The Gittins Policy

Is Nearly Optimal
in the M/G/k

under Extremely General Conditions

Ziv Scully]
Isaac Grosof -

Mor Harchol-Balter li

Carnegie Mellon University

SO00

How should we schedule jobs
to minimize delay?

How should we schedule jobs
to minimize delay?

10

How should we schedule jobs
to minimize delay?

10,

How should we schedule jobs
to minimize delay?

10

How should we schedule jobs
to minimize delay?

10,

How should we schedule jobs
to minimize delay?

10,

How should we schedule jobs
to minimize delay?

HR0;

How should we schedule jobs
to minimize delay?

HRO;

How should we schedule jobs
to minimize delay?

HRO;

How should we schedule jobs
to minimize delay?

HRO;

How should we schedule jobs
to minimize delay?

BRIRG:

How should we schedule jobs
to minimize delay?

]

'__Cllnl
G

I

T = response time

How should we schedule jobs

to minimize delay?
E[T]

]

'__Cllnl
G

I

T = response time

How should we schedule jobs
to minimize delay?

E|T]
JRRG:
| .

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

T = response time

C..,.

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

{C

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

{C

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

{C

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

{C

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

L I

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

L I

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

L I

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

| U
| —

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

RO,

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

T = response time

How should we schedule jobs
to minimize delay?

E[T]
Serve short jobs
before long jobs

T = response time

Q short before long

—

|

U

|

U

10

Q short before long

REER

U

|

U

6}

S1Zes

105

Q short before long

Jlc

U

0

ultiple servers

/\ m

.

]

U

-

1 10

U

A

G-

Q short before long

SERCALS

Qhrage 19/) i \ i

SRPT

Q short before long

J | UL

Qhrage 1

SRPT

9/) \ -

Q short before long

J | UL

SRPT k
(GSH 2018)
sizes multiple servers

NdodolodoL-

dodolodoLo

s

G-

e

Q short before long

NdodolodoL-

N

dodolodoLo

SRPT
(Schrage, 19@)) i \
Uy
several, 197@
1k sizes

SRPT-k
(GSH, 2018)
A multiple servers

| =

A

'R

Q short before long
SRPT

(Schrage, 19@)) i \ i
N\

J | UL

NdodolodoL-

HE *

(il
Cllll
.l

SRPT-k
(several, 19708) (GSH, 2018)
A 1K sizes & multiple servers

FERNS

2

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

odalodoL
'
sdadaledobla
d

5,

T = response time

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

E[T 1] < E[Topex] + “small”

odalodoL
'
sdadaledobla
d

5,

T = response time

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

E[T 1] < E[Topex] + “small”

Q: How to schedule with k servers?
A: Use

“TaTaTaEsl
AN

L N

T = response time

odolodoL
odolodob

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

E[T 1] < E[Topex] + “small”

Q: How to schedule with k servers?
A: Use

“TaTaTaEsl
AN

L N

T = response time

odolodoL
odolodob

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

1] < E[Toper] + “small”

Q: How to schedule with k servers?
A: Use

“TaTaTaEsl
AN

L N

T = response time

odolodoL
odolodob

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

<L)+ “smatr

Q: How to schedule with k servers?
A: Use

“TaTaTaEsl
AN

L N

T = response time

odolodoL
odolodob

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

<L)+ “smatr

Q: How to schedule with k servers?
A: Use

“TaTaTaEsl
AN

L N

T = response time

odolodoL
odolodob

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

E[T 1] < E[Topex] + “small”

Q: How to schedule with k servers?
A: Use

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

E[T 1] < E[Topex] + “small”

Q: How to schedule with k servers?
A: Use

@ Q: How do we analyze E[T]?

