Optimal Multiserver Scheduling

with Unknown Job Sizes in Heavy Traffic

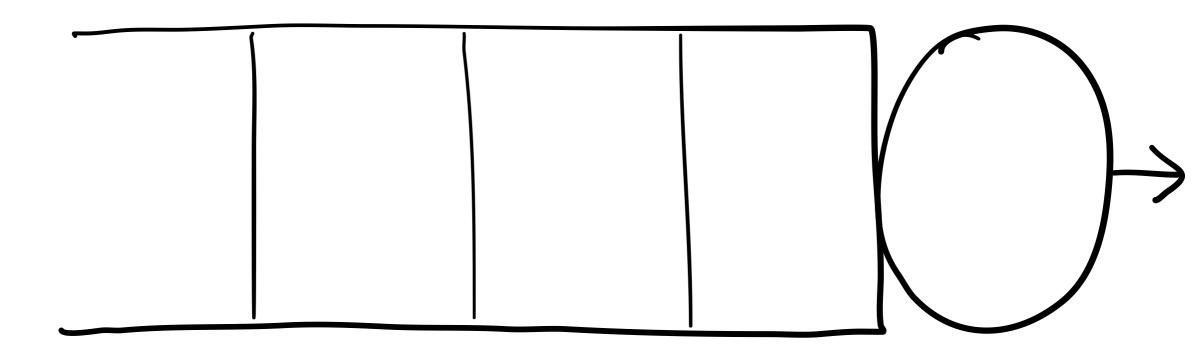
Ziv Scully Isaac Grosof Mor Harchol-Balter

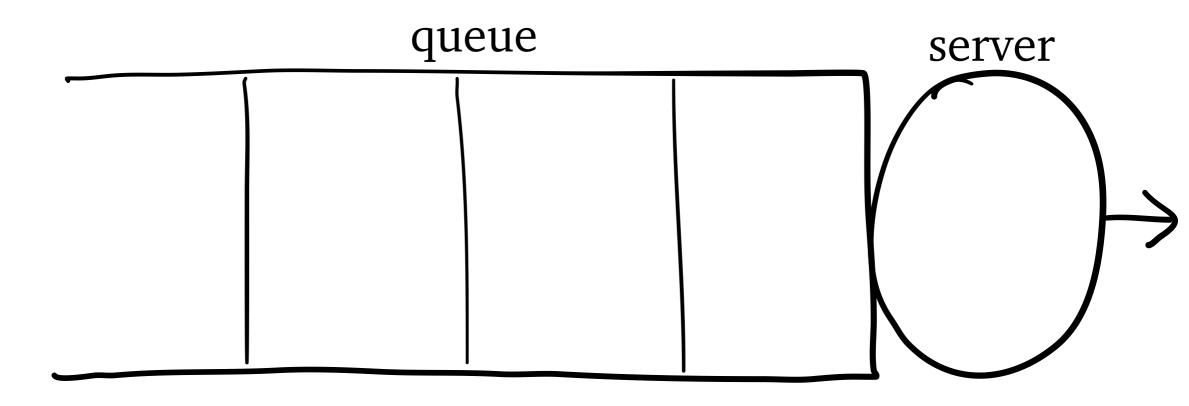
Carnegie Mellon University

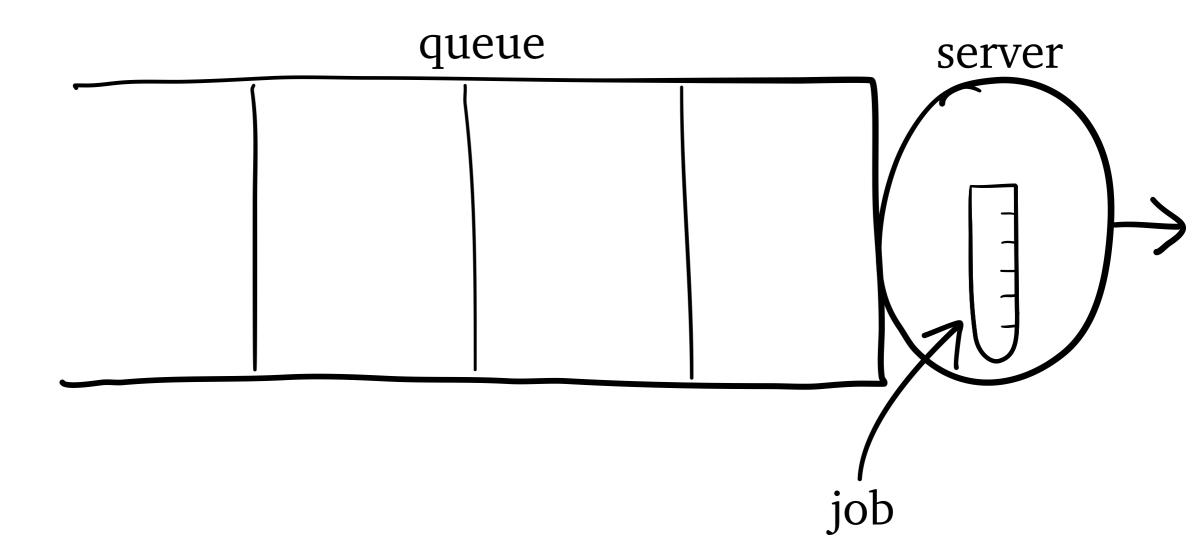
M/G/k Optimal Multiserver Scheduling with Unknown Job Sizes in Heavy Traffic

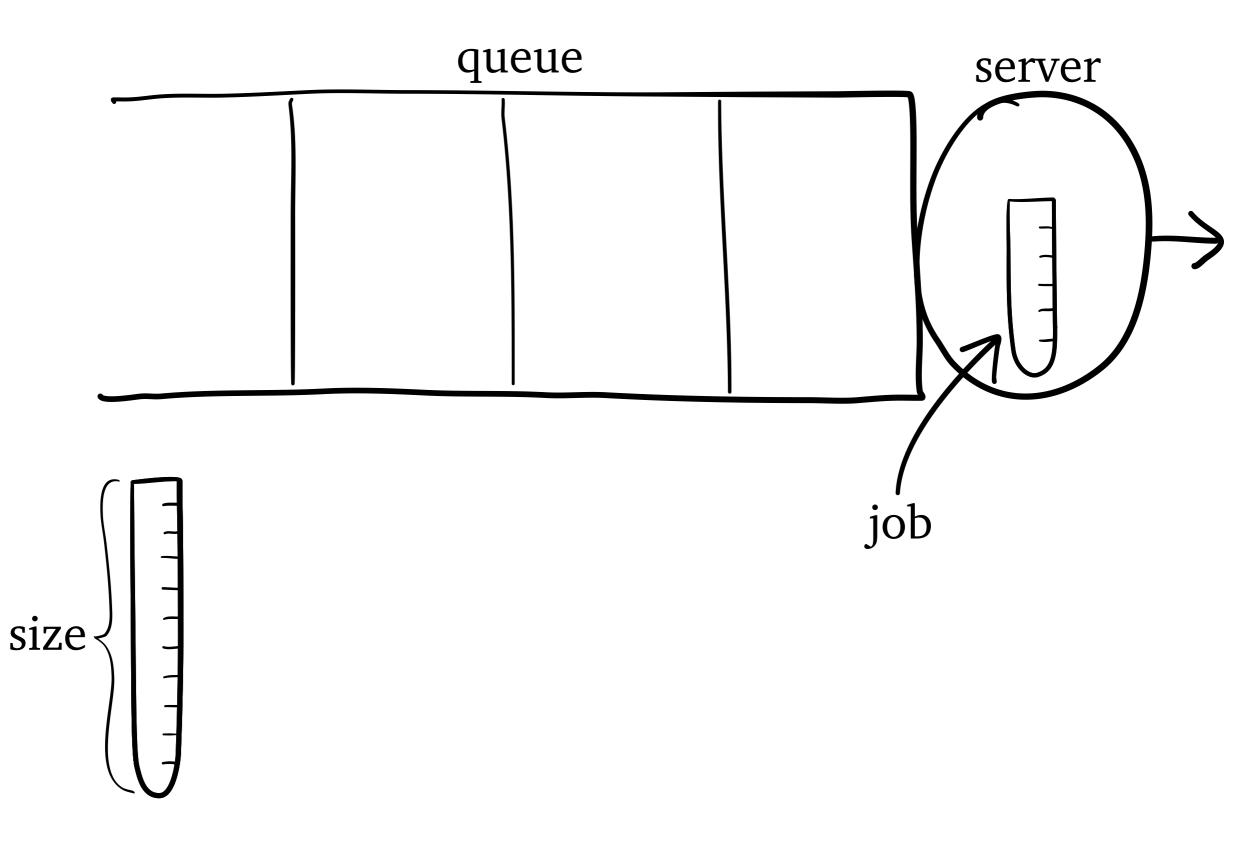
Ziv Scully Isaac Grosof Mor Harchol-Balter

