How Robust Is

the Policy
for Queue Scheduling?

Ziv Scully ‘

MIT/Harvard (now) — Cornell (Fall 2023) — =A==

zivscully@cornell.edu \ \
https://ziv.codes

Collaborators

Mor Harchol Balter Isaac Grosof M1chae1 Mitzenmacher
CMU CMU Harvard
References:

* Scully, Grosof, & Harchol-Balter, POMACS 2020 / SIGMETRICS 2021
* Scully & Harchol-Balter, WiOpt 2021

* Scully, Grosof, & Mitzenmacher, ITCS 2022

* Scully, PhD thesis 2022

Queue scheduling (M/G/1)

|0

Queue scheduling (M/G/1)

SECIVEY

|0

Queue scheduling (M/G/1)

queue server

|0

Queue scheduling (M/G/1)

queue server

job

Queue scheduling (M/G/1)

queue server

job

size {

Queue scheduling (M/G/1)

queue server

job

size {

Queue scheduling (M/G/1)

queue server

job

size {

Queue scheduling (M/G/1)

queue server

job

size {

Queue scheduling (M/G/1)

queue server

job

}remaining size

size{ - }age

Queue scheduling (M/G/1)

S = size distribution

e

job

size {

queue

Gr—

}remaining size

]
)

SECIVEY

Queue scheduling (M/G/1)

S = size distribution

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

Queue scheduling (M/G/1)

S = size distribution

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

Queue scheduling (M/G/1)

S = size distribution

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

Queue scheduling (M/G/1)

S = size distribution

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

Queue scheduling (M/G/1)

S = size distribution

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

Cnlnl‘

size {

Queue scheduling (M/G/1)

queue server

’_—Cllll
{C

T = response time

job

}remaining size

C\Lnu

} age

Queue scheduling (M/G/1)

S = size distribution
@%@

job

queue server

T = response time

}remaining size

} age

Gr—

Clllll

.

size {

C\Lnu

Queue scheduling (M/G/1)

S = size distribution queue server

Gr—

%~ L1 e[l

T = response time

}remaining size

size{ - }age

job

Queue scheduling (M/G/1)

S = size distribution queue server

Gr—

%+ L1 1e[0r,

T = response time

}remaining size

size{ - }age

job

Queue scheduling (M/G/1)

S = size distribution queue server

Gr—

%+ L1 1o[0r,

T = response time

}remaining size

size{ - }age

job

Queue scheduling (M/G/1)

S = size distribution queue server

Gr—

%}‘i W\,

T = response time

}remaining size

size{ - }age

job

Queue scheduling (M/G/1)

S = size distribution queue server

Gr—

%}‘i U\,

T = response time

}remaining size

size{ - }age

job

Queue scheduling (M/G/1)

S = size distribution queue server

Gr—

%}‘i U\,

T = response time

}remaining size

size{ - }age

job

Queue scheduling (M/G/1)

S = size distribution queue server

Gr—

%}‘i U\,

T = response time

job

}remaining size

sized |] Question: schedule
_ }age

to minimize E|[T]?

Queue scheduling (M/G/1)

S = size distribution queue server

s
4 i
L I
* = I'€SPOIISC time

iob shortest remammg
- processing time
-

}remammg size Question: schedule

size {

age to minimize E[T]?

C\Lnu

Scheduling with unknown sizes

Scheduling with unknown sizes

rl

size unknown 83{

C I {_I_.I.-LJ_L-

Scheduling with unknown sizes

rl

size unknown 83{

-age known W

C Lo] {_l_l-L.l_L-
J

Scheduling with unknown sizes

e

-age known %

ot

size distribution S knoanf

-

—

—

T

L.
size unknown 83{ R
\J

Scheduling with unknown sizes

e

-

—

—

T

L.
size unknown 83{ R
\J

Example:
-age known % P

S=4{6 wp.

%_} - P

size distribution S knoanf

) 1 wp.

W= W= W=

Scheduling with unknown sizes

Example:

1 wp.
S=4{6 wp.
14 w.p.

age

W= W= W=

Scheduling with unknown sizes

@rioritz?

