Coupling Techniques
for Complex Control Problems

Ziv Scully

Carnegie Mellon University @1 5{:;}
Sid Banerjee ﬁi:jﬁ i]l {:

Cornell University

Coupling Techniques
for Complex Control Problems

Ziv Scully

Carnegie Mellon University @1 5{:;}
Sid Banerjee ﬁ:jjﬁ i]l]l:

Cornell University

What is coupling?

What is coupling?

&

Goal: answer a

question about
(approximate is okay)

47

What is coupling?

2

-

Goal: answer a

question about
(approximate is okay)

47

What is coupling?

easy system Y

o%s o
2

-

Goal: answer a

question about
(approximate is okay)

47

What is coupling?

complex system X easy system Y

55 = B
2

-

Goal: answer a

question about X
(approximate is okay)

47

What is coupling?

same random

complex system X easy system Y

-

Goal: answer a

question about X
(approximate is okay)

47

What is coupling?

same random

complex system X

&

<
7 L

easy system Y

-
Goal: answer a answer the
question about X question for Y

(approximate is okay)

47

What is coupling?

same random

complex system X easy system Y

answer the
question for Y

similar
answers

0O)

Goal: answer a

question about X
(approximate is okay)

47

S

Classifying coupling techniques

S

How does Y make X easier?

Classifying coupling techniques

S

—_—

In what sense are X and Y close?

How does Y make X easier?

48

Classifying coupling techniques
D
\/V——/

1. More information In what sense are X and Y close?

How does Y make X easier?

48

Classifying coupling techni
¥ Ny g ques
\/V——/

1. More information
In what sense are X and Y close?

2. Fewer constraints How does Y make X easier?

48

Classifying coupling techniques

RS
—_—

1. More information In what sense are X and Y close?

2. Fewer constraints How does Y make X easier?

3. Simpler dynamics

48

Classifying coupling techniques

i%i%<} > @ A. Every sample path

1. More information

2. Fewer constraints

3. Simpler dynamics

—_—

In what sense are X and Y close?

How does Y make X easier?

48

Classifying coupling techniques

@ﬁ@

> @ A. Every sample path B. Steady-state distribution

—_—

1. More information In what sense are X and Y close?

2. Fewer constraints How does Y make X easier?

3. Simpler dynamics

48

Classifying coupling techniques

@ﬁ@

> @ A. Every sample path B. Steady-state distribution

1. More information

2. Fewer constraints

3. Simpler dynamics

48

Classifying coupling techniques

@ﬁii%:% > @ A. Every sample path

BIG online knapsack

1. More information . .
(via compensated coupling)

M/M/k vs. M/M/1

2. Fewer constraints Online knapsack

(via constraints-to-costs)

. . SIS epidemics
3. Simpler dynamics |
Queues with redundancy

B. Steady-state distribution

48

Classifying coupling techniques

SR

1. More information

A. Every sample path B. Steady-state distribution
B1

BIG online knapsack

(via compensated coupling)

M/M/k vs. M/M/1 |
2. Fewer constraints Online knapsack
(via constraints-to-costs)
B3

. . SIS epidemics
3. Simpler dynamics |
Queues with redundancy

48

X

\
LAY

2

Overview

Qf Part 1

Survey 1:
Sample-Path Coupling

In-Depth Study 1:
Online Resource Allocation

X

\
LAY

2

Part 2

Survey 2:
Steady-State Coupling

In-Depth Study 2:
Gittins in the M/G/k

49

- & Survey 2:
=~ | Steady-State Coupling

M/M/Kk in steady-state

oy

» CDF has jumps at points in N

\

So00

%

M/M/Kk in steady-state

oy

» CDF has jumps at points in N

—

\

ﬁ @
Dt

Y= absolutely continuous distribution

» CDF is smooth everywhere in |

ol

M/M/Kk in steady-state

oy

» CDF has jumps at points in N

—

\

Dt

5

Y= absolutely continuous distribution

» CDF is smooth everywhere in |

ol

M/M/Kk in steady-state
9 1

—
N
+ X(00) = » Y= absolutely continuous distribution
» CDF has jumps at points in N » CDF is smooth everywhere in |
_ / _

~

Figure: P(X(00) =x), P(x — 0.5 <Y (00) <z +0.5)

Braverman, Dai & Feng: Stein's method for steady-state diffusion approximations (2015) 51

https://arxiv.org/abs/1512.09364

Stein’s method

Stein’s method

Ingredient 1: Distances between distributions have variational definitions

dy (X,Y) = sup E[A(X)] — E[A(Y)]]

o2

Stein’s method

Ingredient 1: Distances between distributions have variational definitions

dy (X,Y) = sup E[A(X)] — E[A(Y)]]

. H = {bounded functions} <= dy = total variation distance
. H = {Lipschitz functions} <= dyy = Wasserstein-1 distance

o2

Stein’s method

Ingredient 1: Distances between distributions have variational definitions

dy (X,Y) = sup E[A(X)] — E[A(Y)]]