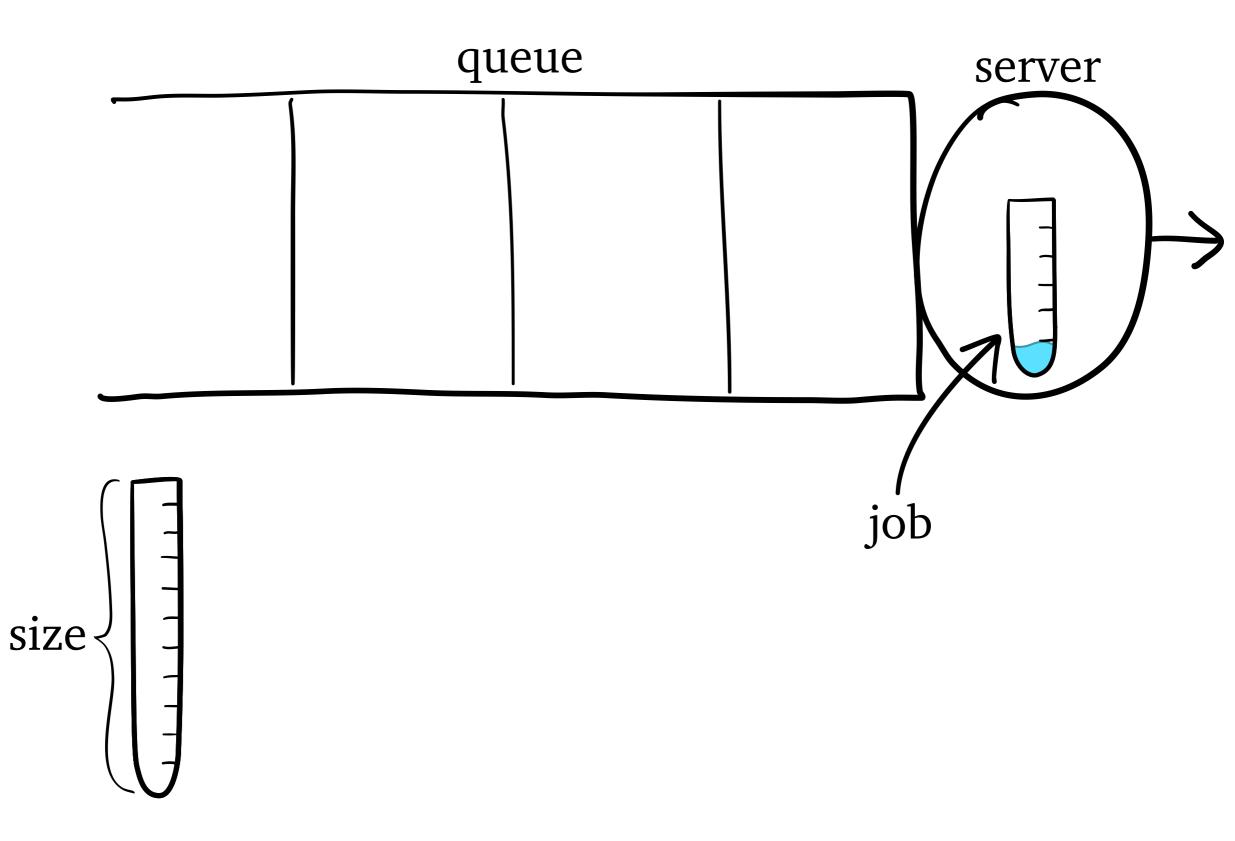
Carnegie Mellon University

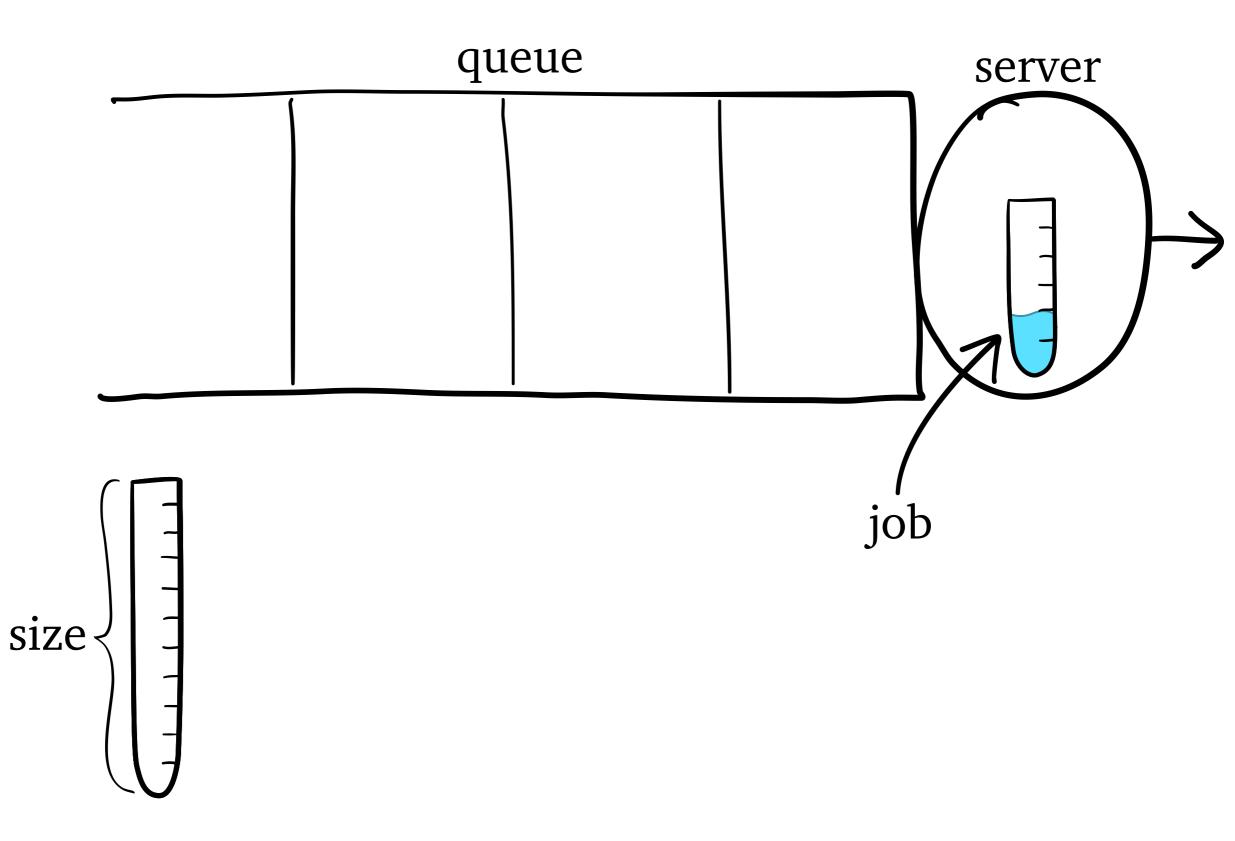




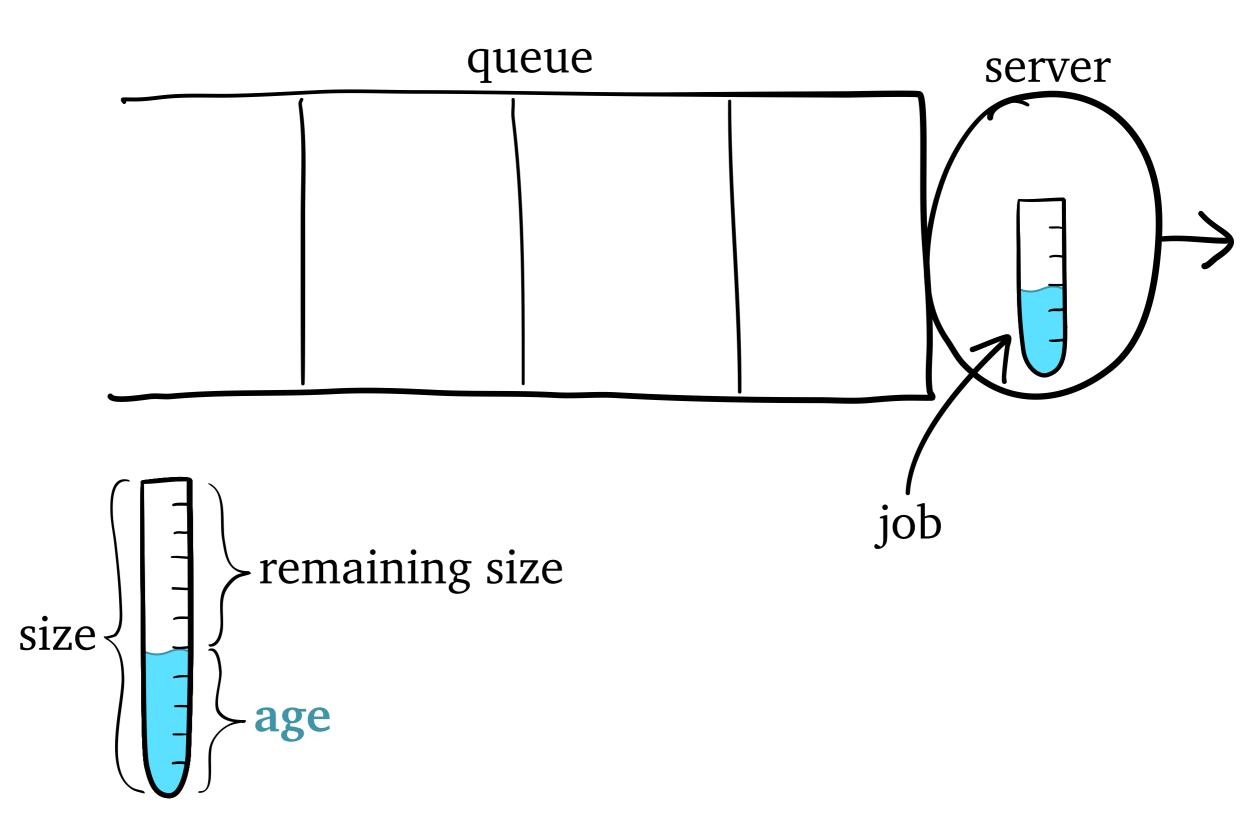


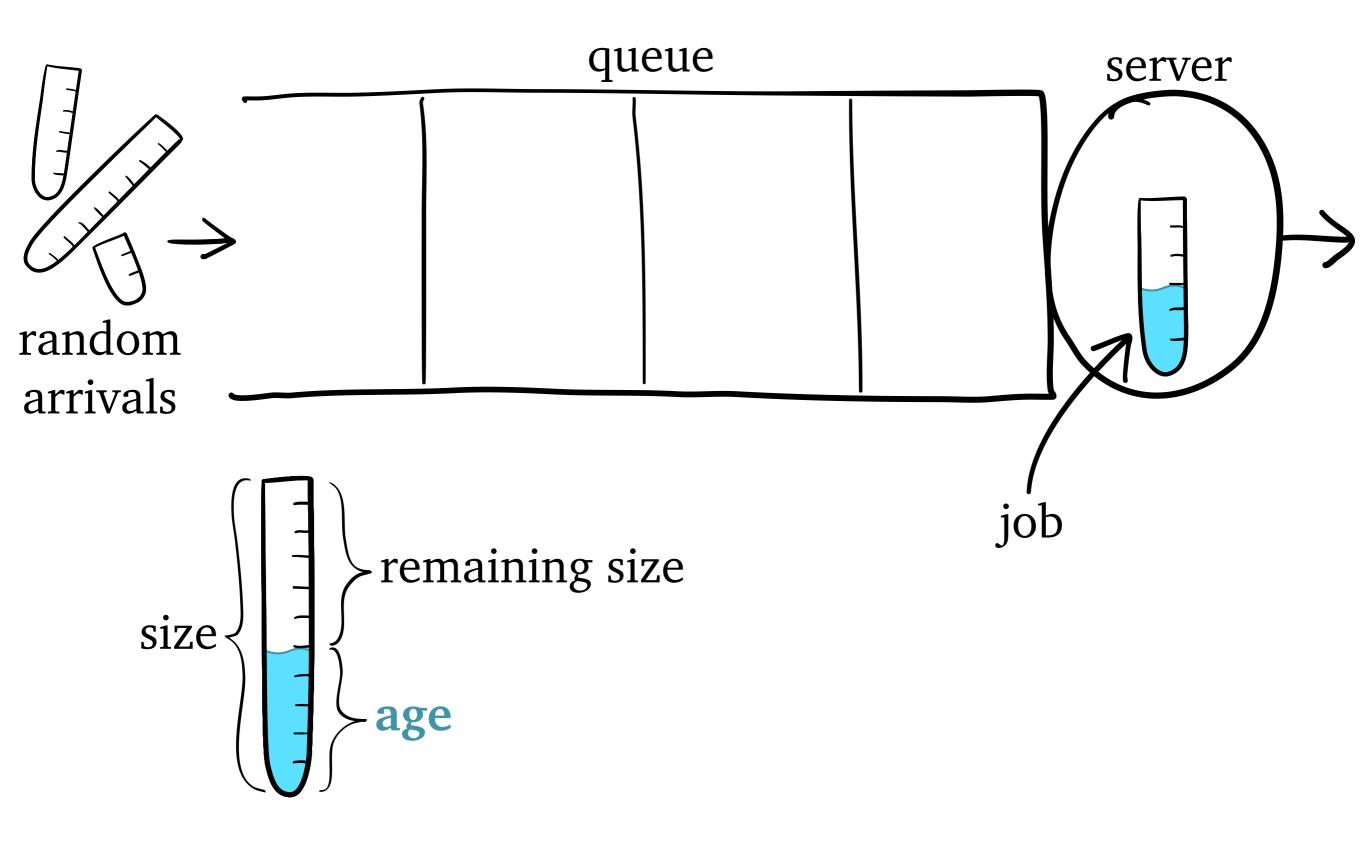


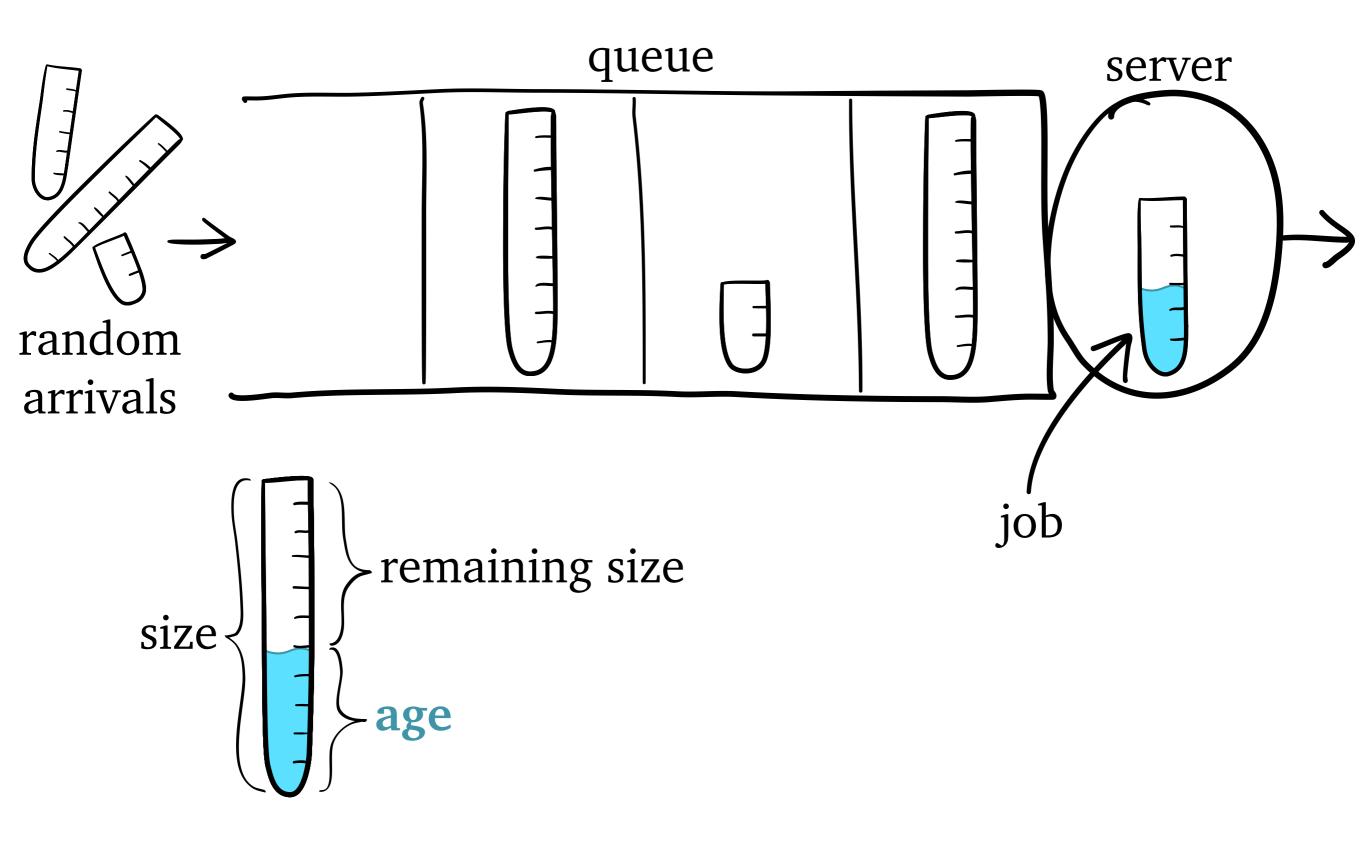


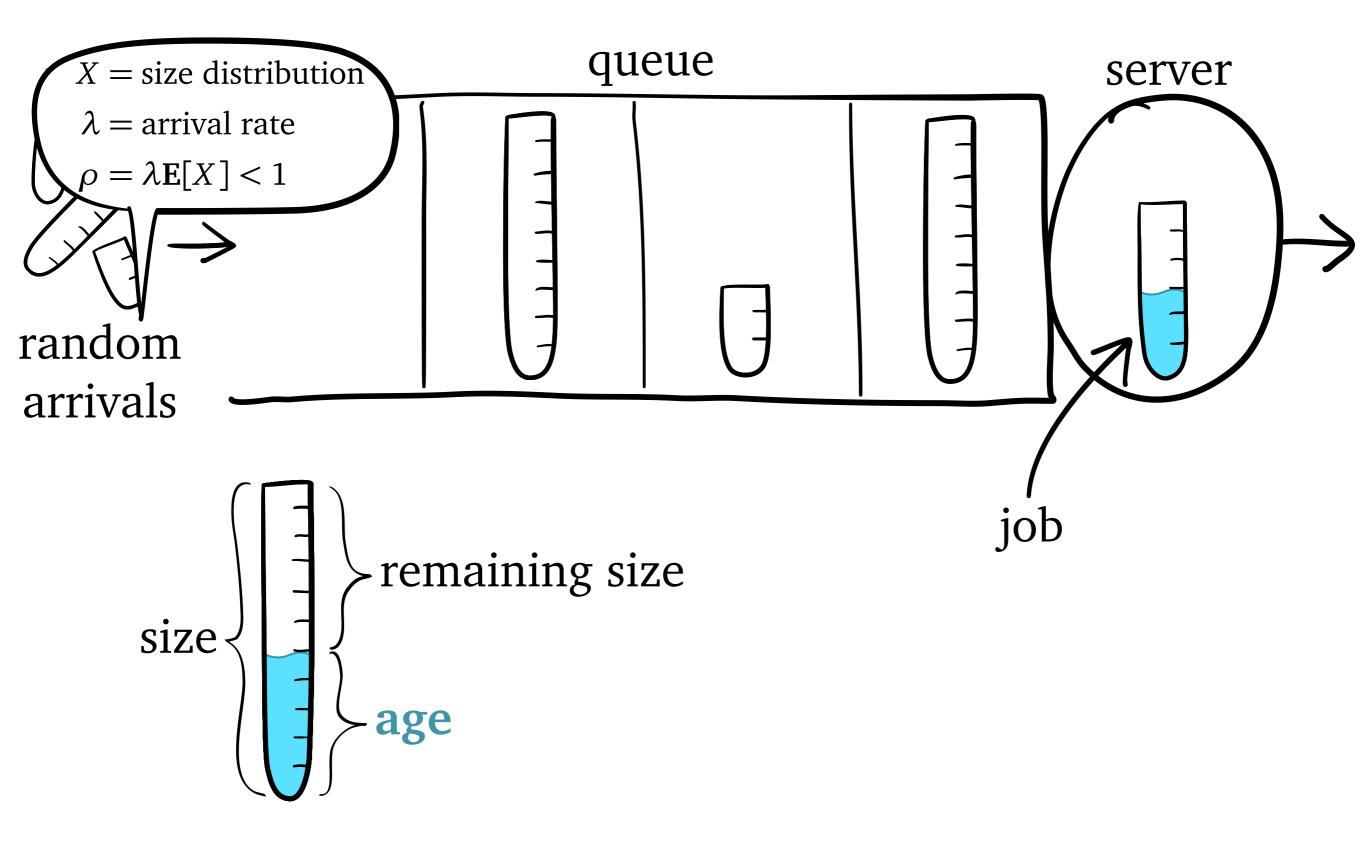


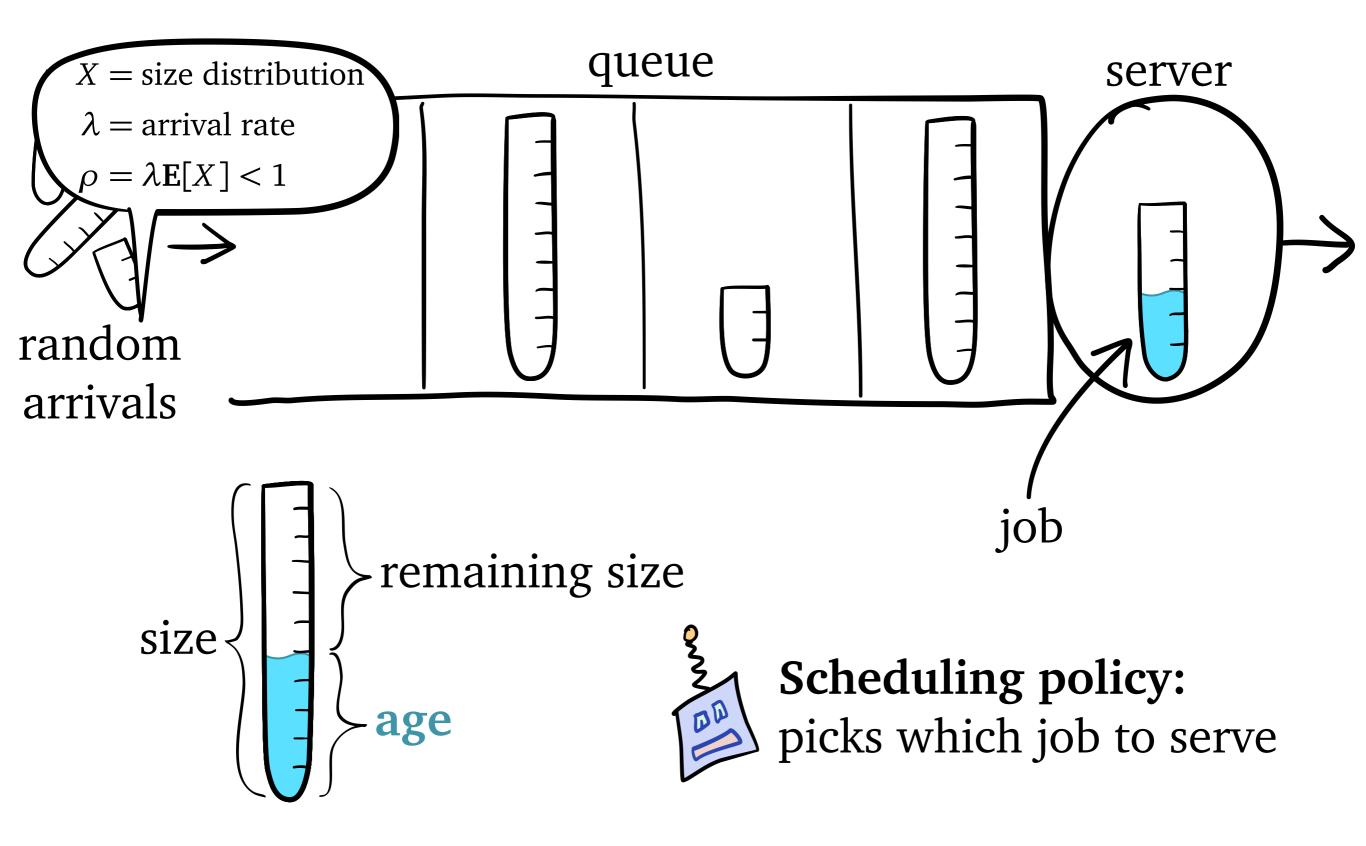


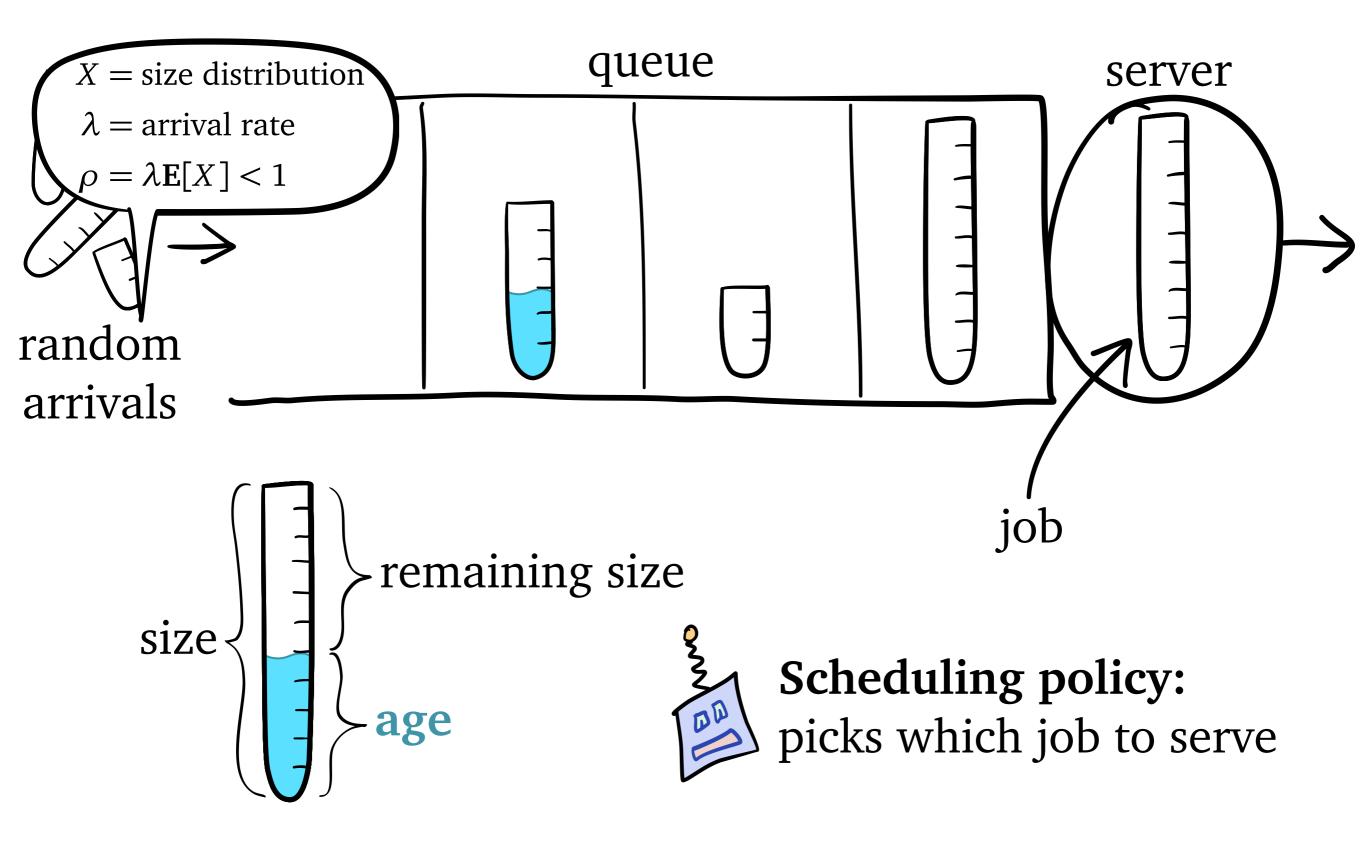