Example:

1 wp.
S=4{6 wp.
14 w.p.

M

}—"

W= W= W=

Scheduling with unknown sizes

@rioritz?
Example:
1 wp.
S=4{6 wp.
14 w.p.
i
10

_— ———*eagew
1 6 14

W= W= W=

Scheduling with unknown sizes

@rioritz? pOllCY
Example:
1 wp.
S=4{6 wp.
14 w.p.
15
10

_— ———*eage/q
1 6 14

W= W= W=

Gittins is general yet limited

is general yet limited

S N I Y G N

unknown
S1Zes

is general yet limited

!
v 1

known unknown
S1Zes S1Zes

S N I Y G N

CIIIII\I

is general yet limited

!
v 1

known unknown
S1Zes S1Zes

— —V—/

Qf is optimal in M/G/1

S N I Y G N

CIIIII\I

is general yet limited

S N I Y G N

CI)III\I
T

known partially known unknown
sizes sizes sizes

— —V—/

Qf is optimal in M/G/1

is general yet limited

S N I Y G N

!
v 1

CI)III\I
T

known partially known unknown
sizes sizes sizes

— —V—/

Qf is optimal in M/G/1

@ non-M/G/1 queues

Q

is general yet limited

S N I Y G N

!
v 1

CI)III\I
T

known partially known unknown
sizes sizes sizes

— —V—/

Qf is optimal in M/G/1

@ non-M/G/1 queues @ imperfect implementation

Q Q

is general yet limited

S N I Y G N

CI)III\I
T

known partially known unknown
sizes sizes sizes

— —V—/

Qf is optimal in M/G/1

@ non-M/G/1 queues @ imperfect implementation

Q Q

@ unknown job size distribution/model

Q

is general yet limited

I I I

S N I Y G N

!
v 1

L
T

partially known unknown
sizes sizes

ff techniques are
“all or nothing”
Qf is optimal in M/G/1

@ non-M/G/1 queues @ imperfect implementation

Q Q

@ unknown job size distribution/model

Q

Contributions

Contributions

" WINE

queueing identity for
understanding Gittins

Contributions

pu applicable even in
NEW! < suboptimal settings

queueing identity for
understanding Gittins

Contributions

pu applicable even in
NEW! < suboptimal settings

queueing identity for
understanding Gittins

@ non-M/G/1 queues @ imperfect implementation

Q Q

@ unknown job size distribution/model

(-

L U

~ \ |
- \ L
‘ - -
U = <- /]\/]\
l - ~
, \

response time T

JU

number of jobs N

—"

U

T

[l} ~ ll
A
A .
|] of_A <f /]\
U - -
l td ~
I‘\

response time T

Little’s law
E[N|=AE|T]

[Elj (TN

response time T

any queueing
system

Little’s law
E[N|=AE|T]

JUC

number of jobs N

LW, @ % @

r-work W(r) response time T

.

any queueing
system

Little’s law
E[N|=AE|T]

WINE

JUC

number of jobs N

LW, @ % @

r-work W(r) response time T

.

any queueing
system

Little’s law
E[N|=AE|T]

any queueing
system

JUC

number of jobs N

WINE

Work Integral Number Equality

ol

I- Work W(r) number of jobs N

WINE

Work Integral Number Equality

ol

I- Work W(r) number of jobs N
@ What is rvork? How do we get number
= a of jobs from r-work?

What is r-work W(r)?

@uE
. t

A S T N T Y O T I

What is r-work W(r)?

S
STV

What is r-work W(r)?

|6;

What is r-work W(r)?

W(r) = work relevant to job of

r

What is r-work W(r)?

TN

W(r) = work relevant to job of

r

What is r-work W(r)?

-~ .
S/

W(r) = work relevant to job of

What is r-work W(r)?

-,
_/

3
W(r) = work relevant to job of

What is r-work W(r)?

-,
_/

3
W(r) = work relevant to job of

What is r-work W(r)?

-,
_/

3
W(r) = work relevant to job of

What is r-work W(r)?

-
_/

3
W(r) = work relevant to job of

What is r-work W(r)?

