The Gittins Policy is
Nearly Optimal in
the M/G/k

under Extremely General Conditions

Ziv Scully) \ —_—— ‘ \ \

Isaac Grosof 4¢] » 4]
Mor Harchol-Balter l ‘

Carnegie Mellon University /Qﬂjﬁ /C_;"’L’j?\S

This talk: near-optimal
multiserver scheduling

—

SO0

First: background on
single-server scheduling

IRERG;

This talk: near-optimal
multiserver scheduling

—

SO0

M/G/1 Queue

M/G/1 Queue

qucuce server

M/G/1 Queue

qucuce server

job

M/G/1 Queue

qucuce server

job

Size

M/G/1 Queue

qucuce server

job

Size

M/G/1 Queue

qucuce server

job

Size

M/G/1 Queue

qucuce server

job

Size

M/G/1 Queue

qucuce server

job

}remaining size
size
}age

M/G/1 Queue

qucuce server

7

random
arrivals

}remaining size
size
}age

job

M/G/1 Queue

queue

%1

random
arrivals

}remaining size
size
}age

U

job

SErver

M/G/1 Queue

S = size distribution qucuc

A = arrival rate |

random
arrivals

}remaining size
size
}age

U

job

SErver

M/G/1 Queue

S = size distribution queue server

A = arrival rate |

random G

arrivals

job
remaining size
size
}age

Scheduling policy:
@ picks which job to serve

M/G/1 Queue

S = size distribution queue server

A = arrival rate |

random
arrivals

}remaining size
size
}age

Scheduling policy:
@ picks which job to serve

L
]

job

M/G/1 Queue

S = size distribution queue server

A = arrival rate |

L
]

random
arrivals

}remaining size
size
}age

Scheduling policy:
@ picks which job to serve

job

M/G/1 Queue

S = size distribution queue server

A = arrival rate |

L
]

random
arrivals

}remaining size
size
}age

Scheduling policy:
@ picks which job to serve

job

M/G/1 Queue

S = size distribution queue server

A = arrival rate |

L
]

random
arrivals

}remaining size
size
}age

Scheduling policy:
@ picks which job to serve

job

Response Time

Response Time

EENG;

Response Time

=S

= T = response time

Response Time

Response Time

= T = response time

Goal: schedule to minimize
mean response time E|[T]

How to Schedule?

2.1

random ' i
arrivals U

} remaining size
size
} age

How to Schedule?

T

random '
arrivals

L SRPT: always serve job of
remaining size i ,
| @ least remaining size
S1Z.€
}age

o

How to Schedule?

I

%1

random
arrivals

shortest remaining

processing time
()

L SRPT: always serve job of
remaining size N .
@ least remaining size
size
}age

How to Schedule?

I

%1

random
arrivals

shortest remaining

processing time
()

L SRPT: always serve job of
remaining size N .
@ least remaining size
size
}age

How to Schedule?

random
arrivals

shortest remaining
processing time

L SRPT: always serve job of
remaining size N .
@ least remaining size

} age

size

How to Schedule?

random
arrivals

shortest remaining
processing time

L SRPT: always serve job of
remaining size N .
@ least remaining size

age SRPT minimizes E[T]
(Schrage 1968)

size

Unknown Job Sizes

Unknown Job Sizes

S Y B G)
Qi

size unknown 83

C La_l {_l_l_LJ-L-

Unknown Job Sizes

S Y B G)
Qi

size unknown 8@

C La_l {_l_l_LJ-L-

} age known Qf

Unknown Job Sizes

%1

distribution
S known

4

S Y B G)
Qi

size unknown 83

C La_l {_l_l_LJ-L-

} age known Qf

Unknown Job Sizes

%1

distribution
S known

4

S Y B G)
Qi

r
[
] |

size unknown 8@
@} age known J

Unknown Job Sizes

Sy
-
‘~‘.\-_-L-J-.-L-_l-_-.l-.-\.-.r
L.
LI L.L.