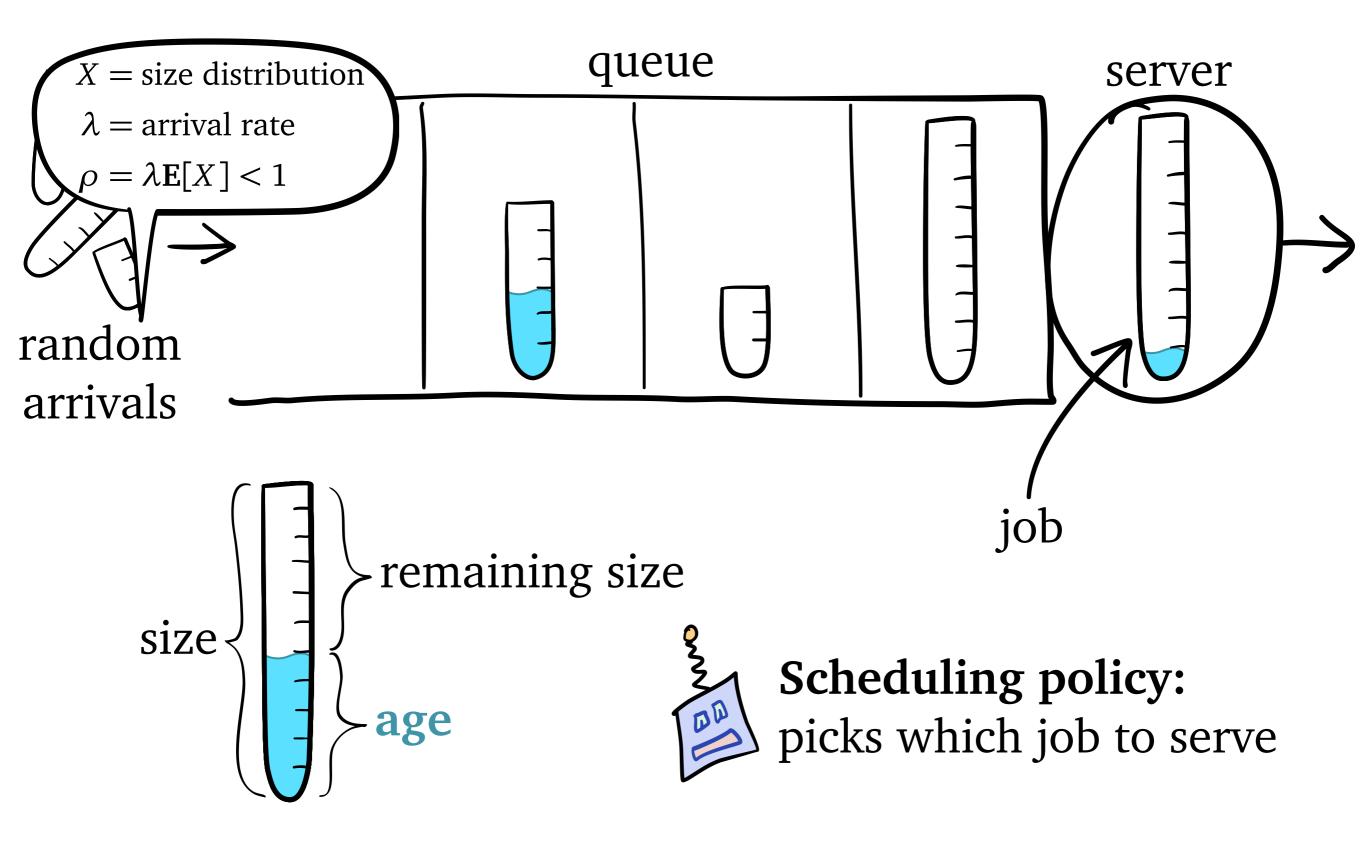


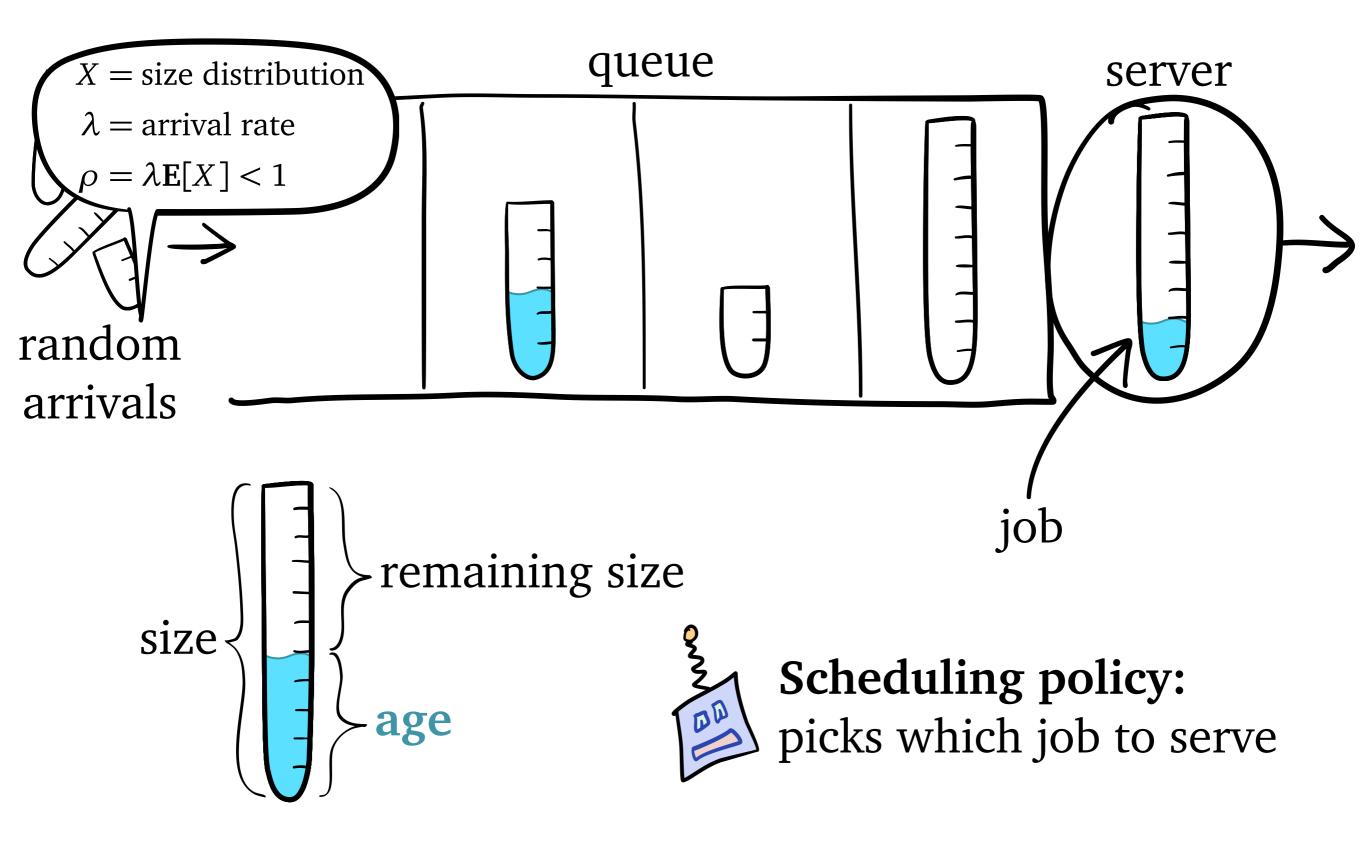


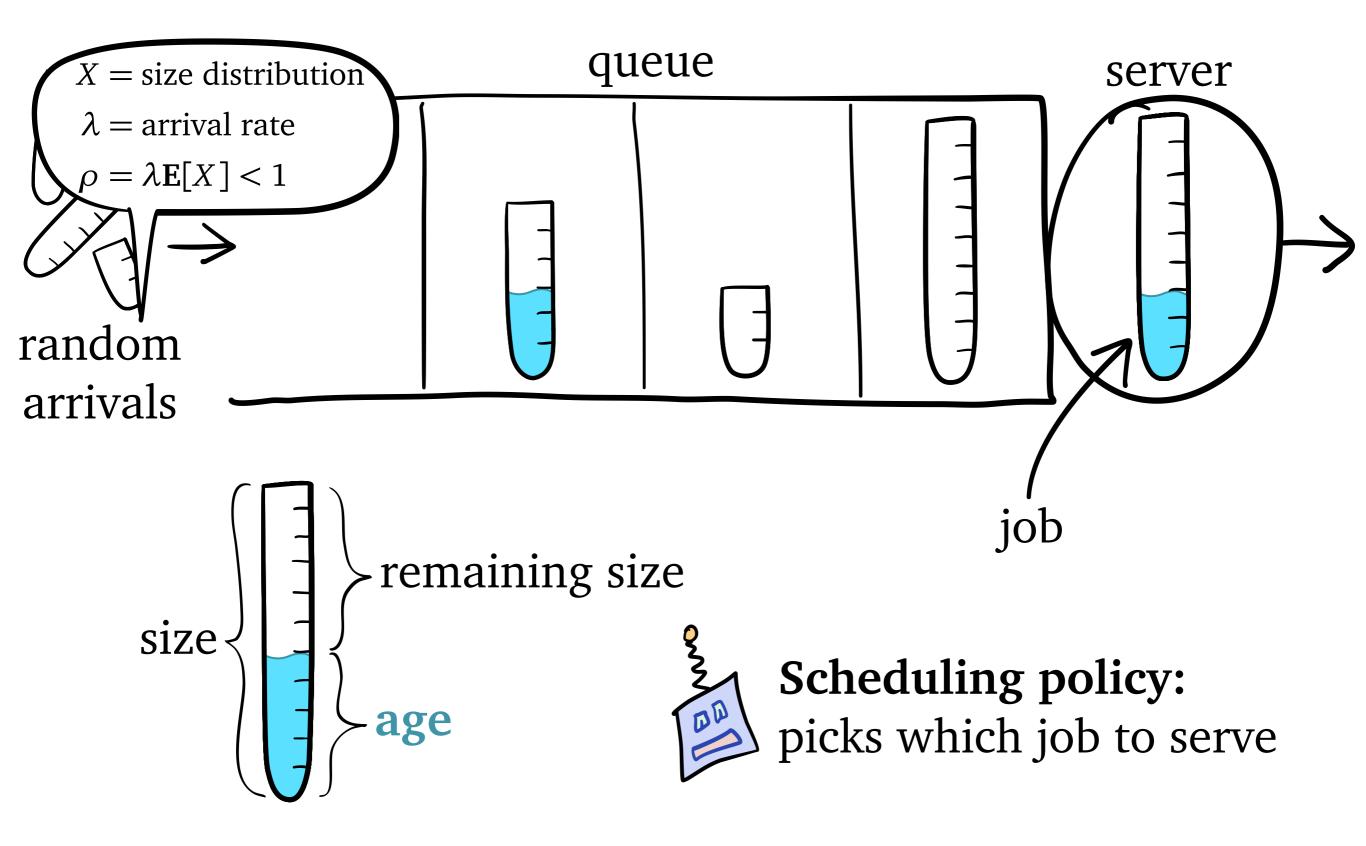


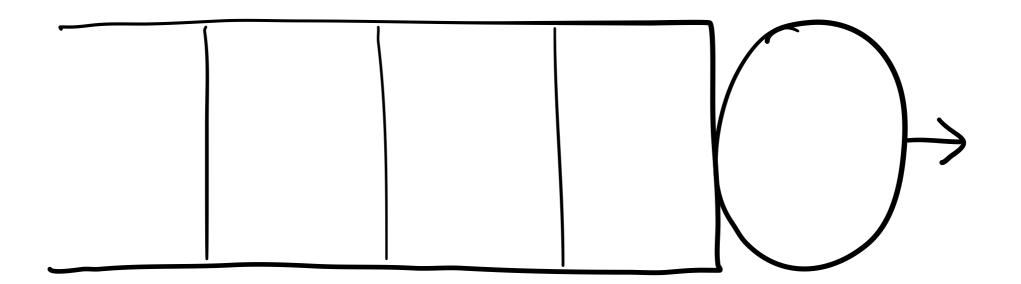


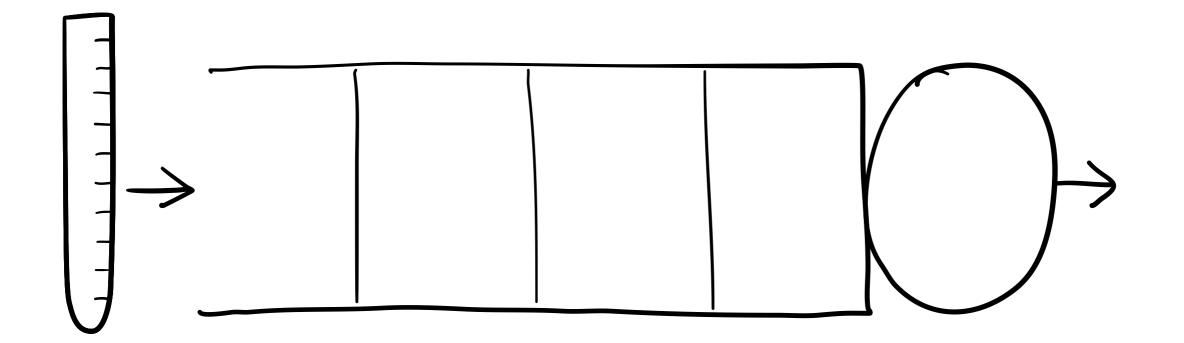


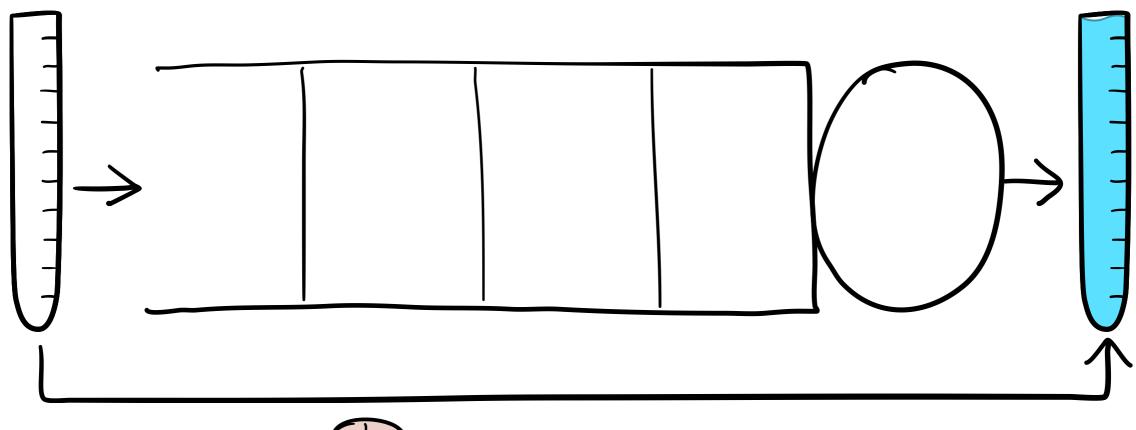




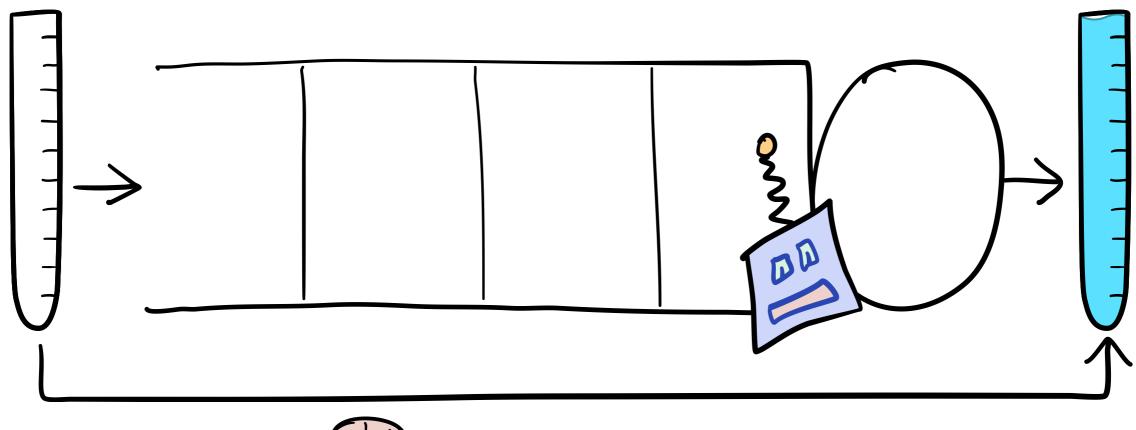




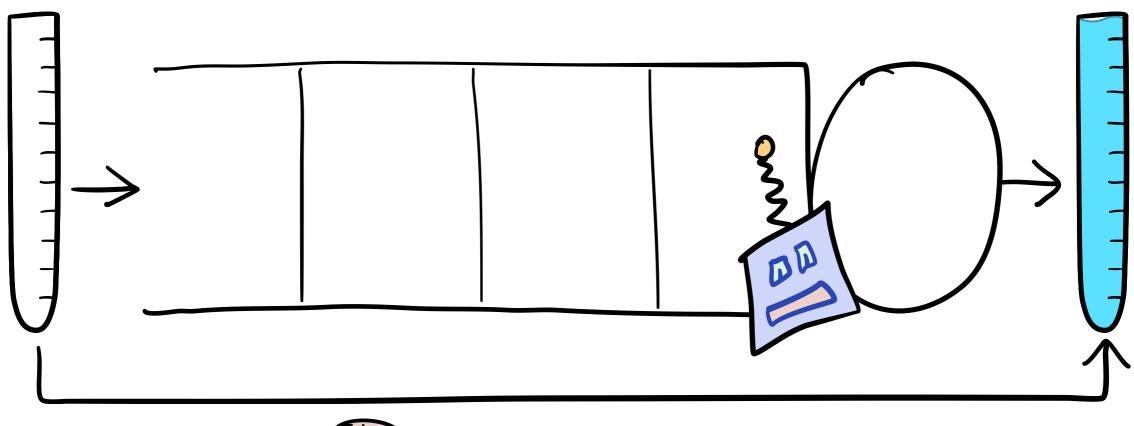




