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* Progress on complex architectures:
dispatching [ES’12, BBLM’16, Y’17], generalized switches [HM’20],
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* Progress on complex scheduling:
SRPT [GSH’18, GSH’19], Gittins policy [SGH’20]
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* Product-form Markov chains
* Redundancy models and more [GR’20]

- Limitation: what about general job sizes?

* Process convergence and limit interchange
» JSQ and power-of-d dispatching [MBLW’16] and more
» Dispatching to SRPT servers [DW’06]

- Limitation: what do we learn about pre-limit system?

* Many techniques for G/G/k

Keifer-Wolfowitz vector, random walks, and more [LG’17]
- Limitation: what about non-FCFS scheduling?
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. How do we adapt drift methods
to handle complex scheduling?

. What’s next for drift methods?
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Let X, be a Markov process with
- stationary distribution X o
 generator Dy:

E[f(X5) | Xo=0]—f(x)
9

Dy f(x) = %iil})

Dy operator gives “expected drift” of value over time
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Compositions of “ingredients” involving generator Dy

, Example: JSQ with M/M arrivals
stationary
drift is zero ; D
N = number in system
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: t:{> E[Njsql < E[Nymym/1]+ 7?27
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Drift method ingredients

 Basic Adjoint Relationship (BAR)

stationary drift is zero

State Space Collapse (SSC)

Today: show state drifts to a subspace
dispatching,
M/M arrivals | poisson EQuation (PEQ)
find a function with useful drift

Metric eXtraction (MX)

compute metric we care about
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BAR: For all f that don’t grow too fast,

E[Dxf(Xoo)]=0

Example: M/M dispatching, x; = # jobs at server i

) gidle serve@
Let f(x) = # jobs =in \:9 E[I|=k(1—p)
=1

E[IN]
1-p
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Let f (x) = (# jobs)? \:> E[N] = E[Nyu/1]-
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State Space Collapse (SSC)

SSC: If there is “norm-like” f, constant c, and set A
such that for all x £ A,

Dy f(x) < —cf(x),

then distance from X .. to A has all finite moments

Example: M/M dispatching, x; = # jobs at server i
Under JSQ dispatching,
Let £) = lxll, £y 8
E[IN]=0((1-p)°)

In heavy traffic: E[N]=E[Ny/y/1] ]i[il\;] ~ E[Nyi/miyi ]

11



Poisson Equation (PEQ)

PEQ: Given holding cost h, solve for average
cost h., = E[h(X ., )] and potential function f:

Dy f(x) =h(x)—he

12



Poisson Equation (PEQ)

PEQ: Given |

nholding cost h, solve for average

cost hoo = E

Dy f(x) =h(x)—he

Why do we care? Because then
E[Dxf(Yoo)] =E[h(Yoo )] —E[h(X oo )]

'h(X ., )] and potential function f:

12



Poisson Equation (PEQ)

PEQ: Given |

nholding cost h, solve for average

cost hoo = E

'h(X ., )] and potential function f:

Dy f(x) =h(x)—he

Why do we care? Because then
E[Dxf(Yoo)] =E[h(Yoo )] —E[h(X oo )]

( BA

Rﬁs = E[(Dy — Dy)f (Yoo)]

12



Poisson Equation (PEQ)

PEQ: Given holding cost h, solve for average

cost ho, = E[h(X ., )] and potential function f:

Dy f(x) =h(x)—he

Why do we care? Because then

E[Dyf(Yoo)] =E

CBAR*j > =F

h(Yoo) ] —E[h(X o)

(Dx —Dy)f (Yoo )l

Csimpléj Egomplicated )

12



Poisson Equation (PEQ)

PEQ: Given holding cost h, solve for average
cost ho, = E[h(X ., )] and potential function f:

Dy f(x) =h(x)—he

Why do we care? Because then
E[ Dy f (YooL)j = E[h(Yeo)] —E[h(X )]
CBAR:% — E-EDX — DY;)f(Yoo)]
@implé EcomplicatecD

Example: M/M/1, x = # jobs

Let h(x) = # jobs = x



Poisson Equation (PEQ)

PEQ: Given |

nholding cost h, solve for average

cost hoo = E

'h(X ., )] and potential function f:

Dy f(x) =h(x)—he

Why do we care? Because then
E[Dxf(Yoo)] =E[h(Yoo )] —E[h(X oo )]
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CBAR:é

@impléj EgomplicatecD

Example: M/M/1, x = # jobs

Let h(x) = # jobs =

X :> Solution: f (x) = (# jobs)* = x*
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or E[h(Yoo )] —E[h(X oo )]

Question: what functions h are useful?
* Directly useful: number of jobs, functions thereof

 Bound for all indicators — total variation distance

« Bound for all Lipschitz

* Problem: for M/G arriv
to deal with

* Solution: look at work instead

A\ WINE: get # jobs
U from work [SGH’20] Jrd
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