The Gittins Policy is Nearly Optimal in the M/G/k

under Extremely General Conditions

Ziv Scully Isaac Grosof Mor Harchol-Balter

Carnegie Mellon University

This talk: near-optimal multiserver scheduling

First: background on single-server scheduling

This talk: near-optimal multiserver scheduling

Goal: schedule to minimize $mean\ response\ time\ \mathbf{E}[T]$

SRPT: always serve job of least remaining size

Unknown Job Sizes

Unknown Job Sizes

Gittins Policy

Gittins Policy

lower is

better

a.k.a. priority rank

lower is

better

Gittins Policy

$$rank(a) = \inf_{b>a} \frac{E[\min\{S,b\} - a \mid S > a]}{P[S \le b \mid S > a]}$$

Job size distribution:

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

Gittins Policy

	Known Sizes	Unknown Sizes
M/G/1	SRPT	Gittins

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT		Gittins

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT		Gittins
	size $\approx 12 \left\langle \begin{array}{c} \overline{3} \\ \overline{3} \end{array} \right $	size ≈ 10 {	

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT		Gittins
	size $\approx 12 \left\langle \begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \right\rangle$	size ≈ 10	

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT		Gittins
		(
	$size \approx 12 \left\langle \begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \right\rangle$	size ≈ 10	

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT		Gittins
	2		
	size $\approx 12 \left\langle \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\rangle$	$size \approx 10 \left\langle \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\rangle$	
			age known

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins	Gittins
	$size \approx 12 < 3$	$size \approx 10 $	
	Size ~ 12	size ≈ 10	1
			age known V

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins huge of sc	variety Gittins enarios

Known Sizes Partial Info Unknown Sizes Gitting huge variety Gittins M/G/1**SRPT** of scenarios special case of Gittins: rank = remaining size

First: background on single-server scheduling

First: background on single-server scheduling

First: background on *single-server* scheduling

k servers, each speed 1/k

k servers, each speed 1/k

k servers, each speed 1/k

Scheduling policy:

picks which k jobs to serve

k servers, each speed 1/k

Scheduling policy:

picks which k jobs to serve \leftarrow

Multiserver Gittins: serves the *k* jobs with

the k lowest ranks

$$\mathbf{E}[T_1^{\min}] \le \mathbf{E}[T_k^{\min}]$$

$$\mathbf{E}[T_1^{\mathbf{Gittins}}] = \mathbf{E}[T_1^{\min}] \le \mathbf{E}[T_k^{\min}]$$

$$\mathbf{E}[T_1^{\mathbf{Gittins}}] = \mathbf{E}[T_1^{\min}] \le \mathbf{E}[T_k^{\min}] \le \mathbf{E}[T_k^{\mathbf{Gittins}}]$$

$$\mathbf{E}[T_1^{\mathbf{Gittins}}] = \mathbf{E}[T_1^{\min}] \le \mathbf{E}[T_k^{\min}] \le \mathbf{E}[T_k^{\mathbf{Gittins}}]$$

Goal 1: "near-optimality" bound

$$\mathbf{E}[T_k^{\mathbf{Gittins}}] \le \mathbf{E}[T_1^{\mathbf{Gittins}}] + \text{something "small"}$$

$$\mathbf{E}[T_1^{\mathbf{Gittins}}] = \mathbf{E}[T_1^{\min}] \le \mathbf{E}[T_k^{\min}] \le \mathbf{E}[T_k^{\mathbf{Gittins}}]$$

Goal 1: "near-optimality" bound

$$\mathbf{E}[T_k^{\mathbf{Gittins}}] \le \mathbf{E}[T_1^{\mathbf{Gittins}}] + \text{something "small"}$$

Goal 2: heavy-traffic optimality

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_k^{\mathbf{Gittins}}]}{\mathbf{E}[T_1^{\mathbf{Gittins}}]} = 1$$

Near-Optimal Policies

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins	Gittins
M/G/k			
(prior work)			

Near-Optimal Policies

Partial Info Unknown Sizes Known Sizes **Gittins** M/G/1**Gittins SRPT** M/G/k(prior work) Generalize M/G/1 $\mathbf{E}[T]$ analysis