$$T = T = response time$$

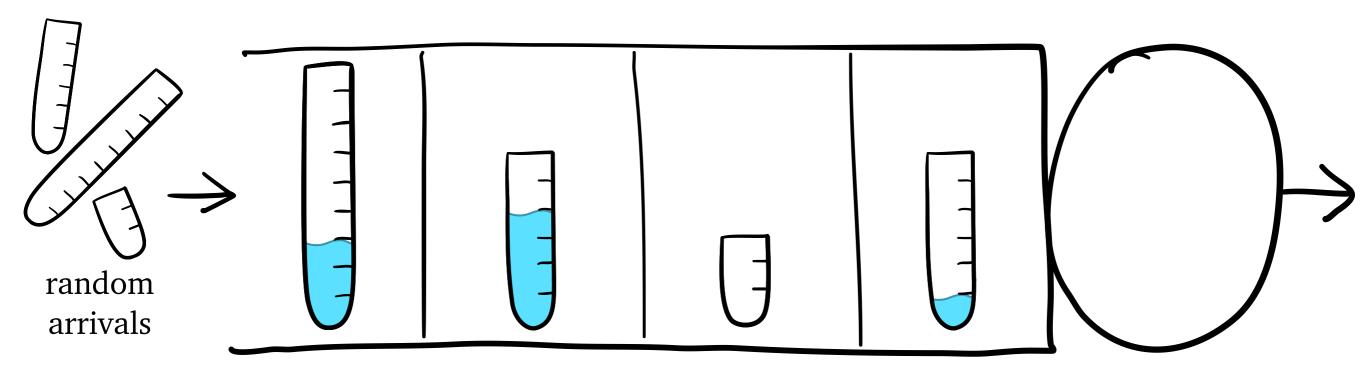


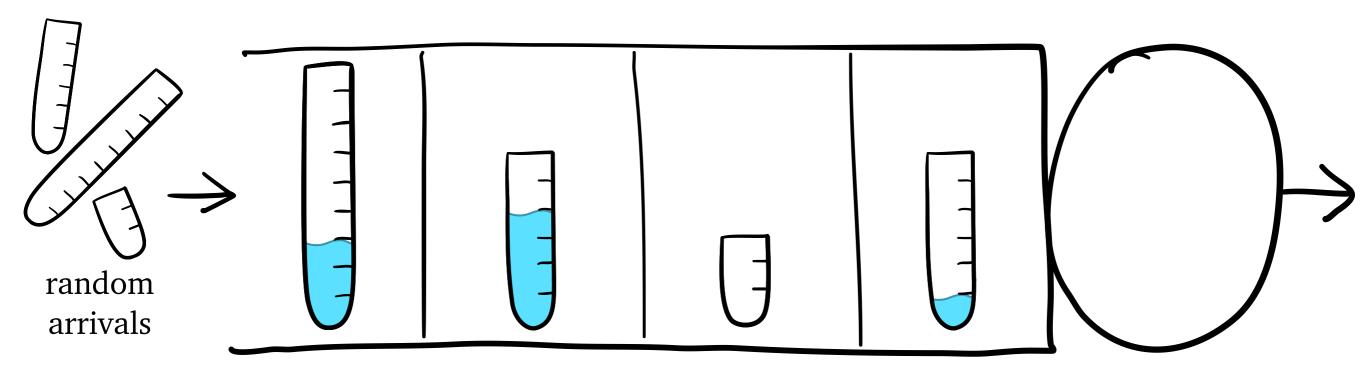
$$T = T = response time$$

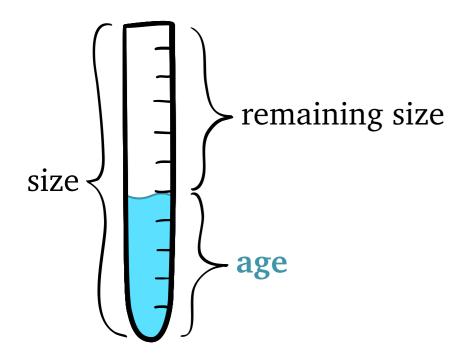


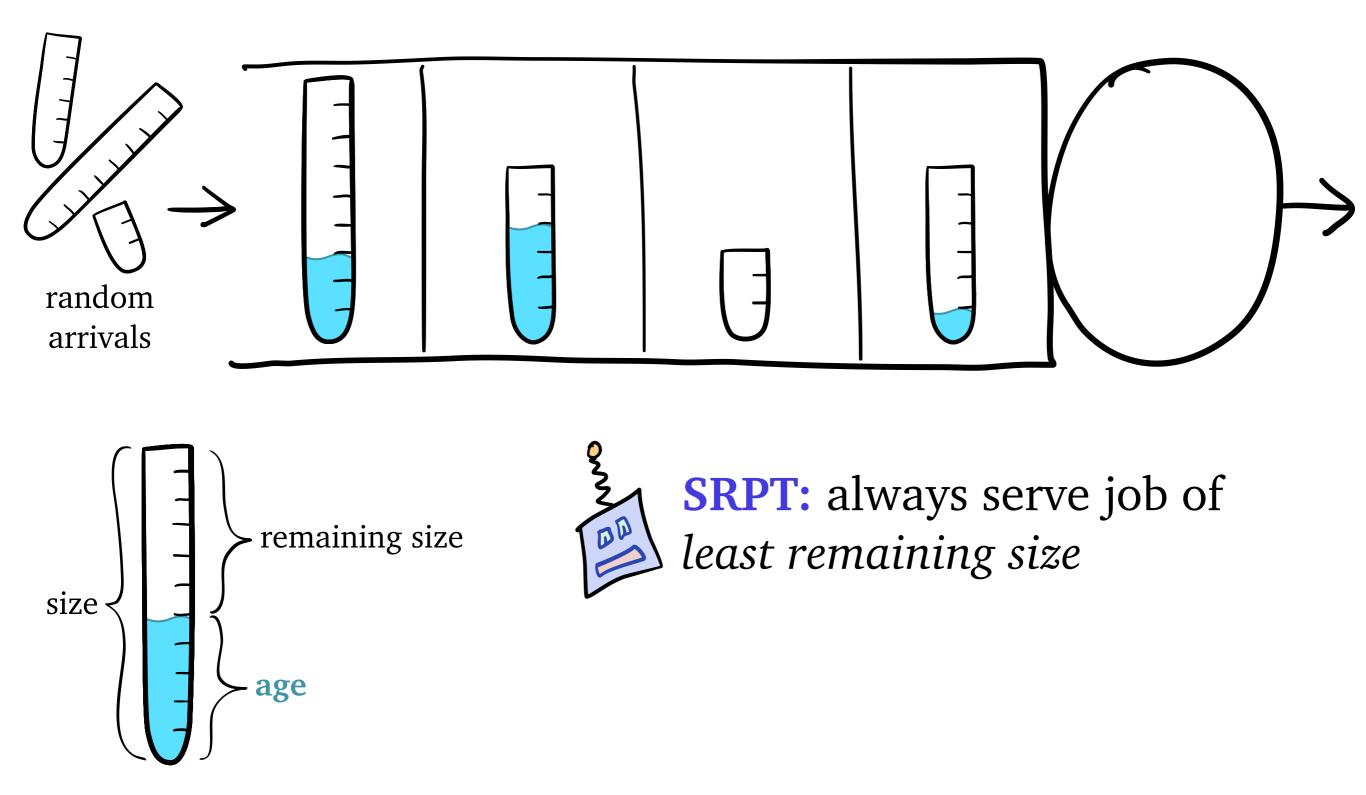
$$T = T = response time$$

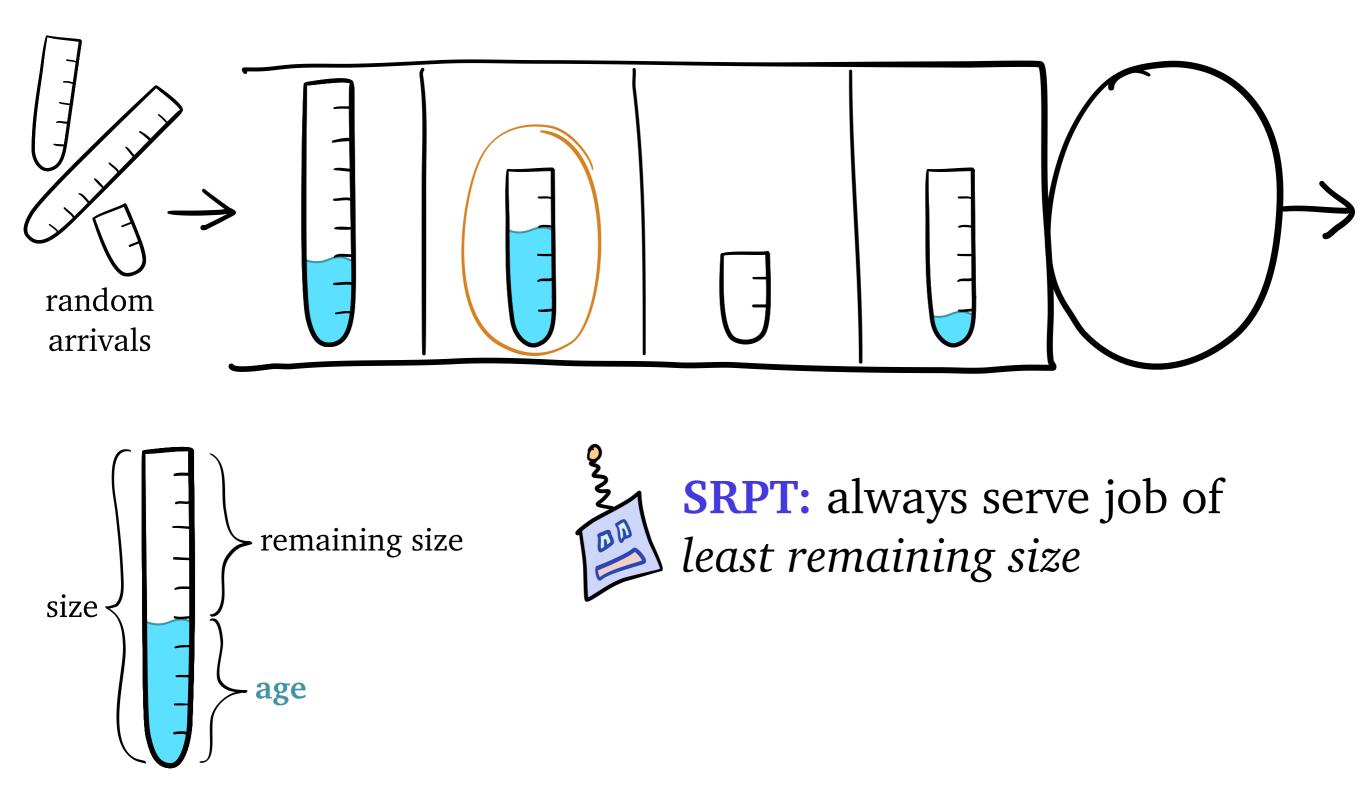
Goal: schedule to minimize *mean response time* **E**[*T*]

