How Robust Is the **Gittins Policy**for Queue Scheduling?

Ziv Scully *MIT/Harvard* (now) → Cornell (Fall 2023)

zivscully@cornell.edu
https://ziv.codes

Collaborators

Mor Harchol-Balter *CMU*

Isaac Grosof

Michael Mitzenmacher *Harvard*

References:

- Scully, Grosof, & Harchol-Balter, POMACS 2020 / SIGMETRICS 2021
- Scully & Harchol-Balter, WiOpt 2021
- Scully, Grosof, & Mitzenmacher, ITCS 2022
- Scully, PhD thesis 2022

job

Question: schedule to minimize $\mathbf{E}[T]$?

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

- non-M/G/1 queues
- imperfect implementation
- unknown job size distribution/model

applicable even in suboptimal settings

queueing identity for understanding Gittins

response time T

Work Integral Number Equality

Work Integral Number Equality

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 1 & \text{we seed } \\ 1 & \text{we seed } \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of single job of rem. size $\mathbf{x} = \begin{cases} 1 & \text{work of } \mathbf{x} \\ 1 & \text{work of } \mathbf{x} \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 1 & \text{we seed } \\ 1 & \text{we seed } \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of single job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of single job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \ge x \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of single job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$


```
W(r) = work relevant to rank r
= total r-work of all jobs
```

$$w_{\mathbf{x}}(r) = r$$
-work of single job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of $\mathbf{j}\mathbf{o}\mathbf{b}$ of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

Theorem:

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

$$N = \int_0^\infty \frac{\mathbf{E}[W(r) \mid \text{known info}]}{r^2} \, \mathrm{d}r$$

seen by Gittins glasses
$$N = \int_{0}^{\infty} \frac{\mathbf{E}[W(r) \mid \text{known info}]}{r^2} dr$$

seen by Gittins glasses
$$N = \int_{0}^{\infty} \frac{\mathbf{E}[W(r) \mid \text{known info}]}{r^2} dr$$

"Definition": a job's rank under Gittins is whatever makes WINE true

$$N = \int_0^\infty \frac{\mathbf{E}[W(r) \mid \text{known info}]}{r^2} \, \mathrm{d}r$$

$$N = \int_0^\infty \frac{\mathbf{E}[W(r) \mid \text{known info}]}{r^2} dr$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

$$N = \int_0^\infty \frac{\mathbf{E}[W(r) \mid \text{known info}]}{r^2} dr$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

How to minimize E[W(r)]?

$$N = \int_0^\infty \frac{\mathbf{E}[W(r) \mid \text{known info}]}{r^2} dr$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$$

How to minimize E[W(r)]? Prioritize rank $\leq r$ before rank > r

$$N = \int_0^\infty \frac{\mathbf{E}[W(r) \mid \text{known info}]}{r^2} dr$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$$

How to minimize E[W(r)]?

Prioritize rank $\leq r$ before rank > r

Contributions

Contributions

Gittins-1 (single-server): serves the 1 job of least rank

Gittins-1 (single-server): serves the 1 job of least rank Gittins-k (multiserver): serves the k jobs of least rank

Gittins-1 (single-server): serves the 1 job of least rank Gittins-k (multiserver): serves the k jobs of least rank

Gittins-k

Gittins-1

Lemma: under Gittins,

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_{\mathbf{1}}(\mathbf{r})] + \mathbf{E}[" \le \mathbf{k} - 1 \text{ jobs' } \mathbf{r}\text{-work"}]$$

Lemma: under Gittins,

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_{\mathbf{1}}(\mathbf{r})] + \mathbf{E}[" \le \mathbf{k} - 1 \text{ jobs' } \mathbf{r} \text{-work"}]$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$$

Lemma: under Gittins,

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_{\mathbf{1}}(\mathbf{r})] + \mathbf{E}[" \le \mathbf{k} - 1 \text{ jobs' } \mathbf{r}\text{-work"}]$$

Theorem: under Gittins,

$$E[N_k] \le E[N_1] + (k-1)$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$$

Lemma: under Gittins,

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_{\mathbf{1}}(\mathbf{r})] + \mathbf{E}[" \le \mathbf{k} - 1 \text{ jobs' } \mathbf{r}\text{-work"}]$$

Theorem: under Gittins,

$$E[N_k] \le E[N_1] + (k-1) \cdot 3.8 \log \frac{1}{1-\rho}$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$$

Lemma: under Gittins,

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_{\mathbf{1}}(\mathbf{r})] + \mathbf{E}[" \le \mathbf{k} - 1 \text{ jobs' } \mathbf{r}\text{-work"}]$$

