Drifting Towards Progress in Multiserver Scheduling

Ziv Scully

CMU (now) \rightarrow UC Berkeley \rightarrow MIT/Harvard \rightarrow Cornell (Fall 2023)

• E.g. FCFS M/G/k hard to approximate [GHDZ'10]

- E.g. FCFS M/G/k hard to approximate [GHDZ'10]
- Even harder: complex architectures

- E.g. FCFS M/G/k hard to approximate [GHDZ'10]
- Even harder: complex architectures
- Even harder: complex scheduling

- E.g. FCFS M/G/k hard to approximate [GHDZ'10]
- Even harder: complex architectures
- Even harder: complex scheduling

I think there's hope!

- E.g. FCFS M/G/k hard to approximate [GHDZ'10]
- Even harder: complex architectures
- Even harder: complex scheduling

I think there's hope!

• Progress on complex *architectures*: dispatching [ES'12, BBLM'16, Y'17], generalized switches [HM'20], networks [BDM'17], redundancy [GHS'17], fork-join [WHJSS'19]

- E.g. FCFS M/G/k hard to approximate [GHDZ'10]
- Even harder: complex architectures
- Even harder: complex scheduling

I think there's hope!

- Progress on complex *architectures*: dispatching [ES'12, BBLM'16, Y'17], generalized switches [HM'20], networks [BDM'17], redundancy [GHS'17], fork-join [WHJSS'19]
- Progress on complex *scheduling*: SRPT [GSH'18, GSH'19], Gittins policy [SGH'20]

- Product-form Markov chains
 - Redundancy models and more [GR'20]
 - Limitation: what about general job sizes?

- Product-form Markov chains
 - Redundancy models and more [GR'20]
 - Limitation: what about general job sizes?
- Process convergence and limit interchange
 - JSQ and power-of-d dispatching [MBLW'16] and more
 - Dispatching to SRPT servers [DW'06]
 - Limitation: what do we learn about pre-limit system?

- Product-form Markov chains
 - Redundancy models and more [GR'20]
 - Limitation: what about general job sizes?
- Process convergence and limit interchange
 - JSQ and power-of-d dispatching [MBLW'16] and more
 - Dispatching to SRPT servers [DW'06]
 - Limitation: what do we learn about pre-limit system?
- Many techniques for G/G/k
 - Keifer-Wolfowitz vector, random walks, and more [LG'17]
 - Limitation: what about non-FCFS scheduling?

1. What are drift methods?

- 1. What are drift methods?
- 2. How do we adapt drift methods to handle complex scheduling?

- 1. What are drift methods?
- 2. How do we adapt drift methods to handle complex scheduling?
- 3. What's next for drift methods?

What is drift?

Let X_t be a Markov process with

- stationary distribution X_{∞}
- generator D_X :

What is drift?

Let X_t be a Markov process with

- stationary distribution X_{∞}
- generator D_X :

$$D_X f(x) = \lim_{\delta \to 0} \frac{\mathbf{E}[f(X_{\delta}) | X_0 = 0] - f(x)}{\delta}$$

What is drift?

Let X_t be a Markov process with

- stationary distribution X_{∞}
- generator D_X :

$$D_X f(x) = \lim_{\delta \to 0} \frac{\mathbf{E}[f(X_{\delta}) | X_0 = 0] - f(x)}{\delta}$$

