The Gittins Policy Is Nearly Optimal in the M/G/k

under Extremely General Conditions

Ziv Scully Isaac Grosof Mor Harchol-Balter

Carnegie Mellon University

Serve short jobs before long jobs

Serve short jobs before long jobs

Serve short jobs before long jobs

Serve short jobs before long jobs

Serve short jobs before long jobs

Serve short jobs before long jobs

Serve short jobs before long jobs

Serve short jobs before long jobs

Serve short jobs before long jobs

Serve short jobs before long jobs

Serve short jobs before long jobs

multiple servers

multiple servers

Main result

Theorem: Gittins-k has "near-optimal" E[T] in the M/G/k with unknown job sizes

Theorem: Gittins-k has "near-optimal" E[T] in the M/G/k with unknown job sizes

$$\mathbf{E}[T_{\text{Gittins-}k}] \le \mathbf{E}[T_{\text{Opt-}k}] + \text{"small"}$$

Theorem: Gittins-k has "near-optimal" E[T] in the M/G/k with unknown job sizes

$$\mathbf{E}[T_{\text{Gittins-}k}] \le \mathbf{E}[T_{\text{Opt-}k}] + \text{"small"}$$

Q: How to schedule with *k* servers?

$$T = \text{response time}$$

Theorem: Gittins-k has "near-optimal" E[T] in the M/G/k with unknown job sizes

$$\mathbf{E}[T_{\text{Gittins-}k}] \le \mathbf{E}[T_{\text{Opt-}k}] + \text{"small"}$$

Q: How to schedule with *k* servers?

$$T = \text{response time}$$

Theorem: Gittins-k has "near-optimal" E[T] in the M/G/k with unknown job sizes

 $\left[\sum_{\text{Gittins-}k} \right] \leq \mathbf{E}[T_{\text{Opt-}k}] + \text{``small''}$

 \mathbb{Q} : How to schedule with k servers?

$$T = \text{response time}$$

Theorem: Gittins-k has "near-optimal" E[T]

in the M/G/k with unknown job sizes

$$\left[\frac{\text{Copt-}k}{\text{Copt-}k} \right] \leq \mathbf{E} \left[\frac{\text{Copt-}k}{\text{Copt-}k} \right] + \text{"small"}$$

Q: How to schedule with *k* servers?

$$T = \text{response time}$$

Theorem: Gittins-k has "near-optimal" E[T]

in the M/G/k with unknown job sizes

$$\left[\frac{1}{\text{Gittins-}k} \right] \leq \mathbf{E} \left[\frac{1}{\text{Opt-}k} \right] + \text{"small"}$$

Q: How to schedule with *k* servers?

$$T = \text{response time}$$

Theorem: Gittins-k has "near-optimal" E[T]in the M/G/k with unknown job sizes

$$\mathbf{E}[T_{\text{Gittins-}k}] \le \mathbf{E}[T_{\text{Opt-}k}] + \text{"small"}$$

Q: How to schedule with *k* servers? **A:** Use **Gittins**

Theorem: Gittins-k has "near-optimal" E[T]in the M/G/k with unknown job sizes

$$\mathbf{E}[T_{\text{Gittins-}k}] \le \mathbf{E}[T_{\text{Opt-}k}] + \text{"small"}$$

Q: How to schedule with **k** servers? **A:** Use **Gittins**

Q: How do we analyze E[T]?

Theorem: Gittins-k has "near-optimal" E[T]in the M/G/k with unknown job sizes

$$\mathbf{E}[T_{\text{Gittins-}k}] \le \mathbf{E}[T_{\text{Opt-}k}] + \text{"small"}$$

Q: How to schedule with **k** servers? **A:** Use **Gittins**

Q: How do we analyze E[T]? Q: Why is our approach significant?

This work: both at once!