Tl
o

distribution
S known

Qf - : : assign each job a
- @ based on age and S

size unknowngg P (lower is better)
} age known J

Unknown Job Sizes

=gy

|
distribution ‘

S known

Qf - : : assign each job a
- @ based on age and S

size unknowngg P (lower is better)
} age known J

Unknown Job Sizes

I Y Y T
L_L

B
distribution = , ‘

S known

Qf ;s i | : assign each job a

Lia_L

based on age and S

1

(lower is better)

size unknown S@

}age known Qf R minimizes E[T]

(Gittins 1989)

Policy

p
olicy

a
gec

Policy

lower is
better

age

Policy
E[min{S,b} —a|S > a]

(a) = inf

b>a P[S<b|S>al

lower is
better

age

Policy
E[min{S,b} —a|S > a]

— inf
(@)= inf P[S<b|S>a]

Job size distribution:

1 wp. %

— 1

lower is >=16 W-P- 3
better 14 W.D. %

age

Gittins Policy
- E[min{S,b}—a|S > a]

k(a) = inf
rank rank(a) = It = e TS o

9
N
8
/N
Job size distribution:

(1 W.P. %
S=4{6 wp. %
lower is \14 W.p.%

better

@
(.

age

Optimal Policies

Known Sizes Unknown Sizes

M/G/1 SRPT

Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT

Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT

J_l_LJd_L.

size = 12 size = 10

~Lad_ Ll La-L.

¢
S

Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT

-Lda_L.

Jo

.D QD
size = 12 size = 10

~Lad_ Ll La-L.

¢
S

Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT

I [Py I g

CSL -l {J_l_LJ-L-

QoL

Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT

I [Py I g

CSL -l {J_l_LJ-L-

} age known Qf

QoL

8

Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT

I [Py I g

CSL -l {J_l_LJ-L-

} age known Qf

QoL

8

Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT
of scenarios

Optimal Policies

Known Sizes Partial Info Unknown Sizes
M/G/1 SRPT huge variety
of scenarios
special case of ;
= remaining size

First: background on
single-server scheduling

IRERG;

This talk: near-optimal
multiserver scheduling

—

SO0

QV First: background on
single-server scheduling

IRERG;

This talk: near-optimal
multiserver scheduling

—

SO0

QV First: background on
single-server scheduling

PR

\

9

@ This talk: near-optimal
o multiserver scheduling

—

\

SO0

QV First: background on
single-server scheduling

(e G

\

9

@ This talk: near-optimal
o multiserver scheduling

—

\

SO0

QV First: background on
smgle -server scheduling

e | 1]

@ This talk: near-optimal
o multiserver scheduling

[;:\>
@p)
(D

21

So00 &

M/G/k Queue

M/G/k Queue

%1

random
arrivals

M/G/k Queue

%1

random
arrivals

k servers, each speed 1/k

10

M/G/k Queue

S = size distribution

A = arrival rate |

random
arrivals

k servers, each speed 1/k

10

M/G/k Queue

S = size distribution

A = arrival rate |

random
arrivals

k servers, each speed 1/k

Scheduling policy:
g picks which k jobs to serve

10

M/G/k Queue

S = size distribution

A = arrival rate |

random
arrivals

k servers, each speed 1/k Multiserver
serves the k jobs with

Scheduling policy: the k lowest
@ picks which k jobs to serve é/

10

M/G/1 vs. M/G/k

min]
E[/"] <

M/G/1 vs. M/G/k

E[T

ST = E[T™"] < E[T™"]

M/G/1 vs. M/G/k

E[T

S = E[TM] < E[T™] < E[T,]

E[

M/G/1 vs. M/G/k

T

S = E[TM] < E[T™] < E[T,

Goal 1: “near-optimality” bound

E[T, | <E[T,] + something “small”

|

11

M/G/1 vs. M/G/k

E[T

S = E[TM] < E[T™] < E[T,

Goal 1: “near-optimality” bound

E[T, | <E[T,] + something “small”