 D_X operator gives "expected drift" of value over time

Compositions of "ingredients" involving generator D_X

Compositions of "ingredients" involving generator D_X

Compositions of "ingredients" involving generator D_X

$$N = \text{number in system}$$

$$\mathbf{E}[N_{\text{JSQ}}] \leq \mathbf{E}[N_{\text{M/M/1}}] + ???$$

Compositions of "ingredients" involving generator D_X

$$N = \text{number in system}$$

$$\mathbf{E}[N_{\text{JSQ}}] \leq \mathbf{E}[N_{\text{M/M/1}}] + ???$$

$$??? \le o\left(\frac{1}{1-\rho}\right)$$

$$\rho = load$$

Compositions of "ingredients" involving generator D_X

$$??? \le o\left(\frac{1}{1-\rho}\right)$$

$$\rho = load$$

Compositions of "ingredients" involving generator D_X

Relationship

$$N = \text{number in system}$$

$$\mathbf{E}[N_{\text{JSQ}}] \leq \mathbf{E}[N_{\text{M/M/1}}] + ???$$

$$??? \le o\left(\frac{1}{1-\rho}\right)$$

$$\rho = load$$

Compositions of "ingredients" involving generator D_X

Compositions of "ingredients" involving generator D_X

Basic Adjoint Relationship (BAR) stationary drift is zero

State Space Collapse (SSC)

show state drifts to a subspace

Basic Adjoint Relationship (BAR)

stationary drift is zero

which f?

State Space Collapse (SSC)

show state drifts to a subspace

Basic Adjoint Relationship (BAR)

stationary drift is zero

State Space Collapse (SSC)

show state drifts to a subspace

which f?

Poisson EQuation (PEQ)

find a function with useful drift

Basic Adjoint Relationship (BAR)

stationary drift is zero

 $D_X f$ for

which f?

State Space Collapse (SSC)

show state drifts to a subspace

find a function with useful drift

Metric eXtraction (MX)

compute metric we care about

Basic Adjoint Relationship (BAR)

stationary drift is zero

 $D_X f$ for

which f?

show state drifts to a subspace

Poisson EQuation (PEQ)

find a function with useful drift

Metric eXtraction (MX) compute metric we care about

Ingredients:

- Basic Adjoint Relationship (BAR)
- State Space Collapse (SSC)
- Poisson EQuation (PEQ)
- Metric eXtraction (MX)

Ingredients:

- Basic Adjoint Relationship (BAR)
- State Space Collapse (SSC)
- Poisson EQuation (PEQ)
- Metric eXtraction (MX)

BAR approach [BDM'17]: BAR

Ingredients:

- Basic Adjoint Relationship (BAR)
- State Space Collapse (SSC)
- Poisson EQuation (PEQ)
- Metric eXtraction (MX)

BAR approach [BDM'17]: BAR

Drift method [ES'12, MS'16]: BAR + SSC

Ingredients:

- Basic Adjoint Relationship (BAR)
- State Space Collapse (SSC)
- Poisson EQuation (PEQ)
- Metric eXtraction (MX)

```
BAR approach [BDM'17]: BAR
```

Drift method [ES'12, MS'16]: BAR + SSC

Stein framework [BDF'16]: BAR + PEQ + MX

Drift method recipes

Ingredients:

- Basic Adjoint Relationship (BAR)
- State Space Collapse (SSC)
- Poisson EQuation (PEQ)
- Metric eXtraction (MX)

```
BAR approach [BDM'17]: BAR
```

Drift method [ES'12, MS'16]: BAR + SSC

Stein framework [BDF'16]: BAR + PEQ + MX

SRPT and Gittins in M/G/k [SGH'20]: BAR + MX

Drift method recipes

Ingredients:

- Basic Adjoint Relationship (BAR)
- State Space Collapse (SSC)
- Poisson EQuation (PEQ)
- Metric eXtraction (MX)

BAR approach [BDM'17]: BAR

Drift method [ES'12, MS'16]: BAR + SSC

Stein framework [BDF'16]: BAR + PEQ + MX

SRPT and Gittins in M/G/k [SGH'20]: BAR + MX

Drift method ingredients

Basic Adjoint Relationship (BAR) stationary drift is zero

State Space Collapse (SSC)

show state drifts to a subspace

Poisson EQuation (PEQ)

find a function with useful drift

Metric eXtraction (MX)

compute metric we care about

Drift method ingredients

Basic Adjoint Relationship (BAR) stationary drift is zero

State Space Collapse (SSC) show state drifts to a subspace

Poisson EQuation (PEQ)