Near-Optimal Policies

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins	Gittins
M/G/k	SRPT		
(prior work)	Grosof et al. (2018)		
	ralize M/G/1 analysis		

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins	Gittins
M/G/k	SRPT		
(prior work)	Grosof et al. (2018)		
Generalize M/G/1 $\mathbf{E}[T]$ analysis $\mathbf{E}[T_k] \leq \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$			

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins	Gittins
M/G/k	SRPT		
(prior work)	Grosof et al. (2018)		
	ralize M/G/1 analysis		

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins	Gittins
	SRPT Grosof et al. (2018) alize M/G/1 nalysis		

Our contributions:

Our contributions:

Introduce *new techniques* for analyzing $\mathbf{E}[T]$ in the M/G/k

Our contributions:

Introduce *new techniques* for analyzing $\mathbf{E}[T]$ in the M/G/k

Prove that **Gittins** has near-optimal E[T] in the M/G/k

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins	Gittins
M/G/k (prior work)	SRPT		
M/G/k (new result)			

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins	Gittins
M/G/k (prior work)	SRPT		
M/G/k (new result)	SRPT	Gittins	Gittins

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	SRPT	Gittins	Gittins
M/G/k (prior work)	SRPT		
M/G/k (new result)	SRPT	Gittins	Gittins
	$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\Big($	$\left(\log \frac{1}{1-\rho}\right)$	

	Known Sizes	Partial Info	Unknown Sizes
M/G/1	$\mathbf{SRP}_{\mathbf{E}[T_k] \leq \mathbf{E}[}$	$T_1] + (k-1) \cdot O\left(\log \frac{1}{1}\right)$	$\frac{1}{-\rho}$) Gittins
M/G/k (prior work)	SRPT		
M/G/k (new result)	SRPT	Gittins	Gittins
$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$			

Theorem: under Gittins,

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

Theorem: under Gittins,

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

Theorem: under Gittins,

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_k]}{\mathbf{E}[T_1]} = 1 \qquad \text{if } \mathbf{E}[S^2(\log S)^+] < \infty$$

Theorem: under Gittins,

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

Theorem: under Gittins,

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_k]}{\mathbf{E}[T_1]} = 1 \qquad \text{if } \mathbf{E}[S^2(\log S)^+] < \infty$$

New concept: r-work

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs that have remaining size $\leq r$

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs that have remaining size $\leq r$

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs that have remaining size $\leq r$

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W = work = total remaining size of all jobs

W(r) = r-work = work "relevant" to rank r until job completes rank *r*-work age

W = work = total remaining size of all jobs

mean response time in M/G/k

mean response time in M/G/1

mean *r*-work in M/G/k

mean *r*-work in M/G/1

mean response time in M/G/k

mean response time in M/G/1

mean *r*-work in M/G/k

mean *r*-work in M/G/1

mean response time in M/G/1

mean *r*-work in M/G/k

mean *r*-work in M/G/1

mean response time in M/G/k

mean response time in M/G/1

mean *r*-work in M/G/k

mean *r*-work in M/G/1

$$E[W_k(r)] = E[W_1(r)] + "r\text{-work of} \le k - 1 \text{ jobs}"$$

mean response time in M/G/1

mean *r*-work

in M/G/k

mean *r*-work

in M/G/1

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^{\infty} \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^{\infty} \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Holds for *any* queueing system: M/G/k, G/G/k, load-balancing, ...

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Theorem:
$$\mathbf{E}[T] = \frac{1}{\lambda} \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Proof:

The for SRPT case, in which rank = remaining size
$$\frac{1}{\lambda} \int_{0}^{\infty} \frac{\mathbf{E}[W(r)]}{r^2} dr$$
Proof:

The for SRPT case, in which rank = remaining size
$$\frac{1}{\lambda} \int_{0}^{\infty} \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Proof:

$$\int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr = \int_0^\infty \frac{\mathbf{E}\left[\sum_{i=1}^N \text{job } i \text{'s } r\text{-work}\right]}{r^2} dr$$