. H = {bounded functions} <= dy = total variation distance
. H = {Lipschitz functions} <= dyy = Wasserstein-1 distance

Ingredient 2: Every distribution X has a characterizing operator

C[Ag(X)| = 0 for any ‘good’ function g

o2

Stein’s method

Ingredient 1: Distances between distributions have variational definitions

dy (X,Y) = sup E[A(X)] — E[A(Y)]]

. H = {bounded functions} <= dy = total variation distance
. H = {Lipschitz functions} <= dyy = Wasserstein-1 distance

Ingredient 2: Every distribution X has a characterizing operator

C[Ag(X)| = 0 for any ‘good’ function g

. X ~N(0,1) <= Ag(z) = ¢ (x) — xg(x)

o2

Stein’s method

Ingredient 2: Every distribution X has a characterizing operator

C[Ag(X)| = 0 for any ‘good’ function g

What about for X(0o0) = steady-state distribution of a

23

Stein’s method

Ingredient 2: Every distribution X has a characterizing operator

C[Ag(X)| = 0 for any ‘good’ function g

What about for X(0o0) = steady-state distribution of a

- Let A(k), u(k) be the birth/death rates of any state kK € N, and

Ag(x) = Mx)g(x + 1) + p(x)g((z —1)7) — g(x)
then

S[Ag(X (o¢))] = 0

23

Stein’s method

Ingredient 2: Every distribution X has a characterizing operator

C[Ag(X)| = 0 for any ‘good’ function g

What about for X(0o0) = steady-state distribution of a ?

- Let A(k), u(k) be the birth/death rates of any state kK € N, and

Ag(x) = Mx)g(x + 1) + p(x)g((z —1)7) — g(x)
then

S[Ag(X (o¢))] = 0

X ~ steady-state of MC on N with generator G <= Ag(k) = G(g(0),¢g(1),...

i}i% .

Stein’s method

Y : candidate distribution @

Recipe for bounding distances between X(00), Y :
» For any h € H, find f such that Ay f(z) = h(z) — E[h(Y)]

54

Stein’s method

é::\:? g:} Y : candidate distribution @
ﬁi;j@ X(00):

Recipe for bounding distances between X(00), Y :

» For any h € H, find f such that Ay f(2) = h(z) — E

Poisson equation

(Y)]

o4

Stein’s method

é::\:? g:} Y : candidate distribution @
ﬁi;j@ X(00):

Recipe for bounding distances between X(00), Y :
» For any h € H, find f such that Ay f(z) = h(z) —
» Then taking expectations, we get

2[h())

=0 |

Lh(X (00)) —h(Y)] = E| Ay f(X(00))=Ax f(X(00))]

o4

Stein’s method

z::} g:} Y : candidate distribution @
g:jzg X(00):
Poisson equation
Recipe for bounding distances between X(00), Y :

» For any h € H, find f such that Ay f(z) = h(z) —

» Then taking expectations, we get

C\h(X(00)) = h(Y)] = E[Ay f(X(00))=Ax f(X(00))]

Generator coupling: if Ax and Ay are ‘close’, then the RHS is small

o4

Classifying coupling techniques

SR

1. More information

A. Every sample path B. Steady-state distribution
B1

BIG online knapsack

(via compensated coupling)

M/M/k vs. M/M/1 |
2. Fewer constraints Online knapsack
(via constraints-to-costs)
B3

. . SIS epidemics
3. Simpler dynamics |
Queues with redundancy

55

Classifying coupling techniques

@ﬁ@

> @ B. Steady-state distribution

1. More information

2. Fewer constraints

3. Simpler dynamics Stein’s method

55

\

L L
[
\

\

Load-balancing systems

CO000C

k servers of speed u/k

Load-balancing systems

{ dlspatcher

k servers of speed u/k

\
\
arrival rate)\ \
\
\
\

CO000C

Load: p = A/u

Load-balancing systems

{ dlspatcher

k servers of speed u/k

\
\
arrival rate A \
\
\

C0000C

Load: p = A/u

Join the Shortest Queue (JSQ):
always dispatch job to server with fewest jobs

56

Load-balancing systems

{ dlspatcher

k servers of speed u/k

\
\
arrival rate)\ \
\
\
\

CO000C

Load: p = A/u

Join the Shortest Queue (JSQ):
always dispatch job to server with fewest jobs

With just 2 servers, already a
Markov chain

&

56

Load-balancing systems

—

Join the Shortest Queue (JSQ):
always dispatch job to server with fewest jobs

With just 2 servers, already a
Markov chain

:{> dispatcher @ gii%

M/M/1 is simple lower bound

k servers of speed u/k @ \ D
Load: p = A/u

p—

\
\
arrival rate)\ \
\
\
\

SLGLGIGIGI®

Load-balancing systems

—

Join the Shortest Queue (JSQ):
always dispatch job to server with fewest jobs

\
\

arrival rate A With just 2 servers, already a
\ Markov chain
\
\
\

{ dlspatcher g:} i:}
1 server of
speed U

p—

SLGLGIGIGI®

M/M/1 is simple lower

k servers of speed u/k @ \
Load: p = A/u

JSQ vs. M/M/1

@@) @g
/

L

Eryilmaz and Srikant: Asymptotically tight steady-state queue length bounds implied by drift conditions (2012)