find a function with useful drift

Metric eXtraction (MX) compute metric we care about

Today: dispatching, M/M arrivals

BAR: For all *f* that don't grow too fast,

$$\mathbf{E}[D_X f(X_{\infty})] = 0$$

BAR: For all *f* that don't grow too fast,

$$\mathbf{E}[D_X f(X_{\infty})] = 0$$

BAR: For all *f* that don't grow too fast,

$$\mathbf{E}[D_X f(X_{\infty})] = 0$$

Let
$$f(x) = \# \text{ jobs} = \sum_{i=1}^{k} x_i$$

BAR: For all *f* that don't grow too fast,

$$\mathbf{E}[D_X f(X_{\infty})] = 0$$

Let
$$f(x) = \# \text{ jobs} = \sum_{i=1}^{k} x_i$$
 $\mathbf{E}[I] = k(1-\rho)$

BAR: For all *f* that don't grow too fast,

$$\mathbf{E}[D_X f(X_{\infty})] = 0$$

Let
$$f(x) = \#$$
 jobs $= \sum_{i=1}^{k} x_i$ $\mathbf{E}[I] = k(1-\rho)$

Let
$$f(x) = (\# \text{ jobs})^2$$

BAR: For all *f* that don't grow too fast,

$$\mathbf{E}[D_X f(X_{\infty})] = 0$$

Let
$$f(x) = \#$$
 jobs $= \sum_{i=1}^{k} x_i$ $\mathbf{E}[I] = k(1-\rho)$

Let
$$f(x) = (\# \text{ jobs})^2$$
 $\mathbf{E}[N] = \mathbf{E}[N_{\text{M/M/1}}] + \frac{\mathbf{E}[IN]}{1 - \rho}$

SSC: If there is "norm-like" f, constant c, and set A such that for all $x \notin A$,

$$D_X f(x) \le -cf(x),$$

then distance from X_{∞} to A has all finite moments

SSC: If there is "norm-like" f, constant c, and set A such that for all $x \notin A$,

$$D_X f(x) \le -cf(x),$$

then distance from X_{∞} to A has all finite moments

SSC: If there is "norm-like" f, constant c, and set A such that for all $x \notin A$,

$$D_X f(x) \le -c f(x),$$

then distance from X_{∞} to A has all finite moments

Let
$$f(x) = ||x||_{\perp}$$

SSC: If there is "norm-like" f, constant c, and set A such that for all $x \notin A$,

$$D_X f(x) \le -c f(x),$$

then distance from X_{∞} to A has all finite moments

Let
$$f(x) = ||x||_{\perp}$$
 Under JSQ dispatching,

$$\mathbf{E}[IN] = o((1-\rho)^{\varepsilon})$$

SSC: If there is "norm-like" f, constant c, and set A such that for all $x \notin A$,

$$D_X f(x) \le -c f(x),$$

then distance from X_{∞} to A has all finite moments

Let
$$f(x) = ||x||_{\perp}$$
 Under JSQ dispatching,

$$\mathbf{E}[IN] = o((1-\rho)^{\varepsilon})$$

In heavy traffic:
$$E[N] = E[N_{M/M/1}] + \frac{E[IN]}{1-\rho} \approx E[N_{M/M/1}]$$

PEQ: Given holding cost h, solve for average cost $h_{\infty} = \mathbf{E}[h(X_{\infty})]$ and potential function f:

$$D_X f(x) = h(x) - h_{\infty}$$

PEQ: Given holding cost h, solve for average cost $h_{\infty} = \mathbf{E}[h(X_{\infty})]$ and potential function f:

$$D_X f(x) = h(x) - h_{\infty}$$

Why do we care? Because then

$$\mathbf{E}[D_X f(Y_{\infty})] = \mathbf{E}[h(Y_{\infty})] - \mathbf{E}[h(X_{\infty})]$$