The for SRPT case, in which rank = remaining size
$$\frac{1}{\lambda} \int_{0}^{\infty} \frac{\mathbf{E}[W(r)]}{r^{2}} dr$$
Proof:
$$\int_{0}^{\infty} \frac{\mathbf{E}[W(r)]}{r^{2}} dr = \int_{0}^{\infty} \frac{\mathbf{E}[\sum_{i=1}^{N} \text{job } i \text{'s } r\text{-work}]}{r^{2}} dr$$

The for SRPT case, in which rank = remaining size
$$\frac{1}{\lambda} \int_{0}^{\infty} \frac{\mathbf{E}[W(r)]}{r^{2}} dr$$
Proof:
$$\int_{0}^{\infty} \frac{\mathbf{E}[W(r)]}{r^{2}} dr = \int_{0}^{\infty} \frac{\mathbf{E}[\sum_{i=1}^{N} \text{job } i \text{'s } r\text{-work}]}{r^{2}} dr$$

$$= \mathbf{E} \left[\sum_{i=1}^{N} \int_{0}^{\infty} \frac{\text{job } i \text{'s } r\text{-work}}{r^{2}} dr \right]$$

The for SRPT case, in which rank = remaining size
$$\frac{1}{\lambda} \int_{0}^{\infty} \frac{\mathbf{E}[W(r)]}{r^{2}} dr$$
Proof:
$$\int_{0}^{\infty} \frac{\mathbf{E}[W(r)]}{r^{2}} dr = \int_{0}^{\infty} \frac{\mathbf{E}[\sum_{i=1}^{N} \text{job } i \text{'s } r\text{-work}]}{r^{2}} dr$$

$$= \mathbf{E} \left[\sum_{i=1}^{N} \int_{0}^{\infty} \frac{\text{job } i \text{'s } r\text{-work}}{r^{2}} dr \right]$$

$$= \mathbf{E} \left[\sum_{i=1}^{N} \int_{0}^{\infty} \frac{X_{i} \mathbb{1}(X_{i} \leq r)}{r^{2}} dr \right]$$

The for SRPT case, in which rank = remaining size and size are maining size of job i

$$\frac{1}{r^2} \frac{E[W(r)]}{r^2} dr = \int_0^\infty \frac{E\left[\sum_{i=1}^N \text{job } i\text{'s } r\text{-work}\right]}{r^2} dr$$

$$= E\left[\sum_{i=1}^N \int_0^\infty \frac{\text{job } i\text{'s } r\text{-work}}{x_i = \text{remaining size of job } i}\right]$$

$$= E\left[\sum_{i=1}^N \int_0^\infty \frac{X_i \, \mathbb{1}(X_i \le r)}{r^2} dr\right]$$

New E|T| Formula

The for SRPT case, in which rank = remaining size
$$\frac{1}{\lambda} \int_{0}^{\infty} \frac{E[W(r)]}{r^{2}} dr$$
Proof:
$$\int_{0}^{\infty} \frac{E[W(r)]}{r^{2}} dr = \int_{0}^{\infty} \frac{E[\sum_{i=1}^{N} job \ i's \ r\text{-work}]}{r^{2}} dr$$

$$= E\left[\sum_{i=1}^{N} \int_{0}^{\infty} \frac{job \ i's \ r\text{-work}}{X_{i} = \text{remaining size of } job \ i'}\right]$$

$$= E\left[\sum_{i=1}^{N} \int_{0}^{\infty} \frac{X_{i} \ \mathbb{1}(X_{i} \le r)}{r^{2}} dr\right]$$

$$= E[N] = \lambda E[T]$$

New E|T| Formula

Therefore the formula
$$\frac{1}{\lambda} \int_{0}^{\infty} \frac{E[W(r)]}{r^{2}} dr$$
Proof:
$$\int_{0}^{\infty} \frac{E[W(r)]}{r^{2}} dr = \int_{0}^{\infty} \frac{E[\sum_{i=1}^{N} job \ i's \ r\text{-work}]}{r^{2}} dr$$

$$= E\left[\sum_{i=1}^{N} \int_{0}^{\infty} \frac{job \ i's \ r\text{-work}}{r^{2}} dr\right]$$

$$= E\left[\sum_{i=1}^{N} \int_{0}^{\infty} \frac{X_{i} \, \mathbb{1}(X_{i} \leq r)}{r^{2}} dr\right]$$