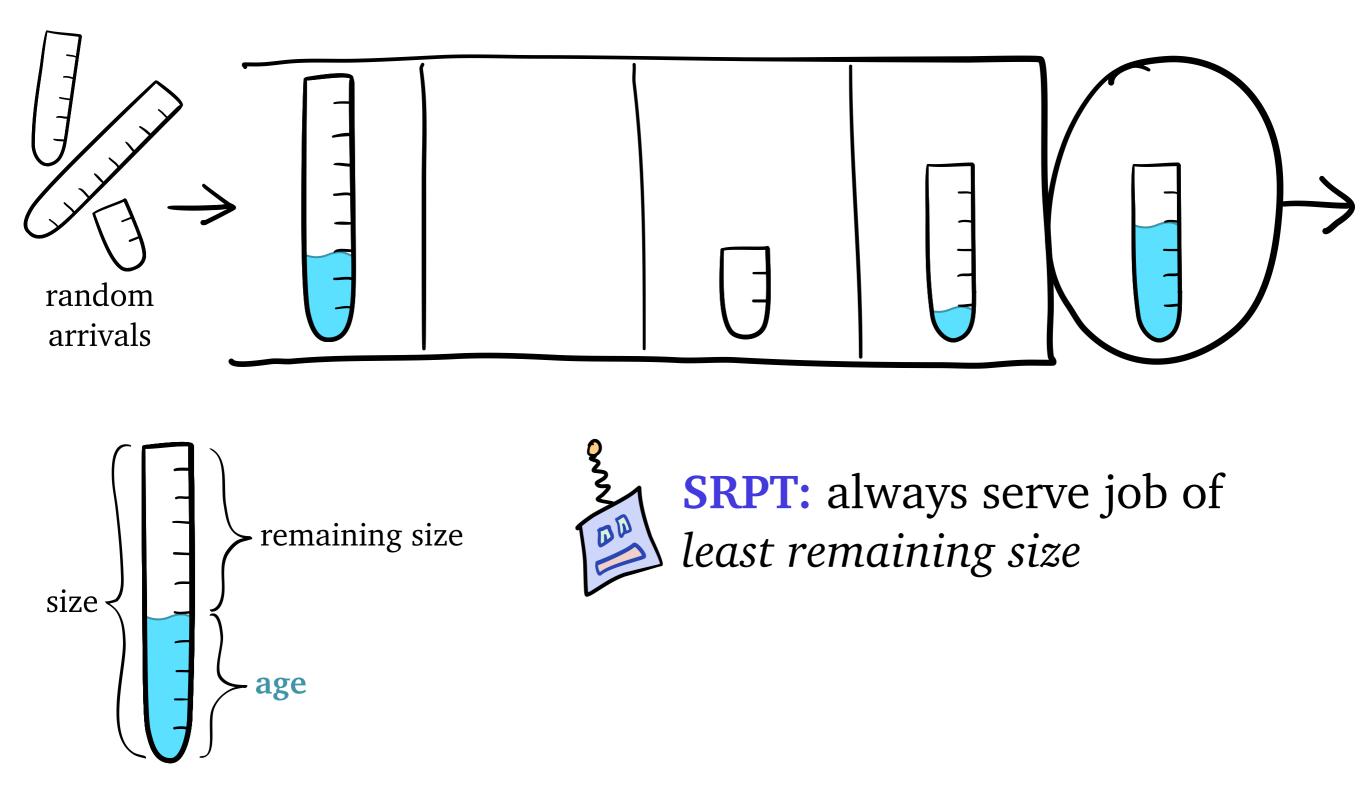


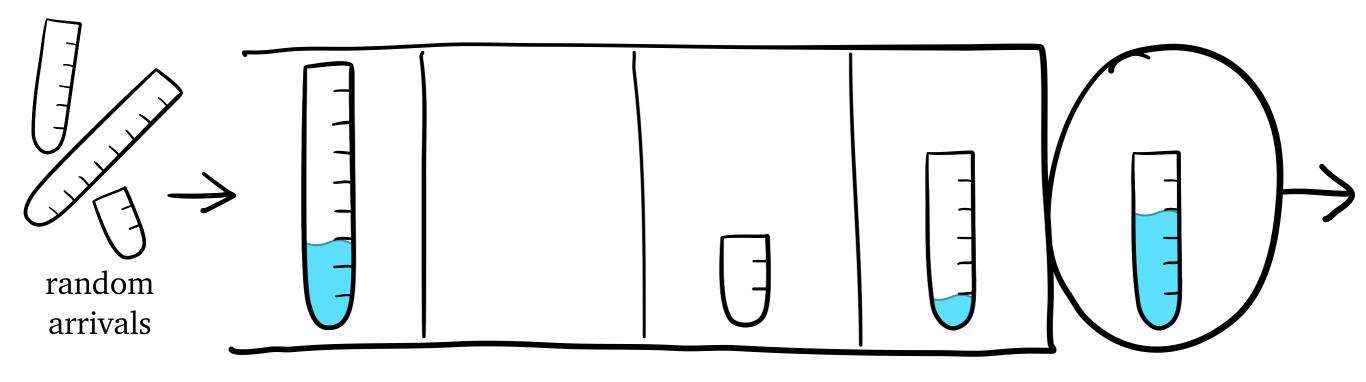








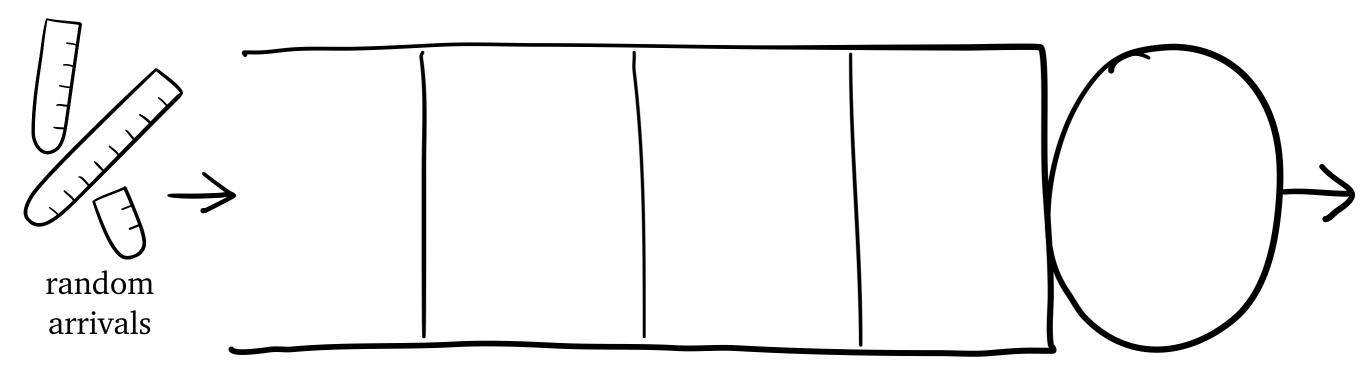


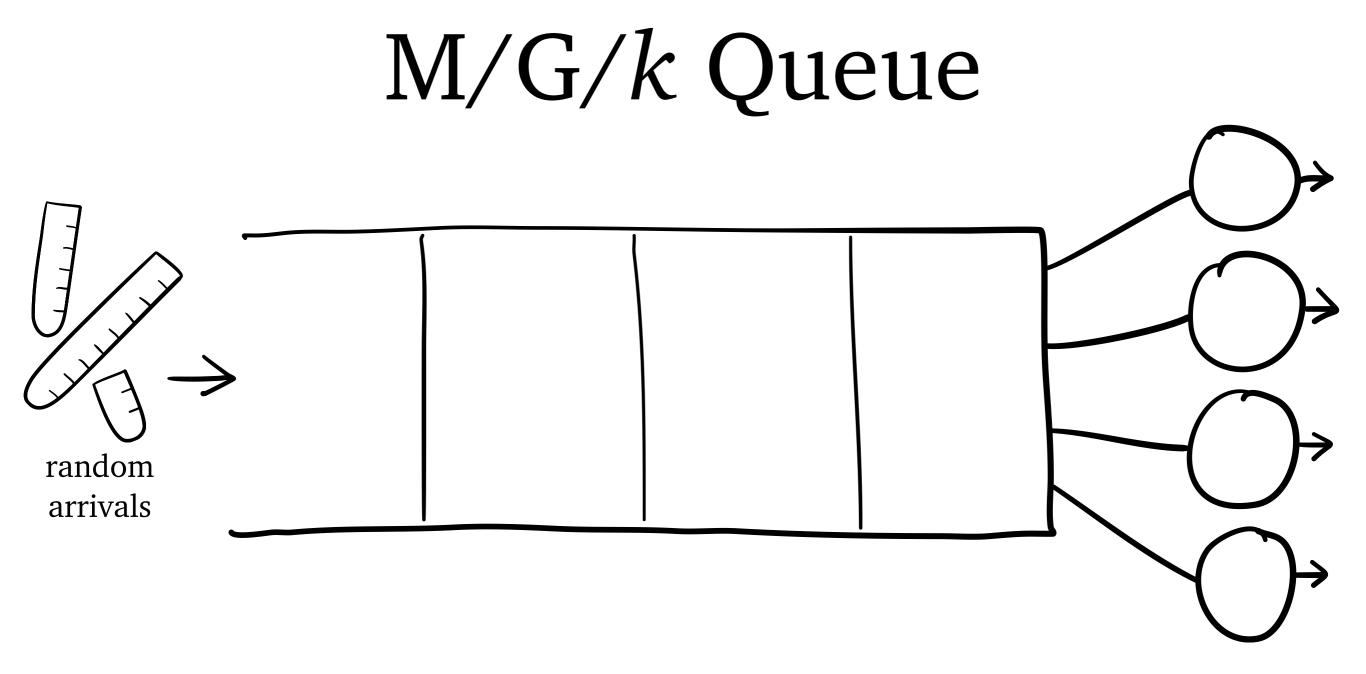


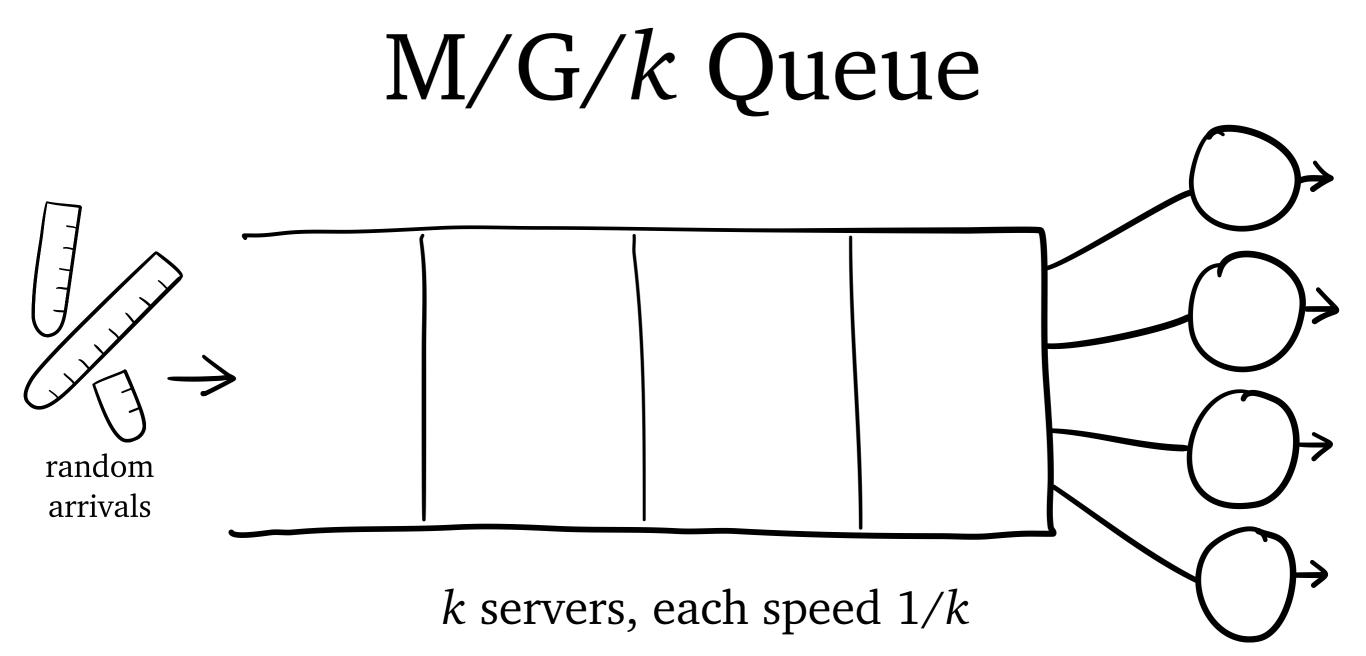
size age

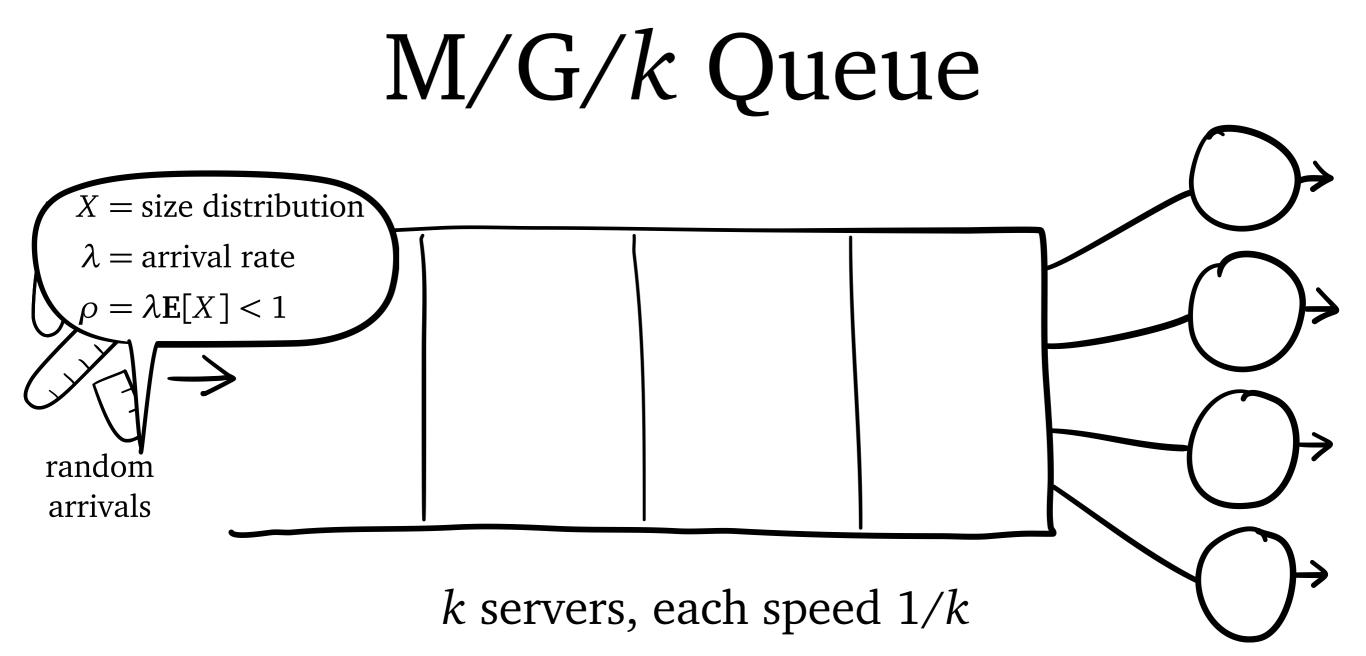
SRPT: always serve job of *least remaining size*

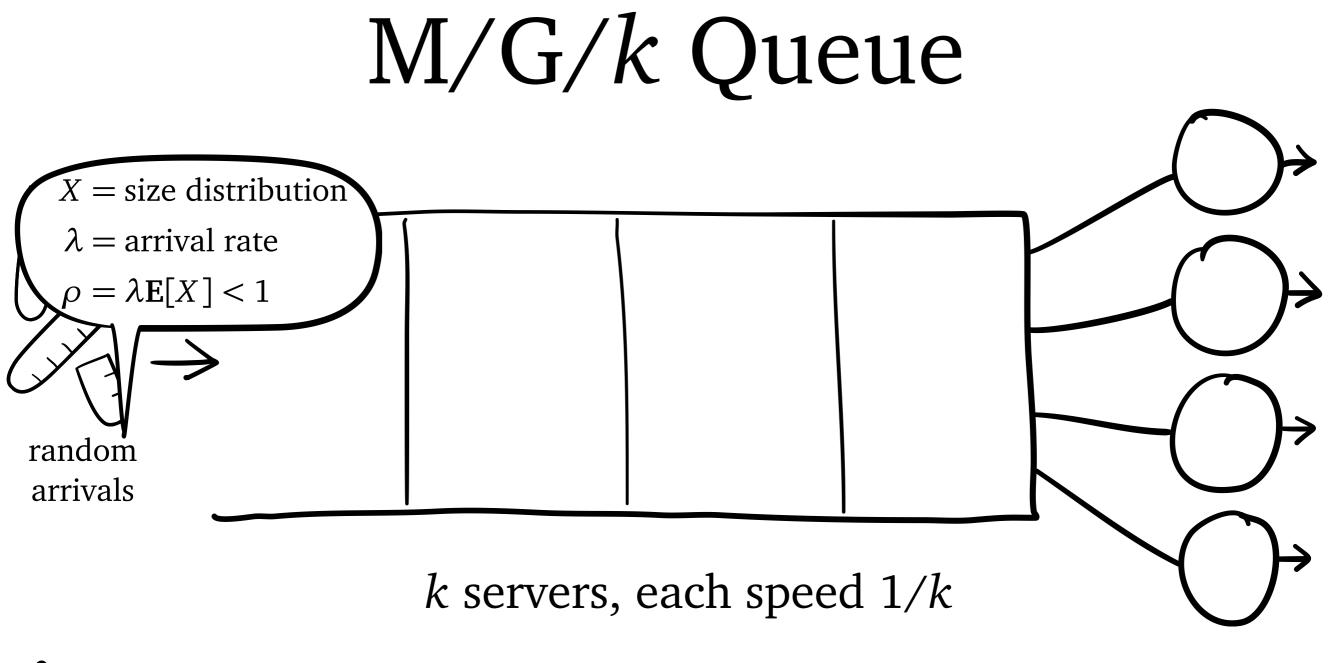
SRPT minimizes **E**[*T*]











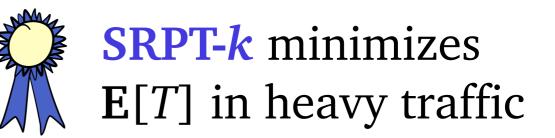
SRPT-k: always serve k jobs of least remaining size

M/G/k Queue X = size distribution $\lambda = arrival rate$ $\rho = \lambda \mathbf{E}[X] < 1$ random arrivals k servers, each speed 1/k

SRPT-k: always serve k jobs of least remaining size

M/G/k Queue X =size distribution $\lambda = arrival rate$ $\rho = \lambda \mathbf{E}[X] < 1$ random arrivals k servers, each speed 1/k