S>7

https://link.springer.com/article/10.1007/s11134-012-9305-y

JSQ vs. M/M/1

Q@) @g
/

L

discrete time,
but same idea

Eryilmaz and Srikant: Asymptotically tight steady-state queue length bounds implied by drift conditions (2012)

S>7

https://link.springer.com/article/10.1007/s11134-012-9305-y

JSQ vs. M/M/1

E:::;} i} {: gié;‘j/g Clear that E[Ni..] = E[N,]

w
OO

Eryilmaz and Srikant: Asymptotically tight steady-state queue length bounds implied by drift conditions (2012)

S>7

https://link.springer.com/article/10.1007/s11134-012-9305-y

JSQ vs. M/M/1

\i;} Clear that E[Ni] = E[N;]
@ ii {: Question: upper bound on E[N}]?

w
QOO

Eryilmaz and Srikant: Asymptotically tight steady-state queue length bounds implied by drift conditions (2012)

S>7

https://link.springer.com/article/10.1007/s11134-012-9305-y

JSQ vs. M/M/1

é’:} Clear that E[Ni] = E[N;]
@ ii {: Question: upper bound on E[N}]?

Intuition: should be close to E[N1], because

w
QOO

Eryilmaz and Srikant: Asymptotically tight steady-state queue length bounds implied by drift conditions (2012)

JSQ does a good job of keeping servers busy

S>7

https://link.springer.com/article/10.1007/s11134-012-9305-y

JSQ vs. M/M/1

é’:} Clear that E[Ni] = E[N;]
@ ii {: Question: upper bound on E[N}]?

Intuition: should be close to E[N1], because

Theorem:

E[N,.]=E[N,]+

E[(1—B;)N,]
l1—=p

w
QOO

Eryilmaz and Srikant: Asymptotically tight steady-state queue length bounds implied by drift conditions (2012)

JSQ does a good job of keeping servers busy

S>7

https://link.springer.com/article/10.1007/s11134-012-9305-y

JSQ vs. M/M/1

é’:} Clear that E[Ni] = E[N;]
@ ii {: Question: upper bound on E[N}]?

Intuition: should be close to E[N1], because

Theorem: ;

E[V,]=E[N;]+ E[(ll_ SR
P

w
QOO

Eryilmaz and Srikant: Asymptotically tight steady-state queue length bounds implied by drift conditions (2012)

JSQ does a good job of keeping servers busy

S>7

https://link.springer.com/article/10.1007/s11134-012-9305-y

vs. M/M/1

@ i} {: Clear that E[Ni] = E[N;]
@:i;(ﬁ Question: upper bound on E[N}]?

Intuition: should be close to E[N1], because

8: does a good job of keeping servers busy
o
\ 8: Theorem:
E[(1—B;)N
E = E[N |+
O [N,] =B[N,]+ = —
E| “variance of queue lengths” |

SE[N1]+\ —_

Eryilmaz and Srikant: Asymptotically tight steady-state queue length bounds implied by drift conditions (2012)

S>7

https://link.springer.com/article/10.1007/s11134-012-9305-y

State-space collapse
Q>

Qi = # jobs at server i

58

State-space collapse
Q>

Qi = # jobs at server i

= System state vector

58

State-space collapse
Q>

Qi = # jobs at server i
= system state vector

| = avg. # jobs per server = “M/M/1 part”

58

State-space collapse
Q>

Qi = # jobs at server i
() = system state vector
Q, = avg. # jobs per server = “M/M/1 part”

|Q . ||2 = “variance of queue lengths”

Q.
Q \

Q

58

State-space collapse

Qi = # jobs at server i
= system state vector
Q, = avg. # jobs per server = “M/M/1 part”

|Q . ||2 = “variance of queue lengths”

Q2

NZo) &

58

State-space collapse
Q>

Qi = # jobs at server i

= System state vector

| = avg. # jobs per server = “M/M/1 part” \s 0 &
|

|1Q . [|2 = “variance of queue lengths”

Drift method: use a Lyapunov function to
show E[||Q.]|2] = O(1) asp — 1

58

State-space collapse

Qi = # jobs at server i
= system state vector
Q, = avg. # jobs per server = “M/M/1 part”

|1Q . [|2 = “variance of queue lengths”

Drift method: use a Lyapunov function to
show E[||Q.]|2] = O(1) asp — 1

Q2

NZG) &

58

State-space collapse

Qi = # jobs at server i
= system state vector
Q, = avg. # jobs per server = “M/M/1 part”

|1Q . [|2 = “variance of queue lengths”

Drift method: use a Lyapunov function to
show E[||Q.]|2] = O(1) asp — 1

Q2

NZG) &

58

State-space collapse
Q>

Qi = # jobs at server i

= System state vector

Q) = avg. # jobs per server = “M/M/1 part” \s 0 &
|

|1Q . [|2 = “variance of queue lengths”