Goal 2: heavy-traffic optimality

E(T,
lim —
p=1E[T]

- =1

M/G/1

M/G/k

(prior work)

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes

SRPT

12

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT

M/G/k

(prior work)

@ Generalize M/G/1
E[T] analysis

12

Near-Optimal Policies

Known Sizes

M/G/1 SRPT

NS

M/G/k SRPT
(prior work) Grosof et al. (2018)

@ Generalize M/G/1
E[T] analysis

Partial Info

Unknown Sizes

12

Near-Optimal Policies

Known Sizes

M/G/1

M/G/k

(prior work)

o

Generalize M/G/1

E[T] analysis

Partial Info

SRPT

NS

SRPT

Grosof et al. (2018)

E[T] <E[T;]+(k—1)- O(log

1

=)

Unknown Sizes

12

Near-Optimal Policies

Known Sizes

M/G/1 SRPT

NS

M/G/k SRPT
(prior work) Grosof et al. (2018)

@ Generalize M/G/1
E[T] analysis

Partial Info

Unknown Sizes

12

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT

NS

M/G/k SRPT CEP @
(prior work) Grosof et al. (2018)

@ Generalize M/G/1
E[T] analysis

12

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRPT

NS

M/G/k SRPT CEP @
(prior work) Grosof et al. (2018)

Q Q

@ Generalize M/G/1
E[T] analysis

fnf Problem: existing M/G/1-to-M/G/k

strategy uses worst-case techniques

12

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes
M/G/1 SRPT
M/G/k SRPT CEP @
(prior work) Grosof et al. (2018) = =

@ Generalize M/G/1
E[T] analysis

fnf Problem: existing M/G/1-to-M/G/k

strategy uses worst-case techniques

12

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes
M/G/1 SRPT
M/G/k SRPT CEP @
(prior work) Grosof et al. (2018) = =

@ Generalize M/G/1
E[T] analysis

fnf Problem: existing M/G/1-to-M/G/k

strategy uses worst-case techniques

12

Our contributions:

Our contributions:

Q Introduce new techniques for
analyzing E[T] in the M/G/k

Our contributions:

Q Introduce new techniques for
analyzing E[T] in the M/G/k

Prove that has near-
optimal E[T] in the M/G/k

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes
M/G/1 SRPT
M/G/k SRPT 2 2
(prior work) o]

M/G/k

(new result)

14

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes
M/G/1 SRPT Gittins Gittins
M/G/k SRPT 2 2
(prior work) ~ =
(iVIv{ G/ ’ft) SRPT Gittins Gittins

14

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes
M/G/1 SRPT
M/G/k SRPT 2 2
(prior work) o]

(new result) — - 7

E[T,] <E[T;]+ (k—1)- O(log 1 ip)

Near-Optimal Policies

Known Sizes Partial Info Unknown Sizes

M/G/1 SRP”

E[T]<E[T;]+(k—1)- O(log !

M/G/k SRIFT 2 2
(prior work)

M/G/k SRPT

(new result) — - 7

E[T,] <E[T;]+ (k—1)- O(log 1 ip)

14

Theorem: under ;

E[T;]<E[T;]+(k—1)- O(log 1 iP)

15

Theorem: under ;

E[T;]<E[T;]+(k—1)- O(log 1 iP)

Theorem: under 5

. E[T,]
111 —

1 ifE[S%(logS)"] < o0

15

Theorem: under ;

E[T,] <E[T;]+(k—1)- O(log 1 ip)

Theorem: under 5

. E[T,]
111 —

1 ifE[S%(logS)"] < o0

Q New concept: r-work

15

What is r-Work? (SRPT)

W = work = total remaining size of all jobs

What is r-Work? (SRPT)