SRPT-k: always serve k jobs of least remaining size



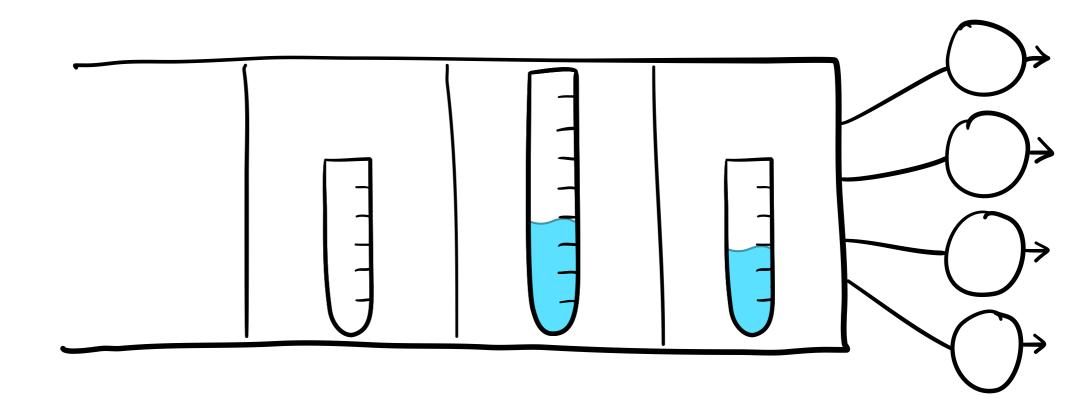
M/G/k Queue X = size distribution $\lambda = arrival rate$ $\rho = \lambda \mathbf{E}[X] < 1$ random arrivals k servers, each speed 1/k

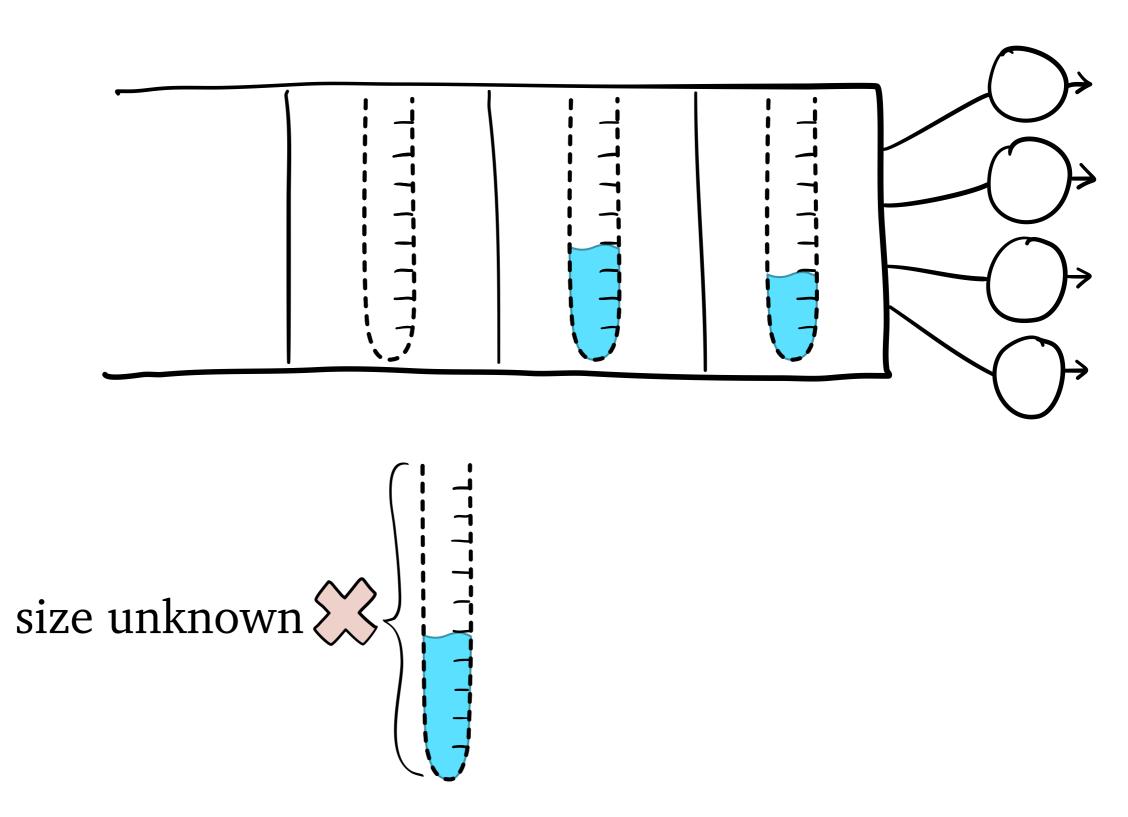
SRPT-k: always serve k jobs of least remaining size

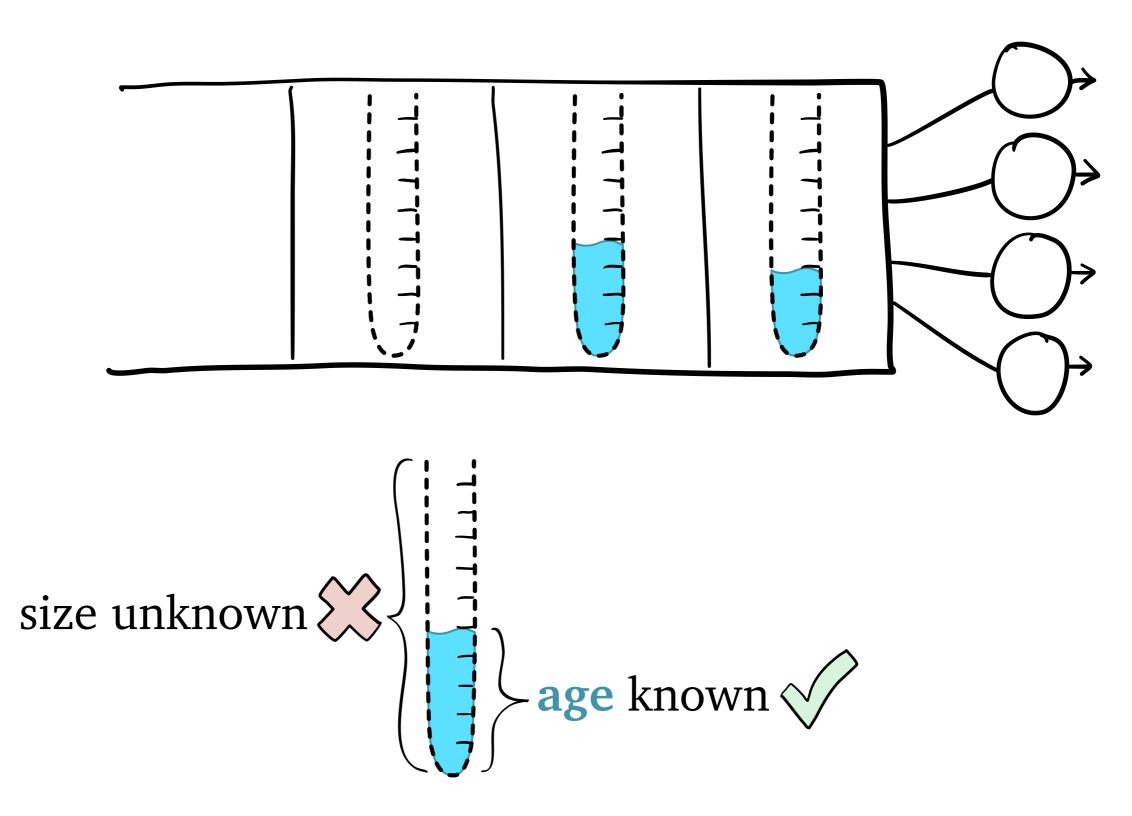
SRPT-*k* minimizes **E**[*T*] in heavy traffic $\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\text{SRPT-}k}]}{\mathbf{E}[T_{\text{SRPT-}1}]} = 1$

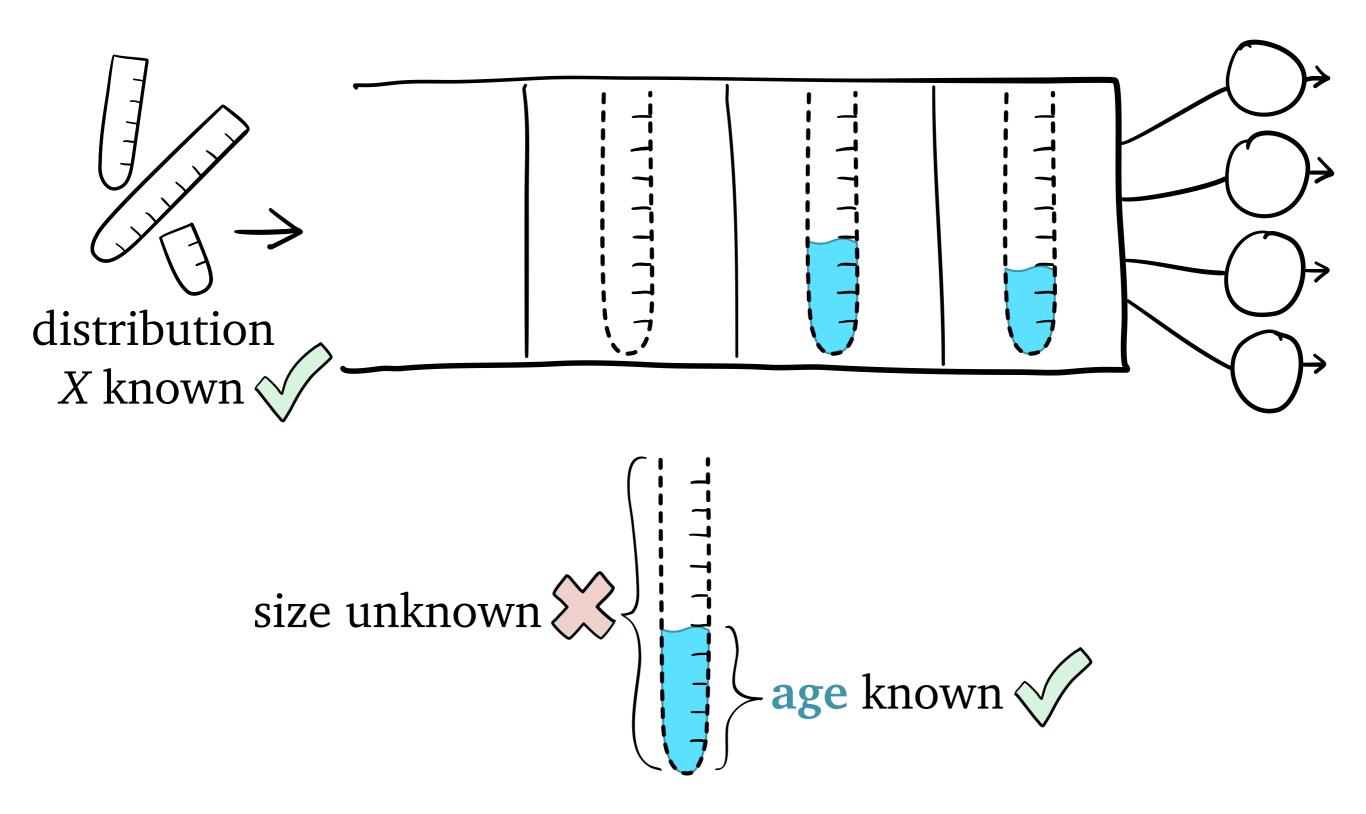
M/G/k Queue X = size distribution $\lambda = arrival rate$ $\rho = \lambda \mathbf{E}[X] < 1$ random arrivals k servers, each speed 1/k**SRPT-***k***:** always serve *k* jobs **SRPT-***k* minimizes A least remaining size **E**[*T*] in heavy traffic $\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\text{SRPT-}k}]}{\mathbf{E}[T_{\text{SRPT-}1}]} = 1$ needs known job sizes