Drift method: use a Lyapunov function to
show E[||Q.]|2] = O(1) asp — 1

Q1
CP \ l
1—p Similar results in switch scheduling

E[N,.]=E[N,]+ o(1) and more—see SIGMETRICS 2021
tutorial by Maguluri and Chen

58

Classifying coupling techniques

@ﬁ@

> @ B. Steady-state distribution

1. More information

2. Fewer constraints

3. Simpler dynamics Stein’s method

59

Classifying coupling techniques

@i%:% >@ B. Steady-state distribution

1. More information

State-space collapse

2. Fewer constraints (load balancing, switch scheduling)

3. Simpler dynamics Stein’s method

59

Q ‘ In-Depth Study 2:
A~ @Gittins in the M/G/k

In-Depth Study 2:
Gittins in the M/G/k

Scully, Grosof, and Harchol-Balter: The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions (2020) 60

https://ziv.codes/publications/%23the-gittins-policy-is-nearly-optimal-in-the-mgk-under-extremely-general-conditions

M/G/1 queue

M/G/1 queue

qucuc server

M/G/1 queue

qucuc server

job

M/G/1 queue

qucuce server

-
job
size< B
_

M/G/1 queue

qucuce server

-
job
size< B
_

M/G/1 queue

qucuce server

-
job
size< B
_

M/G/1 queue

qucuce server

-
job
size< B
_

-

size<

\-

M/G/1 queue

queue

}remaining size
} dgC

SCIrver

61

M/G/1 queue

queue

%
Q—>

random
arrivals

-
}remaining size
size<
} age

\-

SCIrver

61

M/G/1 queue

queue

%
Q—>

random G

arrivals

-
}remaining size
size<
} age

\-

SCIrver

61

M/G/1 queue

qucuce server

S = size distribution

A = arrival rate

arrivals

-
}remaining size
size<

}age
.

61

arrivals

-

size<

\-

S = size distribution

A = arrival rate

queue

}remaining size
} dgC

M/G/1 queue

SCIrver

job

Scheduling policy:
picks which job to serve

61

arrivals

-

size<

\-

S = size distribution

A = arrival rate

queue

}remaining size
} dgC

M/G/1 queue

SCIrver

job

Scheduling policy:
picks which job to serve

61

arrivals

-

size<

\-

S = size distribution

A = arrival rate

queue

}remaining size
} dgC

M/G/1 queue

SCIrver

job

Scheduling policy:
picks which job to serve

61

arrivals

-

size<

\-

S = size distribution

A = arrival rate

queue

}remaining size
} dgC

U

M/G/1 queue

SCIrver

job

Scheduling policy:
picks which job to serve

61

arrivals

-

size<

\-

S = size distribution

A = arrival rate

queue

}remaining size
} dgC

U

M/G/1 queue

SCIrver

job

Scheduling policy:
picks which job to serve

61

Response time

Response time

Response time

S

= T = response time

62

Response time

aEare

= T = response time

62

Response time

= T = response time

Goal: schedule to minimize
mean response time E[T]

62

Scheduling with known sizes

S1TAL

ndom
arrivals

-
} remaining size
size <
} age

Scheduling with known sizes

e |1

andom
arrivals

-
} remaining size
size <
} age

U

B

. always serve job of
least remaining size

63

Scheduling with known sizes

e |1

random
arrivals

-
} remaining size
size <
} age

U

| ~

shortest remaining
processing time

. always serve job of
least remaining size

63

Scheduling with known sizes

e |1

random
arrivals

-
} remaining size
size <
} age

U

| ~

shortest remaining
processing time

. always serve job of
least remaining size

63

Scheduling with known sizes

random
arrivals

-
} remaining size
size <
} age

U

shortest remaining
processing time

. always serve job of
least remaining size

63

Scheduling with known sizes

random G E
arrivals —
shortest remaining
processing time
s g
L . always serve job of
remaining size i .
@ least remaining size
size<
} age
\

minimizes E|T]
(Schrage 1968)

63

Scheduling with unknown sizes

e

Scheduling with unknown sizes

S I I Y TR
Qi
@ L_d_L_L

-

size unknown €3<

r_ e
Qi it

64

Scheduling with unknown sizes

S I I Y TR
Qi
@ L_d_L_L

-

size unknown €3<

Qoo

} age known Qf

\-

64

Scheduling with unknown sizes

(\:r
/4
Q—>

distribution
S known

S I I Y TR
Qi
@ L_d_L_L

-

size unknown €3<

Qoo

} age known Qf

\-

64

Scheduling with unknown sizes

(\:V
;
4o

distribution
S known

S I I Y TR
Qi
@ L_d_L_L

-

. assign each job a
@ based on age and S
(lower is better)

size unknown €3<

Qoo

} age known Qf

\-

64

Scheduling with unknown sizes

(\:V
;
4o

distribution ‘ ; E ‘

S known
: . assign each job a
@ based on age and S
(lower is better)

-

size unknown €3<

Qoo

} age known Qf

\-

64

Scheduling with unknown sizes

(\:r
U |
distribution E ‘

S known
: . assign each job a
@ based on age and S
(lower is better)

} age known Qf R minimizes E|T]

(Gittins 1989)

-

size unknown €3<

Qoo

\-

64

policy

policy

age

65

— Gittins policy

lower is
better

age

65

lower is
better

policy

Job size distribution:

1 w.p. %
S5=46 wp. %
14 w.p. %

age

65

lower is
better

policy

. . E[min{S,b}—a |S > a]
(a) = inf
b>a P[S<b|S>al

Job size distribution:
1 wp.
S5=46 w.p.