-
_/

3
W(r) = work relevant to job of

What is r-work W(r)?

- . n >
_/

3
W(r) = work relevant to job of

Defining r-work for SRPT

W(r) = work relevant to r

10

Defining r-work for SRPT

W(r) = work relevant to r

wx(r) = r-work of single job of rem. size x = {

10

Defining r-work for SRPT

W(r) = work relevant to r

wx(r) = r-work of single job of rem. size x = {

10

Defining r-work for SRPT

W(r) = work relevant to r

wx(r) = r-work of single job of rem. size x = {

~ 5

10

Defining r-work for SRPT

W(r) = work relevant to r

. . , 0 ifr<
wx(r) = r-work of single job of rem. size x = {

~ 5

10

Defining r-work for SRPT

W(r) = work relevant to r

. . , 0 ifr<
wx(r) = r-work of single job of rem. size x = {

~ 5

10

Defining r-work for SRPT

W(r) = work relevant to r

. . , 0 ifr<
wx(r) = r-work of single job of rem. size x = {

~ 5

T

10

Defining r-work for SRPT

W(r) = work relevant to r

. . , 0 ifr<
wx(r) = r-work of single job of rem. size x = {

ifr>
~ 5

T

10

Defining r-work for SRPT

W(r) = work relevant to r

0
wx(r) = r-work of single job of rem. size x = {

if r <
if r >

10

Defining r-work for SRPT

W(r) = work relevant to r
= total r-work of all jobs

0
wx(r) = r-work of single job of rem. size x = {

if r <
if r >

10

How do we get N from W(r)?

How do we get N from W(r)?

(‘ Goal: integral = N |

W(r)

11

How do we get N from W(r)?

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A

0 ifr<

w.(r) = r-work of job of rem. size x = < ,
if r >

11

How do we get N from W(r)?

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A

0 ifr<

w.(r) = r-work of job of rem. size x = < ,
if r >

11

How do we get N from W(r)?

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A
> 1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

11

How do we get N from W(r)?

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
S 1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

11

How do we get N from W(r)?

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
>1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r>

11

How do we get N from W(r)?

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
iL‘
1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r >

11

How do we get N from W(r)?

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
1
1
1
1/r 1/ 1/r

(.

w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r >

11

How do we get N from W(r)?

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

11

How do we get N from W(r)?

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

11

How do we get N from W(r)?

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wi (1‘)
| X
1
1
1/r i 1/r
NEW Theorem:

©.@

C

Wi(r)

5 LI”
r seen by SRPT glasses

.

WINE N=f
0

11

How do we get N from W(r)?

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

; X
1
! 1/r 1/r

1/x

11

WINE

Work Integral Number Equality

12

WINE

Work Integral Number Equality

N — f E[W(r) | krzlown info] i
r
0

12

WINE

Work Integral Number Equality

(seen by Gittins glasses?
oo

E[W(r) | known info] i

N:f
0 -

12

WINE

Work Integral Number Equality

(seen by Gittins glasses?
oo

N — E[W(r) | krzlown info] i
r

“Definition”: a job’s rank under Gittins
is whatever makes WINE true

12

WINE implies Gittins’s optimality

B J “ E[W(r) | known info] .
_ =
0

13

WINE implies Gittins’s optimality

B J “ E[W(r) | known info] .
_ =
0

BTN = f E(W()]
0

P2

13

WINE implies Gittins’s optimality

B f “ E[W(r) | known info] .
_ =
0

BTN = f E(W()]
0

P2

How to minimize E[W(r)]?

13

WINE implies Gittins’s optimality

N — f E[W(r) | krzlown info | qr
. r

P2

E[N]= f ELWG] 4
0

How to minimize E[W(r)]?
Prioritize rank <r before rank >r

13

WINE implies Gittins’s optimality

N — f E[W(r) | krzlown info | qr
. r

E[N]= f ELWG] 4
0

r2
‘A in the M/G/l'

How to minimize E[W(r)]?
Prioritize rank <r before rank >r

13

Contributions

n WINE

queueing identity for
understanding Gittins

@ non-M/G/1 queues @ imperfect implementation

Q Q

@ unknown job size distribution/model

(-

14

Contributions

LN J E[W(r)D
WINE

queueing identity for
understanding Gittins

NEW!