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs

/C'O\ that have remaining size < r

16

What is r-Work? (SRPT)

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs

/OO\ that have remaining size < r

16

What is r-Work? (SRPT)

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs
that have remaining size < r

U

What is r-Work? (Gittins)

W = work = total remaining size of all jobs

17

What is r-Work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

TN

17

What is r-Work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes
or exceeds rank r

17

What is r-Work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes
or exceeds rank r

rank

age

17

What is r-Work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes
or exceeds rank r

rank

age

17

What is r-Work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work ‘relevant” to rank r

until JOb completes
or exceeds rank r

rank

I- work

f—g\

r

age

17

What is r-Work? ()

W = work = total remaining size of all jobs

W(r) = r-work = work ‘relevant” t r
until JOb completes
or exceeds

N N T N T N O T
QL.
]]_-_------_

Y Y Y N

\
\

What is r-Work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes H _ K
or exceeds rank r = rdain
(lower is better)
o |

17

What is r-Work? (Gittins)

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to rank r

until job completes H _ K
or exceeds rank r = ran
(lower is better)
- (

17

What is r-Work? ()

W = work = total remaining size of all jobs

W(r) = r-work = work “relevant” to r

until job completes
or exceeds r

(lower is better)
ANg
N

1
r

/ | 4

17

Response Time via r-Work

|

|

O,

mean response
time in M/G/k

|

9

i)

Imean resSponsc

time in M/G/1

18

Response Time via r-Work

BB BEE;
l \Q¢ 1)
mean response e mean response
time in M/G/k time in M/G/1
mean r-work mean r-work

in M/G/k in M/G/1

SO0

== oo

18

Response Time via r-Work

BB BEE;
l \Q¢ 1)
mean response e mean response
time in M/G/k time in M/G/1
mean r-work mean r-work

in M/G/k in M/G/1

SO0

== oo

18

Response Time via r-Work

-3
l i) 1)
mean response e mean response
time in M/G/k time in M/G/1
mean r-work mean r-work
in M/G/k in M/G/1

SO0

== oo

18

Response Time via r-Work

HlS: HEG;

l N

. mean response
Theorem: | J-c><> E[W()]
dr
0

E[T]= X time 1n M/G/1

P2

mean r-work mean r-work
in M/G/k in M/G/1

== oo

SO0

18

Response Time via r-Work

-3
l i) 1)
mean response e mean response
time in M/G/k time in M/G/1

Theorem:

B[T] = % J E[w()]
0

mean r-work mean r-work

)

in M/G/k in M/G/1

== oo

SO0

18

Response Time via r-Work

HlS: HEG;

D, 0,
mean response
time in M/G/k

Theorem:

B[T] — % f E[W(r)] .
0

“EB[W(
r2

E[T] = ~

Theorem:
1),

mean r-work mean r-work

)

in M/G/k in M/G/1

== oo

SO0

18

Response Time via r-Work

(>
l i) 1)
mean response e mean response
time in M/G/k time in M/G/1

Theorem:

B[] = L J E[w()]
0

A

mean r-work mean r-work
in M/G/k in M/G/1
_ > _
C (O
s NS Ao

18

Response Time via r-Work

(>
l i) 1)
mean response e mean response
time in M/G/k time in M/G/1

Theorem:

B[T] = % J E[w()]
0

mean r-work mean r-work
in M/G/k in M/G/1

Theorem:
E[W.(r)] =E[W(r)]+ “r-work of < k—1 jobs”

18

Response Time via r-Work

-3
l i) 1)
mean response _ __ __ __ __ Ineanresponse
time in M/G/k time in M/G/1

Theorem:

E[T]:.%J E[W(r)] dr
0

mean r-work mean r-work

in M/G/k _ /\ in M/G/l

= Theorem:
! ! E[W,(r)]=E[W.(r)]+ “r-work of < k — 1Jobs% \ ; ! G

18

New E[T] Formula

1
Theorem: E[T]= —J
A Jo

12

TEW(]

19

New E[T] Formula

@evan r-wo@

1
Theorem: E[T]= —f
A Jo

12

TEW(]

19

New E[T] Formula

@evan r-wo@

Theorem: E[T]= lf ELW(r)] dr
0

12

A

Holds for any queueing system:
M/G/k, G/G/k, load-balancing, ...