-

Main result

Theorem: -k has “near-optimal” E[T]
in the M/G/k with job sizes

E[T 1] < E[Topex] + “small”

Q: How to schedule with k servers?
A: Use

@ Q: How do we analyze E[T]?
=) Q

: Why is our approach significant?

e

Q short before long

NdodolodoL-

N

dodolodoLo

SRPT
(Schrage, 19@)) i \
11Uy
several, 197@
1k sizes

SRPT-k
(GSH, 2018)
A multiple servers

b

E[T]: 196‘64 ‘
(Schrage & Millelr))

short before long

|

U

‘sJ-J-LJ-L

‘~4-JJ-J_L-

E[T]: 2018
(GSH)

y -

multiple servers

b

SERCALS

U

|I—////@

short before long

(1966

] |

U

U

2018)

—

A unknown sizes

54\;;

| I |
1
! |
LI |

]

/i

short before long

(1966)

|

U

18]

E[T] of SRPT

Gr—

@

\J

tagged job

@

E[T] of SRPT

E[T] of SRPT

U

tagged job random system state

i

E[T] of SRPT

C o]
1

tagged job = random system state

remaining size,
lower is better

E[T] of SRPT

tagged job = random system state

remaining size,
lower is better

E[T] of SRPT

r<

C

tagged job = random system state
remaining size,
lower is better

Key quantity:
W(r) = “r-work” = work relevant to job of r

E[T] of SRPT

: —
rs
X
tagged job = random system state
remaining size,
lower is better /C,O\
Key quantity:

W(r) = “r-work” = work relevant to job of r

E[T] of SRPT

job =
remaining size,
lower is better

Key quantity:
W(r) = “r-work” = work relevant to job of

Two-step E[T] analysis

Two-step E[T] analysis

b‘d Step 1: compute E[W(r)]

Two-step E[T] analysis

b‘d Step 1: compute E[W(r)]

J U Step 2: E[W(1)] to E[T]

Two-step E[T] analysis

0 U Step 2: E[W(r)] to E[T]

l

Tagged job method

T T
U J | G

Two-step E[T] analysis

b‘d Step 1: compute E[W(r)]
Etandard
queuem

0 U Step 2: E[W(r)] to E[T]

l

Tagged job method

T T
U J | G

Q7 /(@ short before long

LT 1T
o8l)

2018) 2018)

Agunknown SiZes Agmultiple servers
B T !
HEIEI @ T =

Q7 short before long Tagged job
| E methods

1966) T3 | :
IR G:

2018 2018

&E unknown sizes &E multiple servers
BEEERNEREE T s
HEEI @ =

-d
-d

Tagged job

methods
2018
A multiple servers
P
: Bl
J | UURE

E[T] with multiple servers

b‘d Step 1: compute E[W(r)]

U U Step 2: E[W()] to E[T]

E[T] with multiple servers

b‘d Step 1: compute E[W(r)]

SRPT-k

|

SOo00

E[T] with multiple servers

b‘d Step 1: compute E[W(r)]

SRPT-k
_ \ Pe

—(Or
Dt

A intractable

E[T] with multiple servers

b‘d Step 1: compute E[W(r)]
) SRPT—k/D ~ SRPT1
TEETID

A intractable

E[T] with multiple servers

b‘d Step 1: compute E[W(r)]
~ SRPTk Cé{peed 1/k\ SRPT-1 ﬁeec@
LR \

A intractable

E[T] with multiple servers

b‘d Step 1: compute E[W(r)]
~ SRPTk ngeed 1/k\ SRPT-1 ﬁeedg
LR \

A intractable

Worst-case gap:
WSRPT—k(r) < WSRPT—l(r) + kr

E[T] with multiple servers

b‘d Step 1: compute E[W(r)]

SRPT-k

|

RPT-1

Cé{peed 1/k S
N

A intractable

\

? ﬂaeedD

Worst-case gap:

WSRPT—k(r) < WSRPT—l(r) + kr

l

tagged job
I
worst-case

0 U Step 2: E[W()] to E[T]

VA

short before long

3
>

1966

] |

U

U

Tagged job
methods

2018

—

A unknown sizes

54\;;

| I |
1
! |
| I |

[}

10

2018

Tagged job

W Q short before long .
methods

U

U

105

—

A unknown sizes

! | ! !
| I !

! ! !]
| I | !

1 !

! | | [
| I | !