@ non-M/G/1 queues @ imperfect implementation

Q Q

@ unknown job size distribution/model

(-

14

Multiserver scheduling (M/G/k)

1o, Je!
28 R

Multiserver scheduling (M/G/k)

@'

—

Lo, o'
Zad kg

Multiserver scheduling (M/G/k)

@'

2N o
A o

-1 (single-server): serves the 1 job of least

Multiserver scheduling (M/G/k)

e

-1 (single-server): serves the 1 job of least

@'
e

-k (multiserver): serves the k jobs of least

15

Multiserver scheduling (M/G/k)

e

-1 (single-server): serves the 1 job of least

@'
e

-k (multiserver): serves the k jobs of least

@ Is -k near-optimal in the M/G/k?

a

15

Gittins-k

000

Gittins-1

\

)

16

Gittins-k

Gittins-1

16

o k serve
Gittins-k

IS,
speed 1/k

S

Gittins-1

16

pr—

Gittins-k

\

k servers,
speed 1/k

TR

E[Tx]

Gittins-1

|

0

? (13 E[T1]

16

k servers, o
speed 1/D Gittins-1

HNG;

Gittins-k

S

E[Ti]) ? Q E[T:])

AN AN

N N

16

k
Gittins-k

servers,
speed 1/k

S

Gittins-1

16

o k servers, o
Gittins-k | speed 1/k Gittins-1

HNG;

S

> ‘ E[Wi(r)] '
Lemma: r-work
decomposition

k servers, o
speed 1/k Gittins-1

HNG;

Gittins-k

S

> ‘ E[Wi(r)] '
. Lemma: r-work
decomposition

Gittins-k

S

k servers,
speed 1/k

)

Gittins-1

‘ E[W:(r)])

Lemma: r-work
decomposition

16

M/G/k suboptimality gap

Lemma: under ,

E[W,.(r)] =E[W;(r)] + E[“< k—1 jobs’ r-work”]

17

M/G/k suboptimality gap

Lemma: under ,

E[W,.(r)] =E[W;(r)] + E[“< k—1 jobs’ r-work”]

0 =

17

M/G/k suboptimality gap

Lemma: under ,

E[W,.(r)] =E[W;(r)] + E[“< k—1 jobs’ r-work”]

Theorem: under :

E[N.] <E[N;]+(k—1)

0 =

17

M/G/k suboptimality gap

Lemma: under ,

E[W,.(r)] =E[W;(r)] + E[“< k—1 jobs’ r-work”]

Theorem: under :

1
E[N.|]<E[N;]+(k—1)-3.8log "
— P

0 =

17

M/G/k suboptimality gap

Lemma: under ,

E[W,.(r)] =E[W;(r)] + E[“< k—1 jobs’ r-work”]

Theorem: under ad, a.k.a.

’ 10
1 utilization
E[N.|]<E[N;]+(k—1)-3.8log "
— P

0 =

17

M/G/k suboptimality gap

Lemma: under ,

E[W,.(r)] =E[W;(r)] + E[“< k—1 jobs’ r-work”]

Theorem: under : load, a.k.a.
utilization
E[N,] <E[N;]+

~— ; _
-~

o(E[N;])

0 =

17

M/G/k suboptimality gap

Lemma: under ,

E[W,.(r)] =E[W;(r)] + E[“< k—1 jobs’ r-work”]

Theorem: under : load, a.k.a.
utilization
E[N,] <E[N,]+
o(E[N;])

Corollary: -k minimizes @] _ f TEW)]
E[T] in M/G/k asp — 1 o "/

17

v

Q

Contributions

NEW!

