1 - \mathbf{B}_k)\mathbf{W}_k]}{1 - \rho}$

Step 2: E[W(r)] difference (SRPT)

Step 2: E[W(r)] difference (SRPT)

Step 2: E[W(r)] difference (SRPT)

In steady-state system, for any f, $\mathbf{E}[f(\mathbf{W}(r))]$ constant w.r.t. time

Theorem:

$$E[W_{k}(r)] = E[W_{1}(r)] + \frac{E[(1 - B_{k}(r))W_{k}(r)] + \lambda r P[S > r]E_{r}[W_{k}(r)]}{1 - \lambda E[S 1(S \le r)]}$$

In steady-state system, for any f, $\mathbf{E}[f(\mathbf{W}(r))]$ constant w.r.t. time

we use
$$f(w) = w^2$$

B(r) = service rate on jobsof remaining size $\leq r$ Theorem:

$$E[W_{k}(r)] = E[W_{1}(r)] + \frac{E[(1 - B_{k}(r))W_{k}(r)] + \lambda r P[S > r] E_{r}[W_{k}(r)]}{1 - \lambda E[S 1(S \le r)]}$$

In steady-state system, for any f, $\mathbf{E}[f(\mathbf{W}(r))]$ constant w.r.t. time

B(r) = service rate on jobsof remaining size $\leq r$ Theorem:

$$E[W_{k}(r)] = E[W_{1}(r)] + \frac{E[(1 - B_{k}(r))W_{k}(r)] + \lambda r P[S > r] E_{r}[W_{k}(r)]}{1 - \lambda E[S 1(S \le r)]}$$

$$\mathbf{E}[\mathbf{W}_k] = \mathbf{E}[\mathbf{W}_1] + \frac{\mathbf{E}[(1 - \mathbf{B}_k)\mathbf{W}_k]}{1 - \rho}$$

Suppose $S \leq s_{\text{max}}$ with probability 1

$$\mathbf{E}[\mathbf{W}_k] = \mathbf{E}[\mathbf{W}_1] + \frac{\mathbf{E}[(1 - \mathbf{B}_k)\mathbf{W}_k]}{1 - \rho}$$

Suppose
$$S \le s_{\text{max}}$$
 with probability 1
$$\mathbf{E}[B] = \rho$$
$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1 - B_k)W_k]}{1 - \rho}$$

Suppose
$$S \le s_{\text{max}}$$
 with probability 1
$$\mathbf{E}[B] = \rho$$
 $\leq (k-1)s_{\text{max}}$
$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1-B_k)W_k]}{1-\rho}$$

Suppose $S \le s_{\text{max}}$ with probability 1 $\mathbf{E}[B] = \rho \} \quad \{ \le (k-1)s_{\text{max}} \}$ $\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1-B_k)W_k]}{1-\rho}$

 $\leq \mathbf{E}[\mathbf{W}_1] + (k-1)s_{\text{max}}$

Suppose $S \leq s_{\text{max}}$ with probability 1

probability 1
$$\underbrace{\mathbf{E}[B] = \rho}_{\leq (k-1)s_{\text{max}}}$$

$$\mathbf{E}[\mathbf{W}_k] = \mathbf{E}[\mathbf{W}_1] + \frac{\mathbf{E}[(1-B_k)\mathbf{W}_k]}{1-\rho}$$

$$\leq \mathbf{E}[\mathbf{W}_1] + (k-1)s_{\text{max}}$$

SRPT: job's r-work is always $\leq r$

Suppose $S \leq s_{\text{max}}$ with probability 1

probability 1
$$\underbrace{\mathbf{E}[B] = \rho}_{\leq (k-1)s_{\text{max}}}$$

$$\mathbf{E}[\mathbf{W}_k] = \mathbf{E}[\mathbf{W}_1] + \frac{\mathbf{E}[(1-\mathbf{B}_k)\mathbf{W}_k]}{1-\rho}$$

$$\leq \mathbf{E}[\mathbf{W}_1] + (k-1)s_{\text{max}}$$

SRPT: job's r-work is always $\leq r$

$$E[W_k(r)] = E[W_1(r)] + \text{"r-work of } \le k - 1 \text{ jobs"}$$

 $\le E[W_1(r)] + (k - 1)r$

Suppose $S \leq s_{\text{max}}$ with probability 1

probability 1
$$\underbrace{\mathbf{E}[B] = \rho}_{\leq (k-1)s_{\text{max}}}$$

$$\mathbf{E}[\mathbf{W}_k] = \mathbf{E}[\mathbf{W}_1] + \frac{\mathbf{E}[(1-\mathbf{B}_k)\mathbf{W}_k]}{1-\rho}$$

$$\leq \mathbf{E}[\mathbf{W}_1] + (k-1)s_{\text{max}}$$

SRPT: job's r-work is always $\leq r$

$$\mathbf{E}[W_k(r)] = \mathbf{E}[W_1(r)] + \text{``r-work of } \leq k - 1 \text{ jobs''}$$

$$\leq \mathbf{E}[W_1(r)] + (k - 1)r$$

$$\stackrel{\text{see paper for better bound}}{}$$

Suppose $S \le s_{\text{max}}$ with probability 1

probability 1
$$E[B] = \rho$$

$$\leq (k-1)s_{\text{max}}$$

$$E[W_k] = E[W_1] + \frac{E[(1-B_k)W_k]}{1-\rho}$$

≤ **E**[V still true under **Gittins**, but only in expectation

SRPT: job's r-work is always $\leq r$

$$E[W_k(r)] = E[W_1(r)] + \text{"r-work of } \le k - 1 \text{ jobs"}$$

 $\le E[W_1(r)] + (k - 1)r$

see paper for better bound

Response time via r-work

Response time via r-work

Response time via r-work

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	State-space collapse (load balancing, switch scheduling)
3. Simpler dynamics	SIS epidemics Queues with redundancy	Stein's method

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	State-space collapse (load balancing, switch scheduling) SRPT/Gittins in the M/G/k
3. Simpler dynamics	SIS epidemics Queues with redundancy	Stein's method

Overview

Part 2

Survey 1: Sample-Path Coupling

Survey 2:
Steady-State Coupling

In-Depth Study 1:
Online Resource Allocation

In-Depth Study 2:
Gittins in the M/G/k

Overview

Survey 1: Sample-Path Coupling

Survey 2: Steady-State Coupling

In-Depth Study 1:
Online Resource Allocation

In-Depth Study 2:
Gittins in the M/G/k

Conclusion

Conclusion

Ziv's email: zscully@cs.cmu.edu

Sid's email: sbanerjee@cornell.edu

Conclusion

Ziv's email: zscully@cs.cmu.edu

Sid's email: sbanerjee@cornell.edu

Classifying coupling techniques

	A. Every sample path	B. Steady-state distribution
1. More information	BIG online knapsack (via compensated coupling)	B1
2. Fewer constraints	M/M/k vs. M/M/1 Online knapsack (via constraints-to-costs)	State-space collapse (load balancing, switch scheduling) SRPT/Gittins in the M/G/k
3. Simpler dynamics	SIS epidemics Queues with redundancy	Stein's method