This talk: unknown job sizes





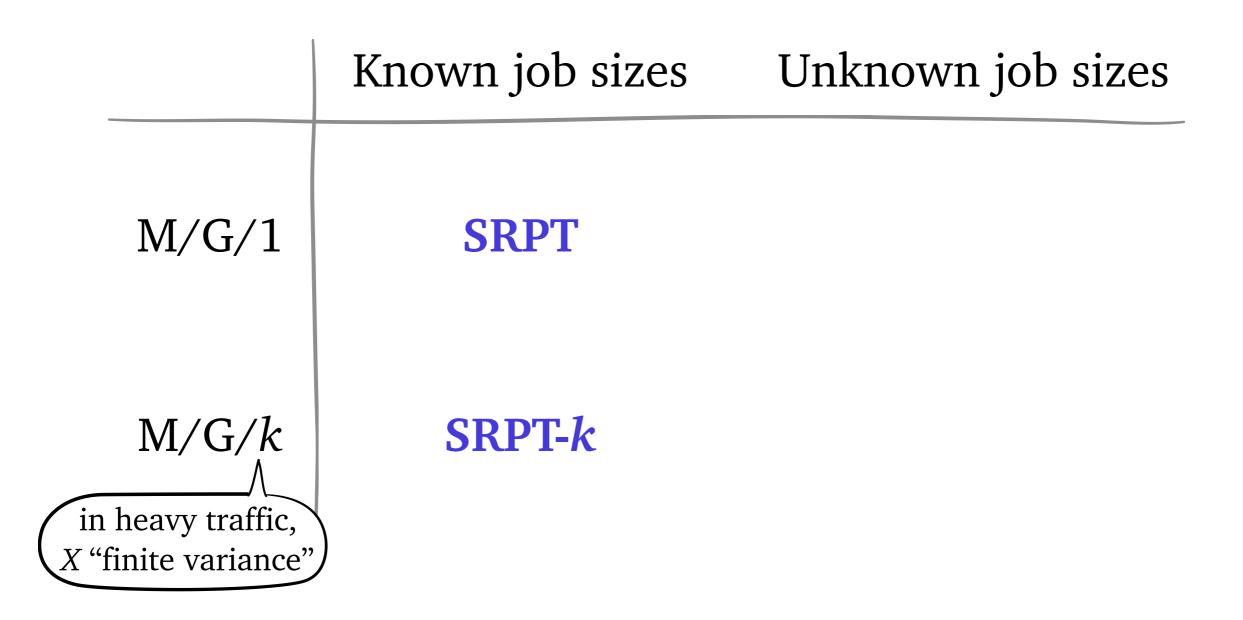


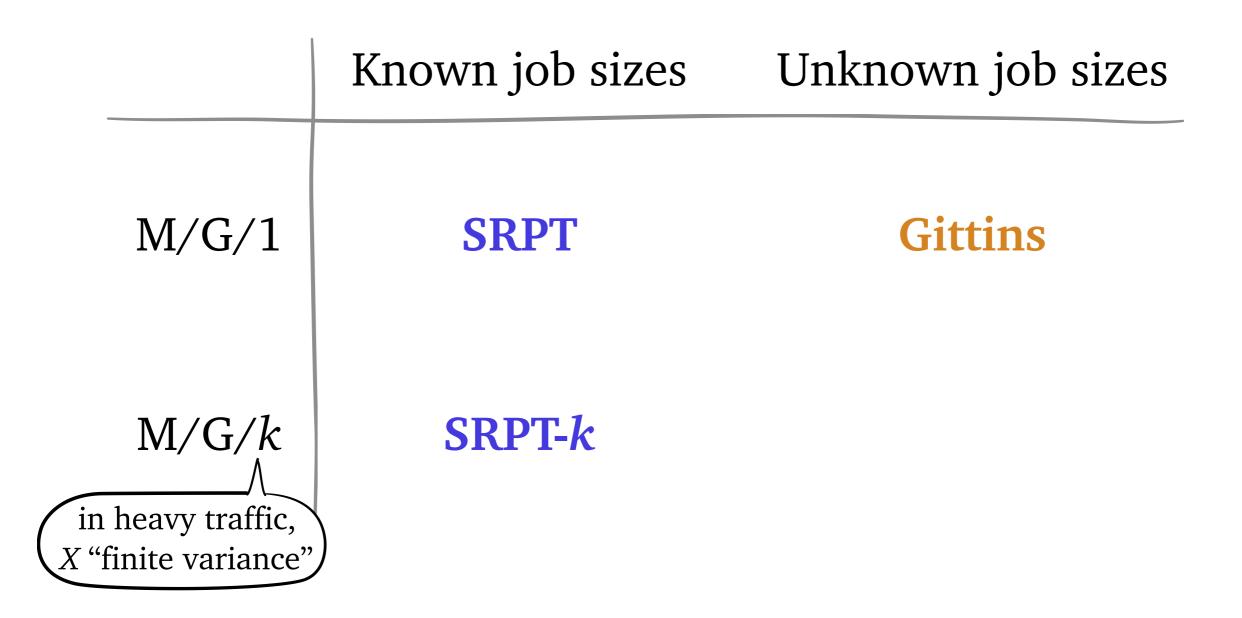


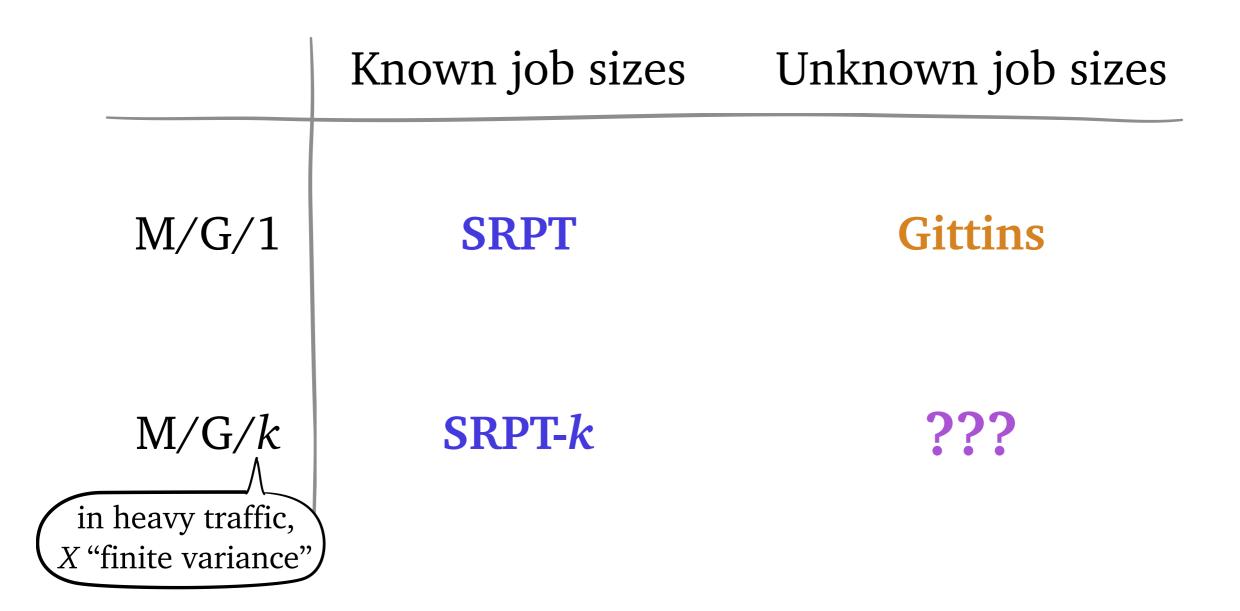
Minimizing $\mathbf{E}[T]$

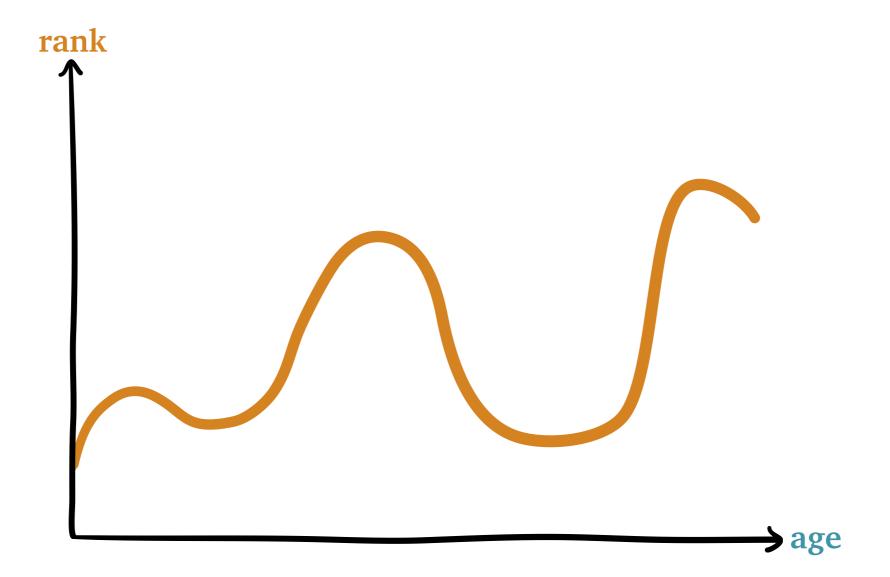
	Known job sizes	Unknown job sizes
M/G/1		
M/G/k		

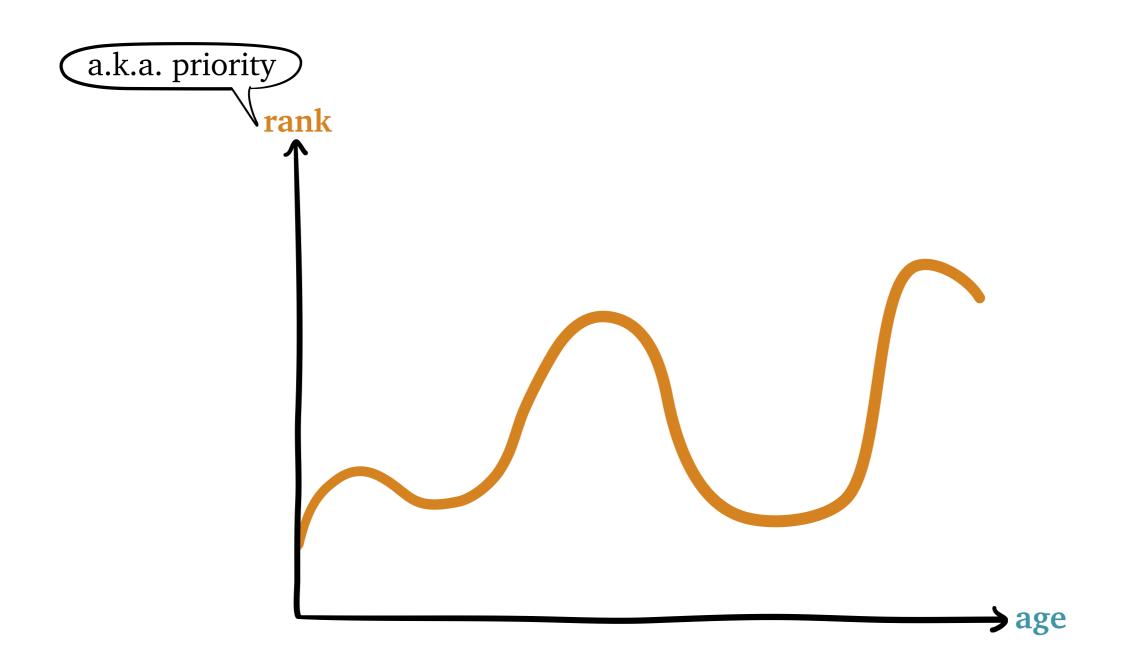
	Known job sizes	Unknown job sizes
M/G/1	SRPT	
M/G/k	SRPT-k	