WINE

LN J E[W(r)D

queueing identity for
understanding Gittins

First bound for M/G/k
(G/G/k coming soon!)

non-M/G/1 queues

@ imperfect implementation

Q

@ unknown job size distribution/model

(-

18

Multiplicative rank errors

Definition: an approximate Gittins policy satisfies

ﬁrankGittins (X) < 1‘ankapprox(x) < arankGittins (X)

19

Multiplicative rank errors

Definition: an approximate Gittins policy satisfies

ﬁrankGittins (X) < 1‘ankapprox(x) < arankGittins (X)

Lemma:

E[Wapprox (1‘)] < EI: WGittins (% 1‘) :I

19

Multiplicative rank errors

Definition: an approximate Gittins policy satisfies

ﬁrankGittins (X) < 1‘ankapprox(x) < arankGittins (X)

Lemma:

E[Wapprox (1‘)] < EI: WGittins (% 1‘) :I

0 =

19

Multiplicative rank errors

Definition: an approximate Gittins policy satisfies

ﬁrankGittins (X) < rankapprox(x) < arankGittins (X)

Lemma:

E[W,prox(1)] < E[WGittins(%r):I

Theorem:

T E[W ()]
E[Napprox] < %E[NGittins] @]:JO r2 :a

19

v

Q

Contributions

NEW!

WINE

LN J E[W(r)D

queueing identity for
understanding Gittins

First bound for M/G/k
(G/G/k coming soon!)

non-M/G/1 queues

@ imperfect implementation

Q

@ unknown job size distribution/model

(-

20

Contributions

LN J E[W(r)D
WINE

queueing identity for
understanding Gittins

NEW!

multiplicative error
— approximation ratio

First bound for M/G/k
(G/G/k coming soon!)

@ non-M/G/1 queues @ imperfect implementation

Q Q

@ unknown job size distribution/model

(-

20

Contributions

LN J E[W(r)D
WINE

queueing identity for
understanding Gittins

NEW!

multiplicative error
— approximation ratio

First bound for M/G/k
(G/G/k coming soon!)

@ non-M/G/1 queues @ imperfect implementation

Q Q

@ unknown job size distribution/model

Q
using size estimates
without distribution

20

Contributions

LN J E[W(r)D
WINE

queueing identity for
understanding Gittins

NEW!

multiplicative error
= approximation ratio

First bound for M/G/k
(G/G/k coming soon!)

@ non-M/G/1 queues @ imperfect implementation

Q Q

@ unknown job size distribution/model

(-

using size estimates
zivscully@cornell.edu without distribution

https://ziv.codes 21

Bonus slides

2

Noisy size estimates

23

Noisy size estimates

Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

23

Noisy size estimates

@elo@ gbovej
Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

23

D5+

L

z/[3

— 2

-———

z/a

Noisy size estimates

@elo@ gbovej
Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

23

D5+

L

z/[3

— 2

-———

z/a

Noisy size estimates

@elo@ gbovej
Model: (3, a)-bounded noise

true sizes = estimated size z € [s, as]

N/

Generated by joint distribution (S, Z)

23

[Sm—

-———

Noisy size estimates
@elo@ gbovej

z/p .
Model: (3, a)-bounded noise
%
z/a true sizes = estimated size z € [f3s, as]

N/

Generated by joint distribution (S, Z)

Goal: design a policy with “good” E[T] for
* any joint distribution (S, Z)
. any values of a, f3

23

raglk Radical rank SRPT
S

z\/_
>age >age

2 S

24

ra41\1k Radical l‘a%lk SRPT
S

z
>age >age

24

rank Radical rank SRPT

1 0\
S
z 6
> - S
pe age S age
raf{lk Scale
p4
>age

rank Radical rank SRPT
S

z 6
\/ D
>age >age

T T

2?\\\\\\\\\\\\L
>age

rank Radical rank SRPT

A
S
z
\/ | ‘ D%) |
= age age

S

Cor

S8 rank Scale
{_JSOAP

Scully, Harchol-Balter,
& Scheller-Wolf,
SIGMETRICS 2018 g

WINE

>age

'\

rank Radical rank SRPT
S
2 >age S
5 SE rank Scale k
{__JSOAP o) WINE
Scully, Harchol-Balter,
& Scheller-Wolf,
SIGMETRICS 2018 g
>age

>age

24