$$= E[N] = \lambda E[T]$$
Little's law

mean response time in M/G/1

Theorem:
$$E[T] = \frac{1}{\lambda} \int_0^\infty \frac{E[W(r)]}{r^2} dr$$

mean *r*-work in M/G/k

mean *r*-work in M/G/1

mean response time in M/G/k

mean response time in M/G/1

mean *r*-work

in M/G/k

mean *r*-work

in M/G/1

Theorem:
$$E[W_k] = E[W_1] + \frac{E[I_k W_k]}{1 - \rho}$$

$$I_k = \frac{\text{# idle servers}}{k}$$

Theorem:
$$E[W_k] = E[W_1] + \frac{E[I_k W_k]}{1 - \rho}$$

$$I_k = \frac{\text{# idle servers}}{k}$$

Theorem:
$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[I_k W_k]}{1 - \rho}$$

Whenever $I_k > 0$, a server is idle, so system has at most k - 1 jobs

$$I_k = \frac{\text{# idle servers}}{k}$$

Theorem:
$$E[W_k] = E[W_1] + \frac{E[I_k W_k]}{1 - \rho}$$

"work of $\leq k - 1$ jobs"

Whenever $I_k > 0$, a server is idle, so system has at most k - 1 jobs

$$I_k = \frac{\text{# idle servers}}{k}$$

Theorem:
$$E[W_k] = E[W_1] + \frac{E[I_k W_k]}{1 - \rho}$$

"work of $\leq k - 1$ jobs"

Whenever $I_k > 0$, a server is idle, so system has at most k - 1 jobs

Can generalize to *any* system with Poisson arrivals

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \text{``work of } \leq k - 1 \text{ jobs''}$$

Theorem:

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \text{``work of } \leq k - 1 \text{ jobs''}$$

$$E[W_k(r)] = E[W_1(r)] + "r\text{-work of} \le k - 1 \text{ jobs}"$$

Theorem:

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \text{``work of } \leq k - 1 \text{ jobs''}$$

$$\mathbf{E}[W_k(r)] = \mathbf{E}[W_1(r)] + \text{"r-work of } \le k - 1 \text{ jobs"}$$

 $\le \mathbf{E}[W_1(r)] + (k - 1)r$

Theorem:

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \text{``work of } \le k-1 \text{ jobs''}$$

$$\mathbf{E}[W_k(r)] = \mathbf{E}[W_1(r)] + \text{"r-work of } \le k - 1 \text{ jobs"}$$

 $\le \mathbf{E}[W_1(r)] + (k - 1)r$

mean response time in M/G/k

mean response time in M/G/1

mean *r*-work

in M/G/k

mean *r*-work

in M/G/1

mean response time in M/G/k

mean response time in M/G/1

mean *r*-work

in M/G/k

mean *r*-work in M/G/1

Minimize E[T] in M/G/k without known job sizes

New technique based on relating E[T] to r-work

Minimize E[T] in M/G/k without known job sizes

Prior M/G/k techniques need known job sizes

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

New technique based on relating E[T] to r-work

Gittins has near-optimal $\mathbf{E}[T]$ in $\mathbf{M}/\mathbf{G}/k$

Summary

Minimize E[T] in M/G/k without known job sizes

Prior M/G/k techniques need known job sizes

 $\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$

New technique based on relating E[T] to r-work

Gittins has near-optimal $\mathbf{E}[T]$ in $\mathbf{M}/\mathbf{G}/k$

Get in touch: zscully@cs.cmu.edu

Bonus Slides

Known Size

Known Size

Blind

size
$$\approx 12 \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right\}$$
 size $\approx 10 \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right\}$

General case: a job is a Markov process

General case: a job is a Markov process

general state space

General case: a job is a Markov process

igob's state encodes all known info

General case: a job is a Markov process

igob's state encodes all known info

General case: a job is a Markov process

igob's state encodes all known info

state stochastically evolves with service

x completes upon entering goal state

General case: a job is a *Markov process*

general state space

igob's state encodes all known info

state stochastically evolves with service

x completes upon entering goal state

General case: a job is a *Markov process*general state space

job's state encodes all known info

state stochastically evolves with service

completes upon entering goal state