' [}

i

A SEIrvers

T

10

Scheduling with sizes

Scheduling with

rl

size unknown 83{

C Lol {_l_.l.-L.l-L-

s1zes

11

Scheduling with

rl

size unknown 83{

rage known W

C Lo] {J_l-LJ_L-
J

s1zes

11

Scheduling with

e

-age known %

ot

size distribution S knoanf

-

—

—

T

L.
size unknown 83{ R
\J

s1zes

11

Scheduling with

-

-LJa_L.

Jo

size unknown 83{

J

-age known %

ot

size distribution S knoanf

S

S —

s1zes

Example:

1 wp.
6 w.p.

14 w.p.

W= W= W=

11

Scheduling with

S —

age

s1zes

Example:
1 wp.
6 w.p.
14 w.p.

W= W= W=

11

Scheduling with

@rioritz?

s1zes

Example:

1 wp.
S=4{6 wp.
14 w.p.

M

}—"

W= W= W=

11

Scheduling with unknown sizes

[priority ?

rank

N\

ek ()

QO

Example:
1 xmp.%
S=16 \Mp.%
14 xmp.%
5

11

Scheduling with unknown sizes

[priority ?

rank

N\

ek ()

Gittins policy

QO

Example:
1 xmp.%
S=16 \Mp.%
14 xmp.%
5
age Ai_UJ

11

Analyzing nonmonotonic

: honmonotonic

— — age

12

Analyzing nonmonotonic

SRPT: monotonic

> age

: honmonotonic

— age

12

Analyzing nonmonotonic

SRPT: monotonic

> age

: honmonotonic

— age

12

Analyzing nonmonotonic

SRPT: monotonic

> age

—
I d

—

: honmonotonic

— age

b‘d Step 1: compute E[W(r)]

U

U Step 2: E[W(r)] to E[T]

12

Analyzing nonmonotonic

SRPT: monotonic

> age

: honmonotonic

— — age

I

b‘d Step 1: compute E[W(r)]

U U Step 2: E[W()] to E[T]

fancy
tagged job

12

S

@ short before long

19664

2018

] |

U

U

Tagged job
methods

! | ! |
| I !

! ! ! [
| I | !

1 ! !
! | ! !
| I | !

' !

% unknown sizes

13

Tagged job
methods

13

unknown sizes + multiple servers

14

unknown sizes + multiple servers

b@ Step 1: compute E[W(r)]

14

k servers:
intractable

3

Bt

sizes + multiple servers

b‘d Step 1: compute E[W(r)]

14

k servers:
intractable

3

Bt

sizes + multiple servers

b‘d Step 1: compute E[W(r)]

\

\

0

14

k servers:
intractable

3

Bt

sizes + multiple servers

b‘d Step 1: compute E[W(r)]

\

ﬁ —
Dt <%>

\

0

SRPT’s W(r) gap < kr

14

k servers:
intractable

3

O

O

sizes + multiple servers

b‘d Step 1: compute E[W(r)]

\

\

0

ﬁ —
Dt <%>

SRPT’s W(r) gap < kr

Gittins’s W(r) gap < koo

14

k servers:
intractable

3

Bt

unknown sizes + multiple servers

b@ Step 1: compute E[W(r)]

\

3 : _
\\8: \ @3 unknown

SRPT’s W(r) gap < kr worst -case
Gittins’s W(r) gap < kw

14

k servers:
intractable

3

Bt

sizes + multiple servers

§ U Step 2: E[W(r)] to E[T]

l

14

k servers:
intractable

3

Bt

unknown sizes + multiple servers

l

tagged job
I
worst-case

U U Step 2: E[W(r)] to E[T]

14

Gittins rank:
| nonmonotonic

k servers:
intractable

AN

3

Bt

unknown sizes + multiple servers

l

tagged job
I
worst-case

U U Step 2: E[W(r)] to E[T]

14

Gittins rank:
| nonmonotonic

k servers:
intractable

AN

3

Bt

unknown sizes + multiple servers

l

fancy tagged job
I
worst-case

U U Step 2: E[W(r)] to E[T]