19

New E[T] Formula

Theorem: E[T]|= %f E[V’\fz(r)] dr
0

19

New E[T] Formula

Theorem: E[T]|= lf ElW(r)] dr
0

A r2

Proof:

19

New E[T] Formula

Th for SRPT case, in which) 4 f
= remammg size

Proof:

E[W(r)]

19

New E[T] Formula

Th for SRPT case, in which) 4 f
= remammg size

Proof:

f E[W(r)] 4 _J JOblS r-work |
0 0

12 12

E[W(r)]

dr

19

New E[T] Formula

Th TEO,
for SRPT case, in Wh1ch
= remammg size
N # _]OD
Proof:

J' E[W(r)] 1 J‘ JOb i’s r- work] .
0 0

12 2

19

New E[T] Formula

E[W(r)]
Th for SRPT case, in which) 4 f dr
= remammg size
N = # jobs
Proof g D
T EW()] 1Job i’s r- Work]
dr = dr
0 - 0 e

N

E mejoblsrworkdr
0

l:

19

New E[T] Formula

Th for SRPT case, in which) 4 f
= remammg size

Proof:

J' E[W(r)] 1 _J‘ E l 1J0blS r- Work]
0 0

12

=E

~ 1

E[W(r)]

g/ﬁ #JOD

dr

Mz EMZ

| I
p—d

%)
%)

©.@

©.@)

job i’s r- work

X, ﬂ(X <.

dr

dr

19

New E[T] Formula

E[W(r)]
Th for SRPT case, in which) 4 f I”
= remammg size
N = # jobs
Proof g D
E[W(r)] E l 1Job 'S r- Work]
0 - - 0 v

=E

foo JOb l S 1: _nrlz]
0

= remammg size of _]OD

D= [P

dr

JOOX ﬂ(X <r)
0

| I
p—d

~ 1

19

New E[T] Formula

E[W(r)]
Th for SRPT case, in which) 4 f I”
= remammg size
N = # jobs
Proof g D
E[W(r)] E l 1Job 'S r- Work]
0 - - 0 v

foo JOb l S 1: _nrlz]
0

= remammg size of _]OD

f"" ﬂ(X <r)
I”
o 0 -

= E[N]= AE[T]

= 1= IM-

| I
p—d

19

New E[T] Formula

E[W(r)]

Th for SRPT case, in which) 4 f I”
= remammg size
g # _]OD

Proof:

f E[W(r)] J‘ E l 1Job I’s r- Work]
0 0

12

dr

N N~ b T/\Tr\v']f -I
_r job i’s /k
= remammg size of _]OD
0)

Little’s la@

19

Response Time via r-Work

e
€0, O, ¢l 2
medn I'GSPOIISG —_— e medn response
time in M/G/k time in M/G/1
Theorem: heorem
E[T]= E[W(rD E[T] - E[V,\;(A
mean r-work mean r-work

in M/G/k /\ in M/G/l

= Theorem:
} \ E[W,(r)] = E[W,(r)] + “r-work of < k — 1J0bs%} ! G

20

Response Time via r-Work

Pe
€D, O, €D, 2
mean response e mean response
time in M/G/k time in M/G/1
Theorem: Theorem:
Qf E[T]_ E[W(r) E[T]_ E[W(r)] Qf
mean r-work mean r-work

in M/G/k /\ in M/G/l

= Theorem:
} \ E[W,(r)] = E[W,(r)] + “r-work of < k — 1J0bs%} ! G

20

Work in M/G/k vs. M/G/1

Work in M/G/k vs. M/G/1

E[I; Wy]

Theorem: E[W,]=E[W;]A ;
—p

Work in M/G/k vs. M/G/1

C # idle ser?