W= W= W=

14 w.p.

age

65

rank

lower is
better

Gittins policy

canl(a) = inf E[min{S,b}—a |S > al
b>a P[S<b|S>a]

Job size distribution:

1 w.p. %
S5=46 wp. %
14 w.p. %

age

65

rank

lower is
better

Gittins policy

. E[min{S,b}—a|S > al
rank(a) = inf
b>a P[S<b|S>a]

Job size distribution:
1 w.p. %
S5=146 Wwp. %
14 w.p. %
when size known,
rank = remaining size
@ age
2 6 14

65

5%;
Q—>

random
arrivals

queue

66

5%;
Q—>

random
arrivals

queue

5%;
Q—>

random
arrivals

k servers, each speed 1/k

queue

66

queue

S = size distribution

A = arrival rate

N
v
QOOC

arrivals

k servers, each speed 1/k

66

queue

S = size distribution

A = arrival rate

arrivals

N
v
QOOC

k servers, each speed 1/k

Scheduling policy:
@ picks which k jobs to serve

66

queue

S = size distribution

A = arrival rate

arrivals

N
v
QOOC

k servers, each speed 1/k Multiserver
serves the k jobs with

Scheduling policy: the k lowest
@ picks which k jobs to serve M

66

Comparing VI/G/k to M/G/1
M/G/k

%f“% \

000

Comparing VI/G/k to M/G/1

M/G/k

\

Qi”f%

000

o

M/G/1

\

)

Comparing VI/G/k to M/G/1

Comparing VI/G/k to M/G/1

M/G/k

Qﬁ%

\

same arrival rate A and
job size distribution S

=y

e
k servers of
speed 1/k

o

M/G/1

\

1 server of
speed 1

67

Comparing VI/G/k to M/G/1

M/G/k

\

same arrival rate A and
job size distribution S

i&@@

(o)

Q ' '
k servers of
speed 1/k

M/G/1

R T,

1 server of
speed 1

SRPT and Gittins:
E[T] optimal

67

Comparing VI/G/k to M/G/1

same arrival rate A and
job size distribution S

M/G/k

\

éiigi/i%?

e
k servers of
speed 1/k

=y

5N

|

)

|

d)

T = response time
TN and Gittins:

E[T] optimal

M/G/1

&

1 server of
speed 1

67

Comparing VI/G/k to M/G/1

M/G/k

\

same arrival rate A and

job size distribution S

=y

éi%i?

2

-

e
k servers of
speed 1/k

5N

—

\

)

|

d)

T = response time

SRPT and Gittins:
E[T] near-optimal?

M/G/1

&

1 server of
speed 1

A\ and Gittins:

E[T] optimal

Classifying coupling techniques

i%i%:}Q > @ B. Steady-state distribution

1. More information

State-space collapse

2 Fewer constraints (load balancing, switch scheduling)

3. Simpler dynamics Stein’s method

68

Classifying coupling techniques

E:%i%:}é > @ B. Steady-state distribution

1. More information

State-space collapse

2 Fewer constraints (load balancing, switch scheduling)

SRPT in the M/G/k
4(Grosof et al. 2018)

3. Simpler dynamics Stein’s method

68

Classifying coupling techniques

E:%i%:}é > @ B. Steady-state distribution

1. More information

State-space collapse
(load balancing, switch scheduling)

SRPT/Gittins in the M/G/k

2. Fewer constraints

SRPT in the M/G/k
4(Grosof et al. 2018)

3. Simpler dynamics Stein’s method

68

in the . result

Theorem: under and :

E[]SE[Tl]—I—(k—l)-O(loglip)

Scully, Grosof, and Harchol-Balter: The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions (2020) 69

https://ziv.codes/publications/%23the-gittins-policy-is-nearly-optimal-in-the-mgk-under-extremely-general-conditions

in the . result

Theorem: under and

J

E[]SE[Tl]—I—(k—l)-O(loglip)

Theorem: under and

lim ELT,]
p—1E[T]

=1 ifE[S*(logS)t] < o0

Scully, Grosof, and Harchol-Balter: The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions (2020) 69

https://ziv.codes/publications/%23the-gittins-policy-is-nearly-optimal-in-the-mgk-under-extremely-general-conditions

in the . result

Theorem: under and : i} \ o
—_(O»
—Or

E[T,.|]<E[T,]+(k—1)- O(log) ii:ﬁ o

Theorem: under and :