Theorem: under Gittins,
$$E[N_k] \le E[N_1] + (k-1) \cdot 3.8 \log \frac{1}{1-\rho}$$
 load, a.k.a. utilization

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$$

Lemma: under Gittins,

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_{\mathbf{1}}(\mathbf{r})] + \mathbf{E}[" \le \mathbf{k} - 1 \text{ jobs' } \mathbf{r}\text{-work"}]$$

Theorem: under Gittins,
$$E[N_k] \le E[N_1] + (k-1) \cdot 3.8 \log \frac{1}{1-\rho}$$

$$o(E[N_1])$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

Lemma: under Gittins,

$$\mathbf{E}[W_{\mathbf{k}}(\mathbf{r})] = \mathbf{E}[W_{\mathbf{1}}(\mathbf{r})] + \mathbf{E}[" \le \mathbf{k} - 1 \text{ jobs' } \mathbf{r}\text{-work"}]$$

Theorem: under Gittins,
$$E[N_k] \le E[N_1] + (k-1) \cdot 3.8 \log \frac{1}{1-\rho}$$

$$o(E[N_1])$$

Corollary: Gittins-k minimizes E[T] in M/G/k as $\rho \rightarrow 1$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$$

queueing identity for understanding Gittins

First bound for M/G/k (G/G/k coming soon!)

non-M/G/1 queues

imperfect implementation

unknown job size distribution/model

Definition: an approximate Gittins policy satisfies

$$\beta \operatorname{rank}_{\operatorname{Gittins}}(x) \leq \operatorname{rank}_{\operatorname{approx}}(x) \leq \alpha \operatorname{rank}_{\operatorname{Gittins}}(x)$$

Definition: an approximate Gittins policy satisfies

$$\beta \operatorname{rank}_{\operatorname{Gittins}}(x) \leq \operatorname{rank}_{\operatorname{approx}}(x) \leq \alpha \operatorname{rank}_{\operatorname{Gittins}}(x)$$

Lemma:

$$\mathbf{E}[W_{\text{approx}}(r)] \leq \mathbf{E}[W_{\text{Gittins}}(\frac{\alpha}{\beta}r)]$$

Definition: an approximate Gittins policy satisfies

$$\beta \operatorname{rank}_{\operatorname{Gittins}}(x) \leq \operatorname{rank}_{\operatorname{approx}}(x) \leq \alpha \operatorname{rank}_{\operatorname{Gittins}}(x)$$

Lemma:

$$\mathbf{E}[W_{\text{approx}}(r)] \leq \mathbf{E}[W_{\text{Gittins}}(\frac{\alpha}{\beta}r)]$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$$

Definition: an approximate Gittins policy satisfies

$$\beta \operatorname{rank}_{\operatorname{Gittins}}(x) \leq \operatorname{rank}_{\operatorname{approx}}(x) \leq \alpha \operatorname{rank}_{\operatorname{Gittins}}(x)$$

Lemma:

$$\mathbf{E}[W_{\text{approx}}(r)] \leq \mathbf{E}[W_{\text{Gittins}}(\frac{\alpha}{\beta}r)]$$

Theorem:

$$E[N_{approx}] \le \frac{\alpha}{\beta} E[N_{Gittins}]$$

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$$

queueing identity for understanding Gittins

First bound for M/G/k (G/G/k coming soon!)

non-M/G/1 queues

imperfect implementation

unknown job size distribution/model

 $\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$

queueing identity for understanding Gittins

First bound for M/G/k (G/G/k coming soon!)

multiplicative error

→ approximation ratio

non-M/G/1 queues

imperfect implementation

unknown job size distribution/model

 $\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$

queueing identity for understanding Gittins

First bound for M/G/k (G/G/k coming soon!)

multiplicative error

→ approximation ratio

non-M/G/1 queues

'imperfect implementation

unknown job size distribution/model

using size estimates without distribution

 $\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$

queueing identity for understanding Gittins

First bound for M/G/k (G/G/k coming soon!)

multiplicative error ⇒ approximation ratio

non-M/G/1 queues

imperfect implementation

unknown job size distribution/model

zivscully@cornell.edu
https://ziv.codes

(using size estimates without distribution

Bonus slides

Model: (β, α) -bounded noise

true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Model: (β, α) -bounded noise

true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Model: (β, α) -bounded noise

true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Generated by joint distribution (S, \mathbb{Z})

Goal: design a policy with "good" E[T] for

- any joint distribution (S, Z)
- any values of α , β