El LW
Theorem: E[W,]=E[W;]A [k k]

21

Work in M/G/k vs. M/G/1

C # idle ser?

E|l LW
Theorem: E[W;]|=E[W;]A [k k]

Whenever Ix > 0, a server is idle,
so system has at most k — 1 jobs

21

Work in M/G/k vs. M/G/1

C # idle ser?

E|l LW
Theorem: E[W;]|=E[W;]A [k k]

-

~"

“work of < k -1 jobs”

Whenever Ix > 0, a server is idle,
so system has at most k — 1 jobs

21

Work in M/G/k vs. M/G/1

C # idle ser?

E|l LW
Theorem: E[W;]|=E[W;]A [1 Wil
p

“work of < k -1 jobs”

Whenever Ix > 0, a server is idle,
so system has at most k — 1 jobs

Can generalize to any system
with Poisson arrivals

21

r-Work in M/G/k vs. M/G/1

Theorem:
E[W,]| =E[W;]+ “work of < k—1 jobs”

2

r-Work in M/G/k vs. M/G/1

Theorem:
E[W,]| =E[W;]+ “work of < k—1 jobs”

Theorem:
E[W,.(r)] =E[W;(r)] + “r-work of < k—1 jobs”

2

r-Work in M/G/k vs. M/G/1

Theorem:

E[W,]| =E[W;]+ “work of < k—1 jobs”

Theorem:
E[W(r)]=E

<E

Wi (r).
Wi(r).

+ “r-work of < k—1 jobs”
+(k—1)r

2

r-Work in M/G/k vs. M/G/1

Theorem:

E[W,]| =E[W;]+ “work of < k—1 jobs”

Theorem:
E[W(r)]=E

<E

Wi (r).
Wi(r).

+ “r-work of < k—1 jobs”
+(k—1)r

paper uses
better bound

2

Response Time via r-Work

Pe
€D, O, €D, 2
mean response e mean response
time in M/G/k time in M/G/1
Theorem: Theorem:
Qf E[T]_ E[W(r) E[T]_ E[W(r)] Qf
mean r-work mean r-work

in M/G/k /\ in M/G/l

= Theorem:
} \ E[W,(r)] = E[W,(r)] + “r-work of < k — 1J0bs%} ! G

23

Response Time via r-Work

Pe
€D, O, €D, 2
mean response e mean response
time in M/G/k time in M/G/1
Theorem: Theorem:
Qf E[T]_ E[W(r) E[T]_ E[W(r)] Qf
mean r-work mean r-work

in M/G/k /\ in M/G/l

= Theorem:
} \ E[W,(r)] = E[W,(r)] + “r-work of < k — 1J0bs%} ! G

23

Response Time via r-Work
O

(>
'l) 1 0)
mean response __ __ __ Imean response
time in M/G/k time in M/G/1

Theorem: Theorem:
Qf AT = E[W(r) B E[W(r)] Qf

mean r-work mean r-work

in M/G/k /\ in M/G/l

— Theorem:
} \ E[W,(r)] = E[W; ()] + “r-work of < k — 1]0b8?} ! G

23

Summary

Minimize E[T] in M/G/k
o without known job sizes

24

v

a

Summary

Minimize E[T] in M/G/k Prior M/G/k techniques
without known job sizes need known job sizes

24

v

a

o

Summary

Minimize E[T] in M/G/k Prior M/G/k techniques
without known job sizes need known job sizes

New technique based on
relating E[T] to r-work

24

Summary

@ Minimize E[T] in M/G/k Prior M/G/k techniques
o without known job sizes need known job sizes

E[T;] <E[T;]+(k—1)- O(log 1 ip)