(7] 8 111D
li 1 if E[S*(logS)?
plE}lE[Tl] if E[S“(logS)"]| < o0

Scully, Grosof, and Harchol-Balter: The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions (2020) 69

https://ziv.codes/publications/%23the-gittins-policy-is-nearly-optimal-in-the-mgk-under-extremely-general-conditions

in the . result

Theorem: under and : % i
: \
El]SE[Tl]—I—(k—l)-O(lOg)

000

l—p
New idea:
r-work

Theorem: under and :

. _
lim LT =1 ifE[S*(logS)t] < o0 @ \ D
p—>1 E[Tl]

Scully, Grosof, and Harchol-Balter: The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions (2020)

69

https://ziv.codes/publications/%23the-gittins-policy-is-nearly-optimal-in-the-mgk-under-extremely-general-conditions

in the . result

Theorem: under and : % i
: \
El]SE[Tl]—I—(k—l)-O(log)

000

l—p
New idea:
r-work

Theorem: under and :

. _
lim LT =1 ifE[S*(logS)t] < o0 @ \ D
p—>1 E[Tl]

Scully, Grosof, and Harchol-Balter: The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions (2020)

69

https://ziv.codes/publications/%23the-gittins-policy-is-nearly-optimal-in-the-mgk-under-extremely-general-conditions

What is r-work? ()

W = work = total remaining size of all jobs

U
Vo]

What is r-work? ()

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs

/CHO\ that have remaining size < r

U

70

What is r-work? ()

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs

/CO\ that have remaining size < r

Ii

U

What is r-work? ()

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs
that have remaining size < r

U

70

What is r-work? (Gittins)

W = work = total remaining size of all jobs

71

What is r-work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

TN

71

What is r-work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes
or exceeds rank r

71

What is r-work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes
or exceeds rank r

rank

age

71

What is r-work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes
or exceeds rank r

rank

age

71

What is r-work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes
or exceeds rank r

—A

r

age

71

What is r-work? (

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to r

until job completes
or exceeds r
|

S T Y Y

Qb

O D 1 I I O O

,@

What is r-work? ()

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to r

until job completes
or exceeds r

(lower is better)

71

What is r-work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes B K
or exceeds rank r = I'an
(lower is better)
|

r @

H

71

What is r-work? ()

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to r

until job completes
or exceeds r

(lower is better)

71

Response time via r-work

\ A

g:;g 3
e TI1E

mean response
time in MI/G/k

o L0 55

mean response
time in M/G/1

72

Response time via r-work

b - e :
@@ \ 5, @ \ G@

mean response mean response
time in MI/G/k time in M/G/1
mean r-work mean r-work

N IinM/G/k in M/G/1

\ THo®

000

Response time via r-work

\

g:;;g 3
=

mean response
time in MI/G/k

Step 1:
relate response
time to r-work

mean r-work
N mM/G/

\

k

000

|

|

mean response
time in M/G/1

mean r-work

in Mi/G/1

\

)

&

%

@ 72

Response time via r-work

\

g:;;g 3
=

mean response
time in MI/G/k

Step 1:
relate response
time to r-work

mean r-work
N mM/G/

\

k

000

Step 2:

(=

bound r-work
difference

|

—

\

05

mean response
time in M/G/1

mean r-work

Response time via r-work

\

3:;} 3
=

mean response
time in MI/G/k

Step 1:
relate response
time to r-work

mean r-work
N mM/G/

\

k

000

Step 2:

(=

bound r-work
difference

|

—

\

05

mean response
time in M/G/1

mean r-work

Step 1: E[T] to E[W(r)] (SRPT)

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf
0

- E[W(r)] i

2

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = %f E[sz(r)] dr = %f E[W(r)]d(1/r)
0 0

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T]| = %f E[V’\fz(r)] dr = %f E(W(r)]d(1/r)
0 0

Proof:

One job’s r-work:

r-work

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf
A Jo

Prootf: ——
remaining size x

One job’s r-work:

> E[W(n)], _ 1

> r= X I;) E[W(r)]d(1/r)

r-work

1/r

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf
A Jo

Prootf: ——
remaining size x

One job’s r-work:

r-work r E
L___ }x
1/r

> E[W(n)], _ 1

> r= X I;) E[W(r)]d(1/r)

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf
A Jo

Prootf: ——
remaining size x

One job’s r-work:

r-work
}x
r
1/r

> E[W(n)], _ 1

> r= X I;) E[W(r)]d(1/r)

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf
A Jo

Prootf: ——
remaining size x

One job’s r-work:

> E[W(n)], _ 1

> r= X I;) E[W(r)]d(1/r)

r-work

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf
A Jo

Prootf: ——
remaining size x

One job’s r-work:

> E[W(n)], _ 1

> r= X I;) E[W(r)]d(1/r)

r-work

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf
A Jo

Prootf: ——
remaining size x

One job’s r-work:

> E[W(n)], _ 1

> r= X I;) E[W(r)]d(1/r)

r-work

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf
A Jo

Prootf: ——
remaining size x

One job’s r-work:

r-work !
§ }x r < x:r-work =0 83
§ r
' r = x: r-work = x

> E[W(n)], _ 1

> r= X I;) E[W(r)]d(1/r)