PEQ: Given holding cost h, solve for average cost $h_{\infty} = \mathbf{E}[h(X_{\infty})]$ and potential function f:

$$D_X f(x) = h(x) - h_{\infty}$$

Why do we care? Because then

$$\mathbf{E}[D_X f(Y_{\infty})] = \mathbf{E}[h(Y_{\infty})] - \mathbf{E}[h(X_{\infty})]$$

$$\Rightarrow = \mathbf{E}[(D_X - D_Y)f(Y_{\infty})]$$
BAR

PEQ: Given holding cost h, solve for average cost $h_{\infty} = \mathbf{E}[h(X_{\infty})]$ and potential function f:

$$D_X f(x) = h(x) - h_{\infty}$$

Why do we care? Because then

$$\mathbf{E}[D_X f(Y_{\infty})] = \mathbf{E}[h(Y_{\infty})] - \mathbf{E}[h(X_{\infty})]$$

$$\Rightarrow = \mathbf{E}[(D_X - D_Y) f(Y_{\infty})]$$
Simple
complicated

PEQ: Given holding cost h, solve for average cost $h_{\infty} = \mathbf{E}[h(X_{\infty})]$ and potential function f:

$$D_X f(x) = h(x) - h_{\infty}$$

Why do we care? Because then

$$\mathbf{E}[D_X f(Y_{\infty})] = \mathbf{E}[h(Y_{\infty})] - \mathbf{E}[h(X_{\infty})]$$

$$\Rightarrow = \mathbf{E}[(D_X - D_Y)f(Y_{\infty})]$$
Simple
complicated

Example: M/M/1, x = # jobs

Let
$$h(x) = \# \text{ jobs} = x$$

PEQ: Given holding cost h, solve for average cost $h_{\infty} = \mathbf{E}[h(X_{\infty})]$ and potential function f:

$$D_X f(x) = h(x) - h_{\infty}$$

Why do we care? Because then

$$\mathbf{E}[D_X f(Y_{\infty})] = \mathbf{E}[h(Y_{\infty})] - \mathbf{E}[h(X_{\infty})]$$

$$\Rightarrow = \mathbf{E}[(D_X - D_Y)f(Y_{\infty})]$$
Simple
complicated

Example: M/M/1, x = # jobs

Let
$$h(x) = \# \text{ jobs} = x$$
 Solution: $f(x) = (\# \text{ jobs})^2 = x^2$

Can understand $\mathbf{E}[h(X_{\infty})]$ for some cost functions h

or
$$\mathbf{E}[h(Y_{\infty})] - \mathbf{E}[h(X_{\infty})]$$

Can understand $\mathbf{E}[h(X_{\infty})]$ for some cost functions h

Can understand $\mathbf{E}[h(X_{\infty})]$ for some cost functions h

or
$$\mathbf{E}[h(Y_{\infty})] - \mathbf{E}[h(X_{\infty})]$$

Question: what functions *h* are useful?

• Directly useful: number of jobs, functions thereof

Can understand $\mathbf{E}[h(X_{\infty})]$ for some cost functions h

- Directly useful: number of jobs, functions thereof
- Bound for all indicators → total variation distance

Can understand $\mathbf{E}[h(X_{\infty})]$ for some cost functions h

- Directly useful: number of jobs, functions thereof
- Bound for all indicators → total variation distance
- Bound for all Lipschitz → Wasserstein distance

Can understand $\mathbf{E}[h(X_{\infty})]$ for some cost functions h

- Directly useful: number of jobs, functions thereof
- Bound for all indicators → total variation distance
- Bound for all Lipschitz → Wasserstein distance
- **Problem:** for M/G arrivals, number of jobs is hard to deal with

Can understand $\mathbf{E}[h(X_{\infty})]$ for some cost functions h

- Directly useful: number of jobs, functions thereof
- Bound for all indicators → total variation distance
- Bound for all Lipschitz → Wasserstein distance
- **Problem:** for M/G arrivals, number of jobs is hard to deal with
 - Solution: look at work instead

Can understand $\mathbf{E}[h(X_{\infty})]$ for some cost functions h

or
$$\mathbf{E}[h(Y_{\infty})] - \mathbf{E}[h(X_{\infty})]$$

WINE: get # jobs

- Directly useful: number of jobs, functions thereof
- Bound for all indicators → total variation distance
- Bound for all Lipschitz
- **Problem:** for M/G arriva from work [SGH'20] rd to deal with
 - **Solution:** look at *work* instead