Q New technique based on
relating E[T] to r-work

has near-optimal
E[T] in M/G/k

24

Summary

@ Minimize E[T] in M/G/k Prior M/G/k techniques
o without known job sizes need known job sizes

E[T;] <E[T;]+(k—1)- O(log 1 ip)

Q New technique based on
relating E[T] to r-work

Get in touch: zscully@cs.cmu.edu

has near-optimal
E[T] in M/G/k

24

Bonus Slides

Levels of Size Information

less info more info

<«

26

Levels of Size Information

less info more info

<«

Known Size

26

Levels of Size Information

less info more info

<«

Known Size

}remaining size
size

}age

26

Levels of Size Information

less info more info

<«

Known Size

26

Levels of Size Information

less info more info

<«

Known Size

Blind

26

Levels of Size Information

less info more info

<«

Known Size

Blind

unknown size @
(-

C | {_l_l_LJ-L-

26

Levels of Size Information

less info more info

<«

Known Size

Blind

unknown size @
(-

C | {_l_l_LJ-L-

}known age Qf

26

Levels of Size Information

less info more info

Known Size

known size “: Qf Blind
distribution

unknown size @
(-

C | {_l_l_LJ-L-

}known age Qf

26

Levels of Size Information

less info more info

<«

Blind Known Size

26

Levels of Size Information

less info more info

<«

Blind Known Size

Noisy Estimates

26

Levels of Size Information

less info more info
Blind Known Size

Noisy Estimates

= =
' ! ‘ '
- I
-) —
[| 0 [
. : | . : |
size = 127! 4 size = 10< !
'
' R
| |
T X
7 _J

26

Levels of Size Information

less info more info
Blind Known Size

Noisy Estimates

= L
size = 10<!

La_Jd_Lba_1_Lda-L
=)

ST

26

Levels of Size Information

less info more info
Blind Known Size

Noisy Estimates

La_l_ Lo l_La-L

26

Levels of Size Information

less info more info
Blind Known Size

Noisy Estimates

La_l_ Lo l_La-L

1 }known age Qf

26

Levels of Size Information

less info more info

<«

Bliny e e Known Size
known joint distribution

of true/estimated sizes

Noisy Estimates

-Lda_L.

o)
%

Jo

Lo
2.
N
O
l
ol
-

}known age Qf

L

¢
S

26

Levels of Size Information

less info more info

R ——

Blind Noisy Estimates Known Size

26

Levels of Size Information

less info more info
Blind Noisy Estimates Known Size

General case: a job is a Markov process

26

Levels of Size Information

less info more info
Blind Noisy Estimates Known Size

General case: a job is a Markov process
~ general state space

26

Levels of Size Information

less info more info

R ——

Blind Noisy Estimates Known Size

General case: a job is a Markov process -
~ general state space
2 job’s state encodes all known info

26

Levels of Size Information

less info more info

Blind Noisy Estimates Known Size

General case: a job is a Markov process
~ general state space
2 job’s state encodes all known info

- state stochastically evolves with service

26

Levels of Size Information

less info more info

Blind Noisy Estimates Known Size

General case: a job is a Markov process
~ general state space
2 job’s state encodes all known info

- state stochastically evolves with service
» completes upon entering goal state

26

Levels of Size Information

less info more info

Blind Noisy Estimates Known Size

General case: a job is a Markov process

@’ ~ general state space
2 job’s state encodes all known info

- state stochastically evolves with service
@ » completes upon entering goal state

26

Levels of Size Information

less info more info

Blind Noisy Estimates Known Size

General case: a job is a Markov process

@’ ~ general state space
@‘ = job’s state encodes all known info

- state stochastically evolves with service
@ » completes upon entering goal state

26

Levels of Size Information

less info more info

Blind Noisy Estimates Known Size

General case: a job is a Markov process

@’ ~ general state space
@ = job’s state encodes all known info

- state stochastically evolves with service

@ » complete;

but probabilities
known

26