This work: both at once!

tagged job

Key quantity:

W(r) ="r-work" = work relevant to job of rank r

Key quantity:

W(r) ="r-work" = work relevant to job of rank r

Key quantity:

W(r) ="r-work" = work relevant to job of rank r

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

Step 2: E[W(r)] to E[T]

Tagged job method

Step 1: compute E[W(r)]

Step 2: E[W(r)] to E[T]

Tagged job method

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

E[T] with multiple servers

Step 1: compute E[W(r)]

Worst-case gap:

$$W_{\text{SRPT-}k}(r) \leq W_{\text{SRPT-}1}(r) + kr$$

E[T] with **multiple** servers

Step 1: compute E[W(r)]

Worst-case gap:

$$W_{\text{SRPT-}k}(r) \leq W_{\text{SRPT-}1}(r) + kr$$

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

Gittins: nonmonotonic

SRPT: monotonic

Gittins: nonmonotonic

SRPT: monotonic

Gittins: nonmonotonic

SRPT: monotonic

Step 1: compute E[W(r)]

SRPT: monotonic

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

SRPT's W(r) gap $\leq kr$

Step 1: compute E[W(r)]

SRPT's W(r) gap $\leq kr$

Gittins's W(r) gap $\leq k \infty$

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

Step 2: E[W(r)] to E[T]

tagged job + worst-case

Step 1: compute E[W(r)]

Step 2: E[W(r)] to E[T]

tagged job + worst-case

Step 1: compute E[W(r)]

Step 2: E[W(r)] to E[T]

fancy tagged job + worst-case

Step 1: compute E[W(r)]

Step 1: compute E[W(r)]

Step 1: compute E[W(r)] without worst-case steps

Step 1: compute E[W(r)] without worst-case steps

Step 2: E[*W*(*r*)] to **E**[*T*] without **tagged job** method

Step 1: compute E[W(r)]

without worst-case steps

Idea:

Step 2: E[W(r)] to E[T]

without tagged job method

without worst-case steps

Idea:

Step 2: E[W(r)] to E[T]

without tagged job method

Idea:

without worst-case steps

Idea:

Step 2: E[W(r)] to E[T]without tagged job method

Our contribution:

new exact formulas for both steps

Step 2: E[W(r)] to E[T]

Work Decomposition Law

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_{1}(\mathbf{r})] + \mathbf{E}["<\mathbf{k} \text{ jobs' } \mathbf{r}\text{-work"}]$$

Step 2: E[W(r)] to E[T]

Work Decomposition Law

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_1(\mathbf{r})] + \mathbf{E}["<\mathbf{k} \text{ jobs' } \mathbf{r}\text{-work"}]$$

Step 2: E[W(r)] to E[T]

WINE

$$\lambda \mathbf{E}[T] = \mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Work Decomposition Law

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_1(\mathbf{r})] + \mathbf{E}["<\mathbf{k} \text{ jobs' } \mathbf{r}\text{-work"}]$$

Step 2: E[W(r)] to E[T]

WINE

$$\lambda \mathbf{E}[T] = \mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

specific to

Gittins's rank

Work Decomposition Law

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_1(\mathbf{r})] + \mathbf{E}["<\mathbf{k} \text{ jobs' } \mathbf{r}\text{-work"}]$$

specific to

Gittins's rank

Step 2: E[W(r)] to E[T]

VINE
$$\lambda \mathbf{E}[T] = \mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Impact 1:

first bound on $E[T_{Gittins-k}]$

Work Decomposition Law

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_{1}(\mathbf{r})] + \mathbf{E}["<\mathbf{k} \text{ jobs' } \mathbf{r}\text{-work"}]$$

Step 2: E[W(r)] to E[T]

VINE
$$\lambda \mathbf{E}[T] = \mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Impact 1:

first bound on $E[T_{Gittins-k}]$

Impact 2:

specific to

both generalize beyond M/G/k

 $\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_1(\mathbf{r})] + \mathbf{E}["<\mathbf{k} \text{ jobs' } \mathbf{r}\text{-work"}]$

first bound on $E[T_{Gittins-k}]$

both generalize beyond M/G/k