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T]| = %f E[sz(r)] dr = %f E(W(r)]d(1/r)
0 0

Prootf: ——
remaining size x

One job’s r-work:

r-work !
§ }x r < x:r-work =0 83

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf ElW(@)] dr = lf E[W(r)]d(1/r)
0 0

A 12 A

Prootf: ——
remaining size x

One job’s r-work:

r-work
I | %} r < x:r-work =0 83
X X
: r = x: r-work = x Qy
1/r

1/x

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf ElW(@)] dr = lf E[W(r)]d(1/r)
0 0

A 12 A
Proof:
One job’s r-work: All jobs’ r-work:
r-work r-work

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf ELW(r)] dr = lf E[W(r)|d(1/r)
0 0

A 12 A
Proof:
One job’s r-work: All jobs’ r-work:
r-work r-work

73

Step 1: E[T] to E[W(r)] (SRPT)

Theorem: E[T | = lf ElW(@)] dr = lf E[W(r)]d(1/r)
0 0

A I A
Proof:
One job’s r-work: All jobs’ r-work:
r-work

73

| 1a r-work
Response time via r

W T

T 5
48 T &),

BRRNOS=A
™ ¢

Response time via r-work
X

=D oL
@«
=y To'ee

W T

d)
Al
?) N\ J -
NS

9
2
Zass

A

000

2: E[W] difference (warmup)
Step 2:

724

Step 2: E[W] difference (warmup)

work W

time

724

Step 2: E[W] difference (warmup)

work W
In steady-state system, for any f,
E[f(W)] constant w.r.t. time

time

Y

Step 2: E[W] difference (warmup)

In steady-state system, for any f,
E[f(W)] constant w.r.t. time

work W

Y

Step 2: E[W] difference (warmup)

work W

In steady-state system, for any f,
E[f(W)] constant w.r.t. time

E[W? decrease rate] = 2E[BW]
E[W? increase rate] = AE[(W + S§)* —W?]

Y

time

75

Step 2: E[W] difference (warmup)
@ In steady-state system, for any f,
E[f(W)] constant w.r.t. time

- = service rate, a.k.a. time
fractlon of servers busy

E[W? decrease rate] = 2E[BW]
E[W? increase rate] = AE[(W + S)* —

work W

Y

Step 2: E[W] difference (warmup)
work W
@ In steady-state system, for any f,
E[f(W)] constant w.r.t. time

- = service rate, a.k.a. time
fractlon of servers busy)
—E S El(l—B)W

E[W? decrease rate] = 2E[BW] 1—p | 1—p
E[W? increase rate] = AE[(W + S)* —

W :

Step 2: E[W] difference (warmup)

In steady-state system, for any f,
E[f(W)] constant w.r.t. time

> M/G/1:
(1-B)W =0/
= service rate, a.k.a. time
fractlon of servers busy

work W

7E[S?] | E[(1-B)W]
E[W? decrease rate] = 2E[BW] ElW] = 21 — 0 I 1—p

E[W? increase rate] = AE[(W + S)? — W?]

Y

75

Step 2: E[W] difference (warmup)
work W
@ In steady-state system, for any f,
E[f(W)] constant w.r.t. time

- = service rate, a.k.a. time
fract1on of servers busy)
—E S El(l—B)W

E[W? decrease rate] = 2E[BW] 1—p | 1—p
E[W? increase rate] = AE[(W + S)* —

W :

Step 2: E[W] difference (warmup)
work W
@ In steady-state system, for any f,
E[f(W)] constant w.r.t. time

- = service rate, a.k.a. .
fract1on of servers busy)
—E S El(1—B)W
g = 2ES°] | Bl —B)w]

E[W? decrease rate] = 2E[BW] 1—p 1—p
E[W?* increase rate] = AE[(W + S)* — W*]

When S is exponential,
compares E[N;] to E[N1]

Y

75

Step 2: E[W(r)] ditference (SRPT)

Step 2: E[W(r)] ditference (SRPT)

r-work W(r)

time

Step 2: E[W(r)] ditference (SRPT)

r-work W(r)

m In steady-state system, for any f,
S

E[f(W(r))] constant w.r.t. time

time

Step 2: E[W(r)] ditference (SRPT)

r-work W(r)

o In steady-state system, for any f,
v E[f(W(r))] constant w.r.t. time

S

Step 2: E[W(r)] ditference (SRPT)

r-work W(r)
o In steady-state system, for any f,
g E[f(W(r))] constant w.r.t. time

time

Theorem:
E[(1 —Bk(r)) Wk(r)] + ArP[S > r] E,,[Wk(r)]
1—AE[ST1(S <r)]

E(W,(r)]=E[W,(r)]+

76

Step 2: E[W(r)] ditference (SRPT)

r-work W(r)
o In steady-state system, for any f,
w E[f(W(r))] constant w.r.t. time

N
B(r) = service rate on jobs
of remaining size < r
Theorem:

E[W,(r)]=E[W,(r)]+ E[(1 _Bk(r))lvv_k;régs-l-]ll(;PiSr; rlE.[W,(r)]

76

Step 2: E[W(r)] ditference (SRPT)

r-work W(r)
o In steady-state system, for any f,
v E[f(W(r))] constant w.r.t. time

N
B(r) = service rate on jobs
of remaining size < r
Theorem:

E[W,(r)]=E[W,(r)]+ E[(1 _Bk(r))lvv_k;régs-l-]ll(;PiSr; rlE.[W,(r)]

Crload”

76

Step 2: E[W(r)] ditference (SRPT)

r-work W(r)
o In steady-state system, for any f,
v E[f(W(r))] constant w.r.t. time

S
time
B(r) = service rate on jobs E/[-] samples whenever a
of remaining size < r job reaches remaining size r
Theorem:

E[W,(r)]=E[W,(r)]+ E[(1 _Bk(r))lvv_k;l‘égs-l-]ll(;PiSr; rlE.[W,.(r)]

Crload”

76

Step 2: ... so what does it mean?

77

Step 2: ... so what does it mean?

Suppose S < smax With probability 1

E[(1—B,)W;]

B[] = E[W,;]+ ———
P

724

77

Step 2: ... so what does it mean?

Suppose S < smax With probability 1

E[(1—B,)W;]

B[] = E[W,;]+ ———
P

724

77

Step 2: ... so what does it mean?

Suppose S < smax With probability 1 - _

LW,] = E[w,]+ S0
— P

724

77

Step 2: ... so what does it mean?

Suppose S < smax With probability 1 - _

LW,] = E[w,]+ S0
— P

< E[Wl] T (k 1)SmaX

724

77

Step 2: ... so what does it mean?

Suppose S < smax With probability 1 - _

LW,] = E[w,]+ S0
— P

< E[Wl] T (k 1)SmaX

@ job’s r-work is always < r

Y

77

Step 2: ... so what does it mean?

Suppose S < smax With probability 1 - _

LW,] = E[w,]+ S0
— 0

< E[Wl] T (k 1)5maX

@ job’s r-work is always < r

E[W,(r)]=E|W,(r)]+ “r-work of < k—1 jobs”
<EW,r)]+k-—-1)r

)&

77

Step 2: ... so what does it mean?

Suppose S < smax With probability 1 - _

LW,] = E[w,]+ S0

— O
< E[Wl] T (k 1)5maX

@ job’s r-work is always < r

E[W,(r)]=E|W,(r)]+ “r-work of < k—1 jobs”
<EW,r)]+k-—-1)r

see paper for
>@ better bound

77

Step 2: ... so what does it mean?

Suppose S < smax With probability 1 - _

B[,] = E[w,] + et P
1—p

still true under ,
but only in expectation
@ job’s r-work is always < r

E[W,(r)]=E|W,(r)]+ “r-work of < k—1 jobs”
<EW,r)]+k-—-1)r

<E|[

see paper for
>@ better bound

77

Response time via r-work
X

=D oL
@«
=y To'ee

W T

d)
Al
?) N\ J -
NS

9
2
Zass

A

000

Response time via r-work

|

0.

Response time via r-work

|

0.

Classifying coupling techniques

i%i%:}Q > @ B. Steady-state distribution

1. More information

State-space collapse

2 Fewer constraints (load balancing, switch scheduling)

3. Simpler dynamics Stein’s method

79

Classifying coupling techniques

®i§< > @ B. Steady-state distribution

1. More information

State-space collapse
(load balancing, switch scheduling)

SRPT/Gittins in the M/G/k

2. Fewer constraints

3. Simpler dynamics Stein’s method

79

X

\
LAY

2

Overview

Qf Part 1

Survey 1:
Sample-Path Coupling

In-Depth Study 1:
Online Resource Allocation

X

\
LAY

2

Part 2

Survey 2:
Steady-State Coupling

In-Depth Study 2:
Gittins in the M/G/k

30

X

\
LAY

2

Overview

Qf Part 1

Survey 1:
Sample-Path Coupling

In-Depth Study 1:
Online Resource Allocation

X

\
LAY

2

Qf Part 2

Survey 2:
Steady-State Coupling

In-Depth Study 2:
Gittins in the M/G/k

30

Conclusion

ESTate

Conclusion

ESTate

Ziv’s email: zscully@cs.cmu.edu

Sid’s email: sbanerjee@cornell. edu

81

Conclusion

Ziv’s email: zscully@cs.cmu.edu

Sid’s email: sbanerjee@cornell. edu

81

Classifying coupling techniques

g%%t% > @ A. Every sample path B. Steady-state distribution

BIG online knapsack

(via compensated coupling)

1. More information

M/M/k vs. M/M/1 State-space collapse

(load balancing, switch scheduling)

2. Fewer constraints Online knapsack

(via constraints-to-costs) SRPT/Gittins in the M/G/k

. . SIS epidemics .
3. Simpler dynamics . Stein’s method
Queues with redundancy

82