Drift method ingredients

Basic Adjoint Relationship (BAR) stationary drift is zero

State Space Collapse (SSC)

show state drifts to a subspace

Poisson EQuation (PEQ)

find a function with useful drift

Metric eXtraction (MX)

compute metric we care about

Drift method ingredients

Basic Adjoint Relationship (BAR) stationary drift is zero

State Space Collapse (SSC)

show state drifts to a subspace

Poisson EQuation (PEQ)

find a function with useful drift

[SGH'20] Metric eXtraction (MX)

compute metric we care about

References: drift methods

```
[BDF'16] Anton Braverman, J. G. Dai, & Jiekun Feng (2016). "Stein's method for steady-state diffusion approximations: an introduction through the Erlang-A and Erlang-C models". doi:10.1287/15-SSY212.

[BDM'17] Anton Braverman, J. G. Dai, & Masakiyo Miyazawa. "Heavy traffic approximation for the stationary distribution of a generalized Jackson network: the BAR approach". doi:10.1214/15-SSY199.
```

- [ES'12] Atilla Eryilmaz & R. Srikant. "Asymptotically tight steady-state queue length BAR + SSC bounds implied by drift conditions". doi:10.1007/s11134-012-9305-y.
- [HM'20] Daniela Hurtado-Lange & Siva Theja Maguluri. "Transform methods for BAR + SSC heavy-traffic analysis". doi:10.1287/stsy.2019.0056.
- [MS'16] Siva Theja Maguluri & R. Srikant. "Heavy traffic queue length behavior in a BAR + SSC switch under the MaxWeight algorithm". doi:10.1287/15-SSY193.
- [SGH'20] Ziv Scully, Isaac Grosof, & Mor Harchol-Balter. "The Gittins policy is nearly optimal in the M/G/k under extremely general conditions".

 doi:10.1145/3428328.
- [Y'17] Lei Ying (2017). "Stein's method for mean field approximations in light and BAR + PEQ + MX heavy traffic regimes". doi:10.1145/3084449.

References: other approaches

- [BBLM'16] Mark van der Boor, Sem C. Borst, Johan S. H. van Leeuwaarden, & Debankur Mukherjee. "Scalable load balancing in networked systems: a survey of recent advances".

 arXiv:1806.05444.
 - [DW'06] Douglas Down & Wu. "Multi-layered round robin routing for parallel servers". doi:10.1007/s11134-006-7419-9.
- [GHDZ'10] Varun Gupta, Mor Harchol-Balter, J. G. Dai, & Bert Zwart. "On the inapproximability of M/G/K: why two moments of job size distribution are not enough". doi:10.1007/s11134-009-9133-x.
 - [GHS'17] Kristen Gardner, Mor Harchol-Balter, & Alan Scheller-Wolf. "A better model for job redundancy: decoupling server slowdown and job size". doi:10.1109/TNET.2017.2744607.
 - [GR'20] Kristen Gardner & Rhonda Righter. "Product forms for FCFS queueing models with arbitrary server-job compatibilities: an overview". doi:10.1007/s11134-020-09668-6.
 - [GSH'18] Isaac Grosof, Ziv Scully, & Mor Harchol-Balter. "SRPT for multiserver systems". doi:10.1016/j.peva.2018.10.001.
 - [GSH'19] Isaac Grosof, Ziv Scully, & Mor Harchol-Balter. "Load balancing guardrails: keeping your heavy traffic on the road to low response times". doi:10.1145/3341617.3326157.
 - [LG'17] Yuan Li & David Goldberg (2017). "Simple and explicit bounds for multi-server queues with universal $1/(1-\rho)$ scaling". arXiv:1706.04628.
- [WHJSS'19] Weina Wang, Mor Harchol-Balter, Haotian Jiang, Alan Scheller-Wolf, & R. Srikant. "Delay asymptotics and bounds for multitask parallel jobs". doi:10.1007/s11134-018-09597-5.