14

Gittins rank:
| nonmonotonic

k servers:
intractable

N

3

Bt

unknown sizes + multiple servers

l

fancy tagged job
I
worst-case

U U Step 2: E[W(r)] to E[T]

&3

14

b‘d Step 1: compute E[W(r)]

J U Step 2: E[W(1)] to E[T]

b‘d Step 1: compute E[W(r)]

without worst-case steps

0 U Step 2: E[W(r)] to E[T]

l

15

b‘d Step 1: compute E[W(r)]

without worst-case steps

U U Step 2: E[W()] to E[T]
without tagged job method

15

b‘d Step 1: compute E[W(r)]

without worst-case steps

@Idea: B R

U U Step 2: E[W()] to E[T]
without tagged job method

So0%

b‘d Step 1: compute E[W(r)]

without worst-case steps

@Idea: B R

U U Step 2: E[W()] to E[T]
without tagged job method

Draea 7

So0%

b‘d Step 1: compute E[W(r)]

without worst-case steps

@Idea: B R

U U Step 2: E[W()] to E[T]
without tagged job method

Draea 7

Our contribution:
new exact formulas for both steps

So0%

Step 1: compute E[W(r)]

Step 2: E[W(r)] to E[T]

16

Step 1: compute E[W(r)]

[Work Decomposition Law

PN
< E[W.(r)] = E[W;(r)] + E[“< k jobs’ r-work”]
|

Step 2: E[W(r)] to E[T]

16

Step 1: compute E[W(r)]

[Work Decomposition Law

PN
< E[W.(r)] = E[W;(r)] + E[“< k jobs’ r-work”]
|

Step 2: E[W(r)] to E[T]

'k WINE
~E[W ()] i

‘ AE[T]=E[N] :f >
0

Step 1: compute E[W(r)]

Step 2: E[W(r)] to E[T]

-,

s

WINE

AE[T]:E[N]:J E[V’\;(r)]
0

[Work Decomposition Law

PN
< E[W.(r)] = E[W;(r)] + E[“< k jobs’ r-work”]
|

k

specific to
Gittins’s ran
dr

16

Step 1: compute E[W(r)]

Step 2: E[W(r)] to E[T]

Y\ WINE

‘ AE[T]:E[N]:f E[V’\;(r)]
0

Impact 1:
first bound on E[Tcittinsi]

[Work Decomposition Law

PN
< E[W.(r)] = E[W;(r)] + E[“< k jobs’ r-work”]
|

k

specific to
Gittins’s ran
dr

16

Step 1: compute E[W(r)]

[Work Decomposition Law

PN
< E[W.(r)] = E[W;(r)] + E[“< k jobs’ r-work”]
|

Step 2: E[W(r)] to E[T]

specific t
WINE §1tt1ns s rank
E[W(r)]

‘ AE[T]=E[N]=

Impact 1: Impact 2:
first bound on E[TGiwinsk] ~ both generalize beyond M/G/k

16

Step 1: compute E[W(r)]

[Work Decomposition Law

PN
< E[W.(r)] = E[W;(r)] + E[“< k jobs’ r-work”]
|

Step 2: E[W(r)] to E[T]

p specific t

k WINE glttlns s rank
(r)]

‘ A Example

load- balancmg

schedulmg

Impact 1: Impact 2:
first bound on E[TGiwinsk] ~ both generalize beyond M/G/k

16

Tagged job

Qf @ short before long
AE methods

(1966

] |

U

U

2018

Qf &E unknown sizes

]]] [}]]
] |] |] . |
]]]]]]
] —] -] —
1 _ "]

]]]]

| I | | I |

v v

vl vl

_/ _/

b

17

Q7 short before long Tagged job
L methods

(1966)] :
Jol8p

2018 2018

Qf &‘ unknown sizes JAE multiple servers
REERRER NS T 2

Wi

C

17

Q7 short before long Tagged job
A methods

(1966)] :
el r

(2018) 2018

Qf & unknown sizes AE multiple servers

Wi

dodoldoL
dodold Lo

R : ://8:
UD GGG\\gj

N +
ERRE or partially } yyo i Decomp.
AR known sizes

O
17