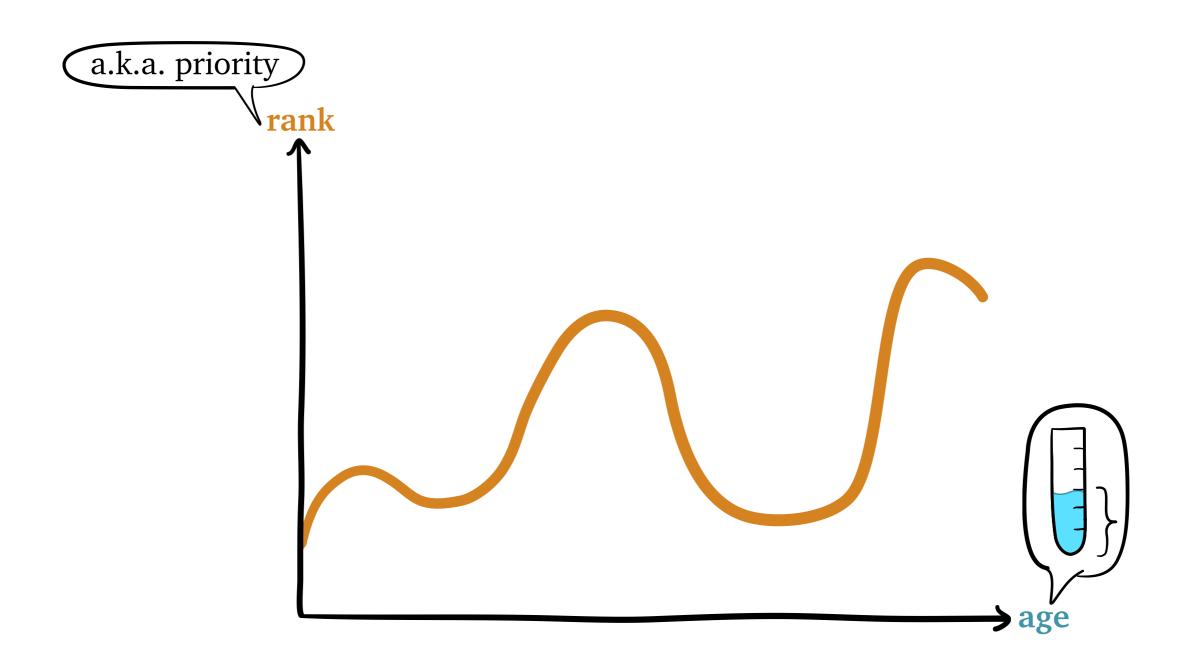


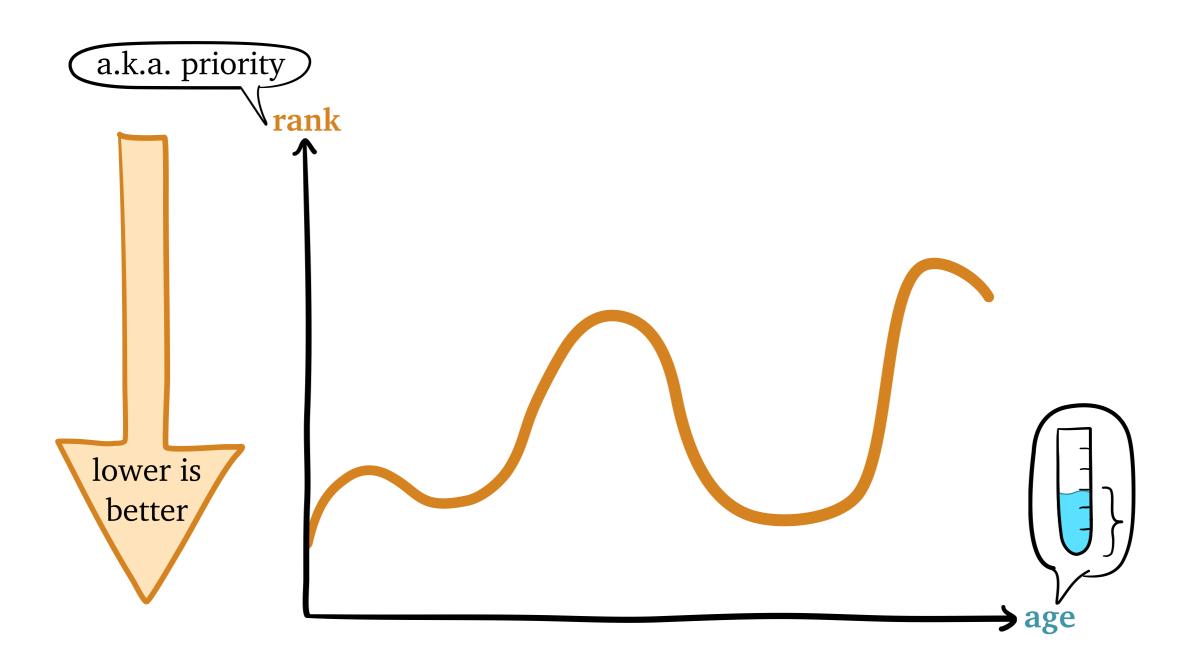


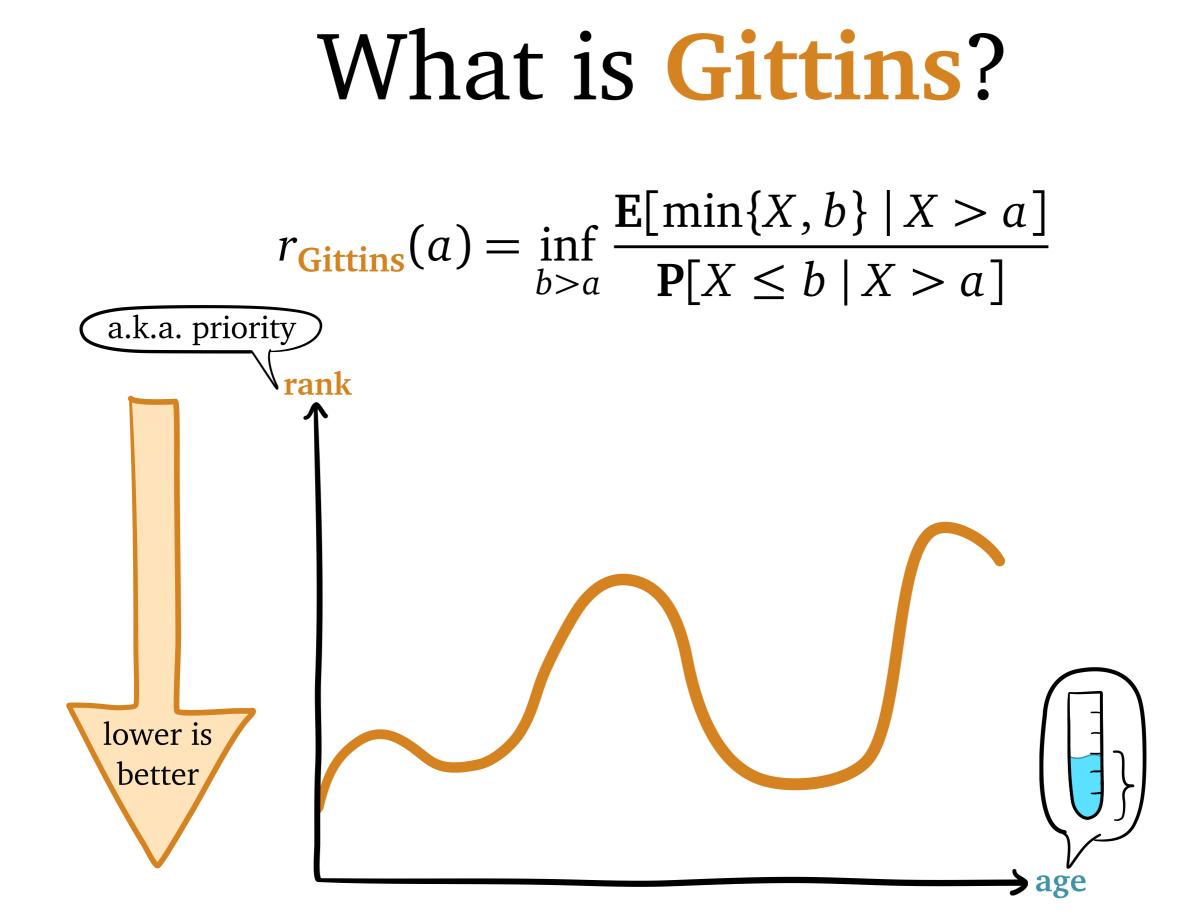


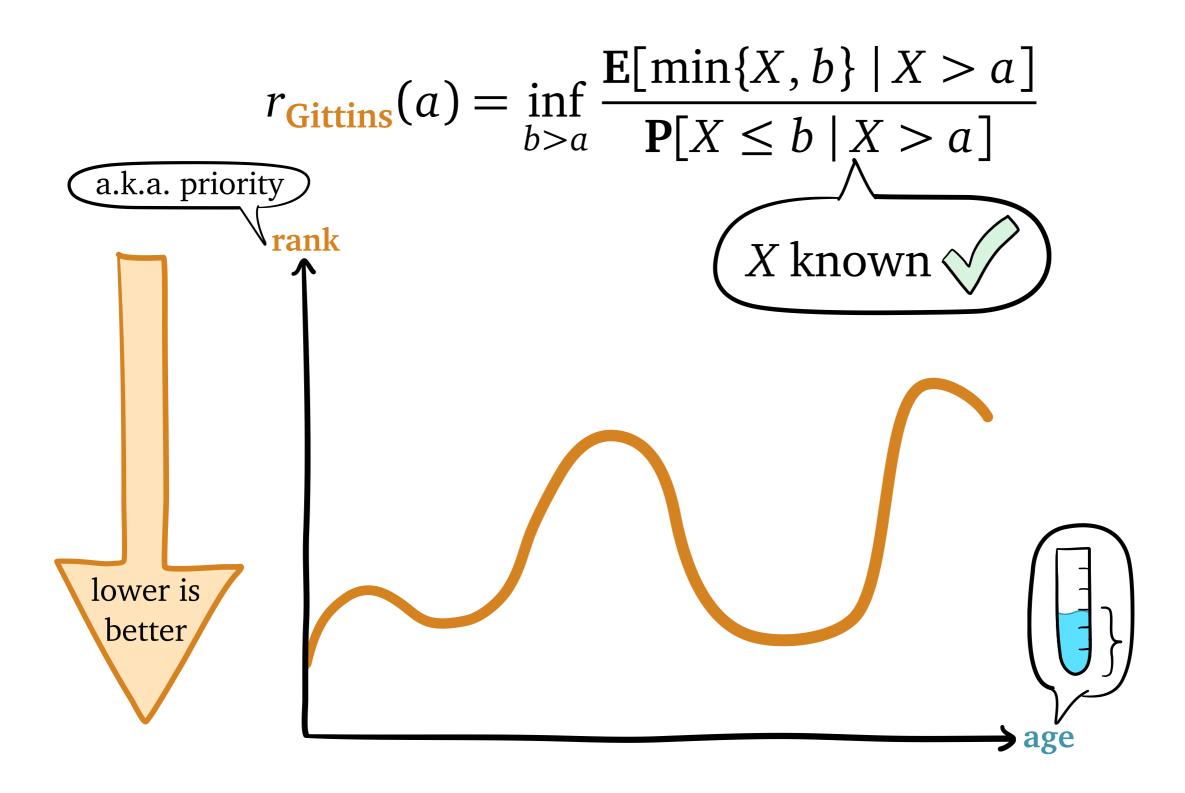


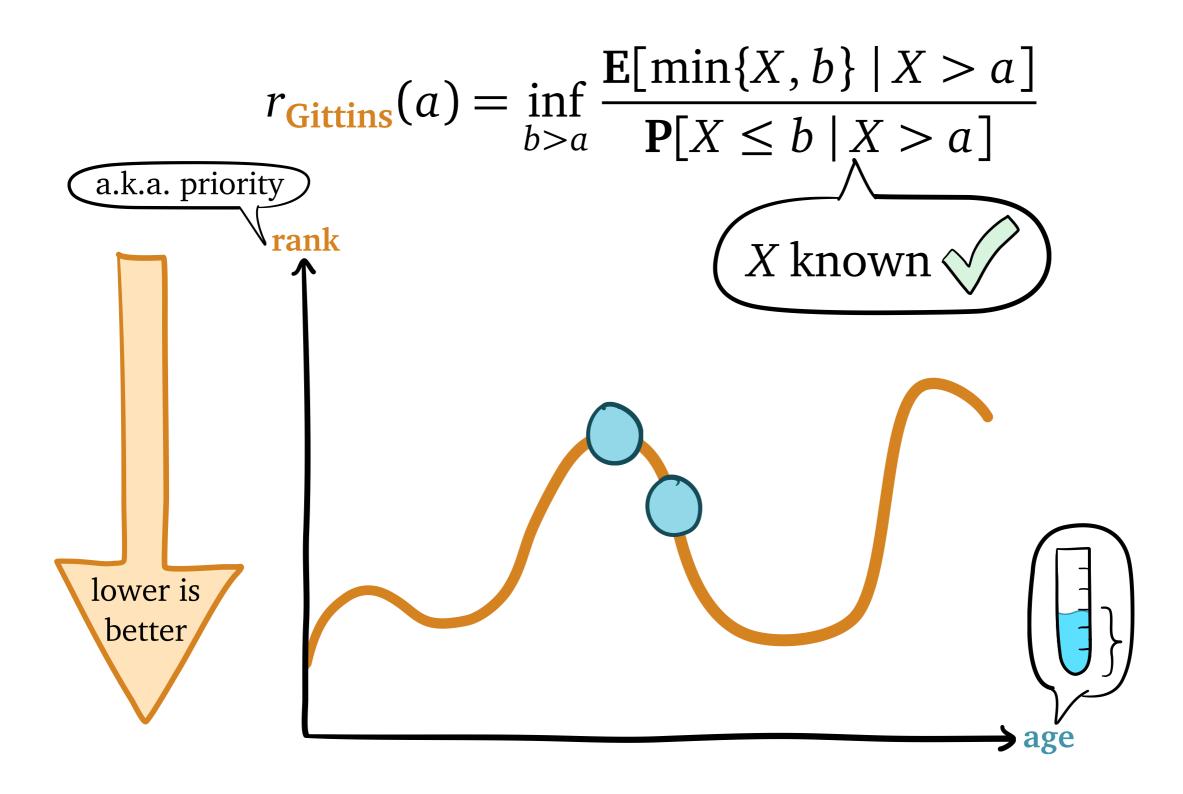


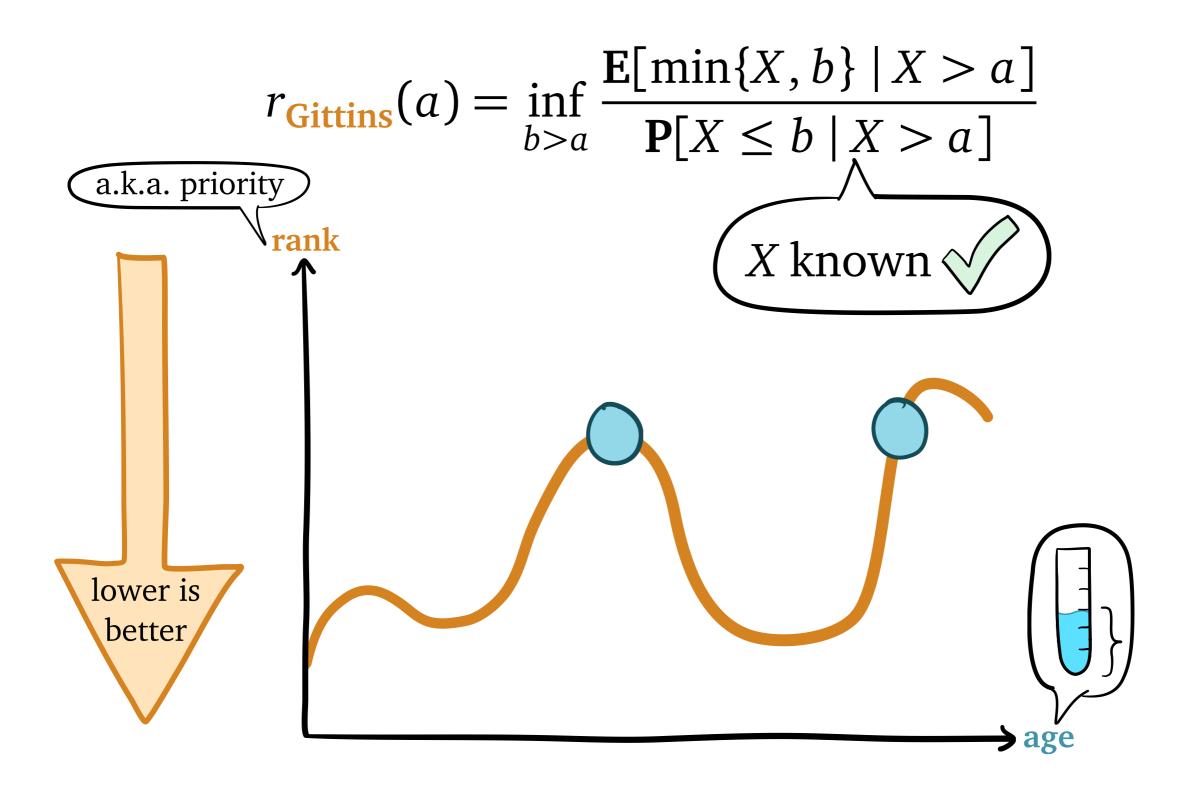


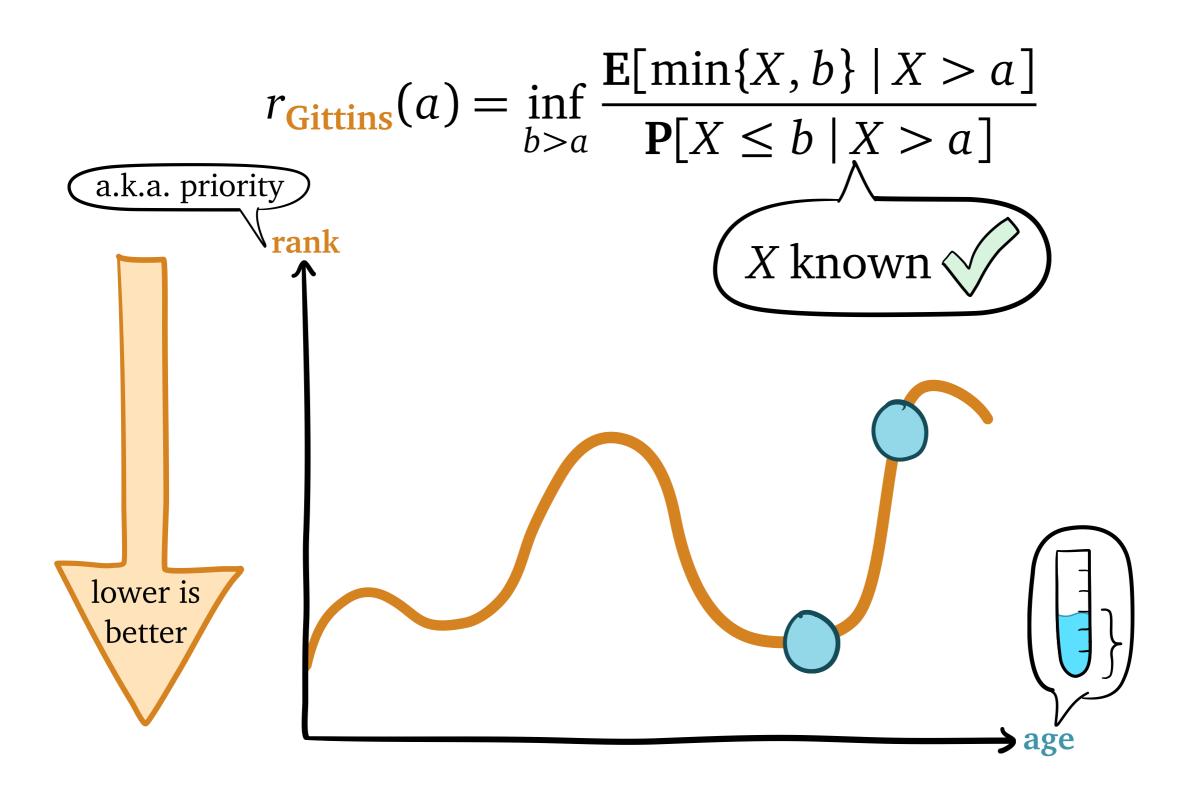


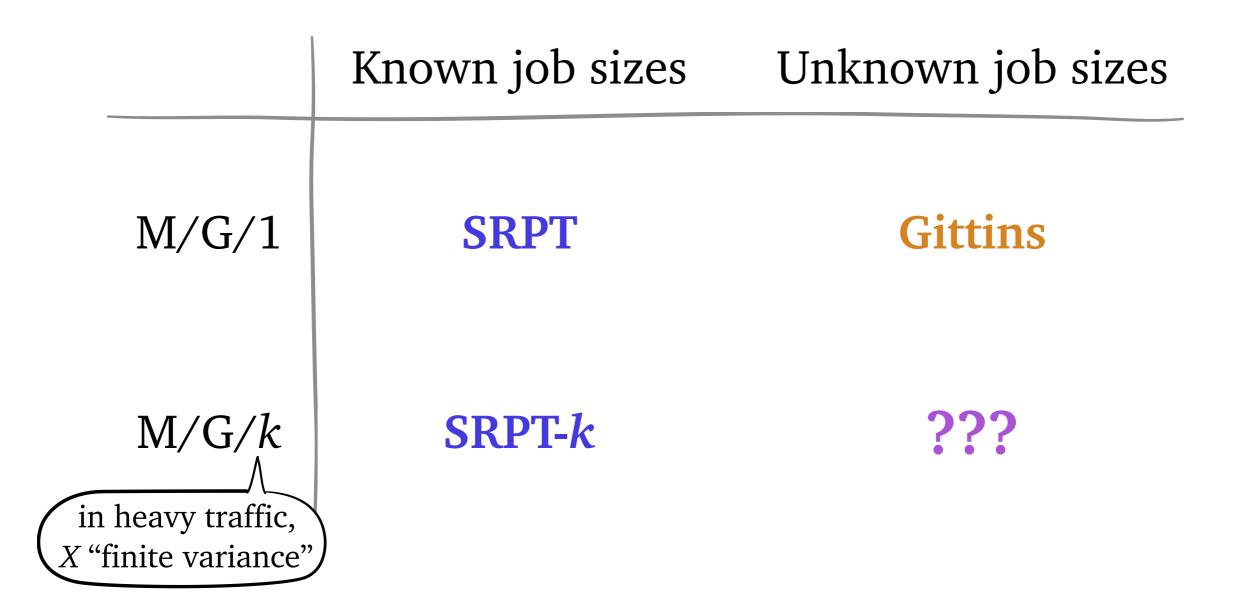


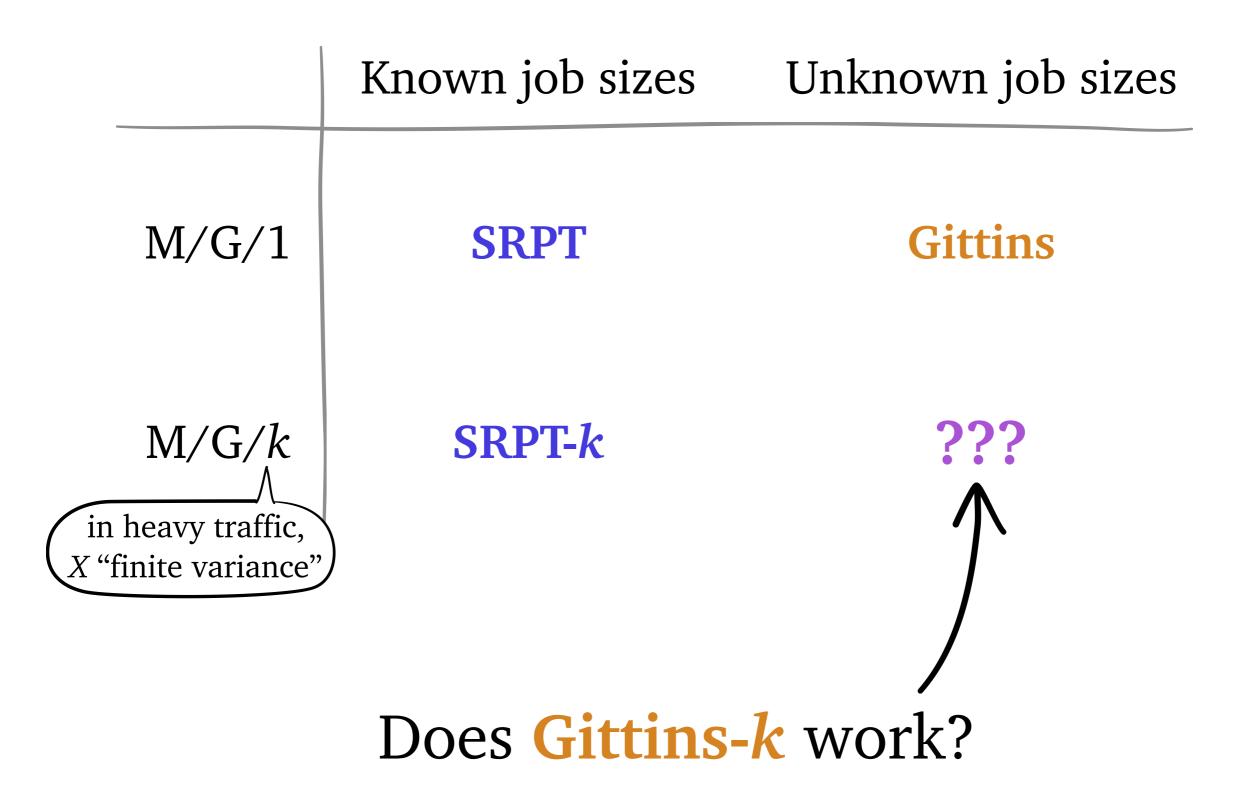








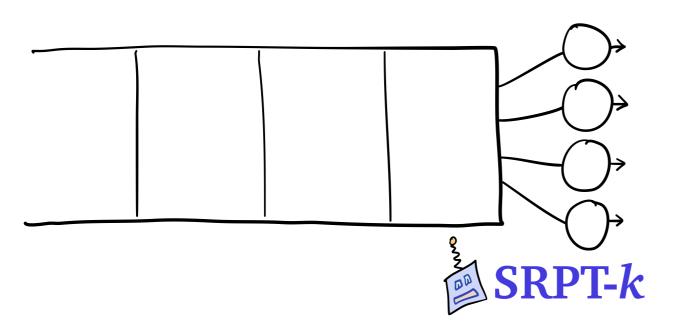


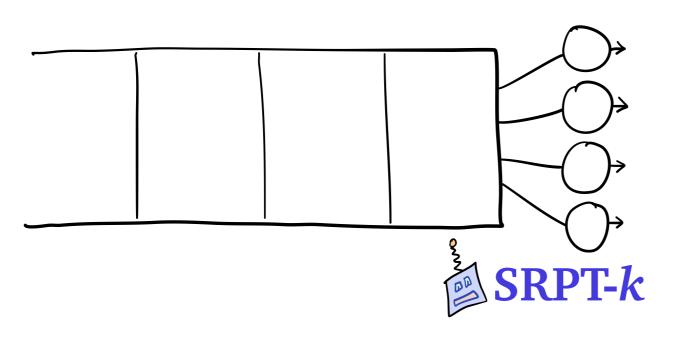


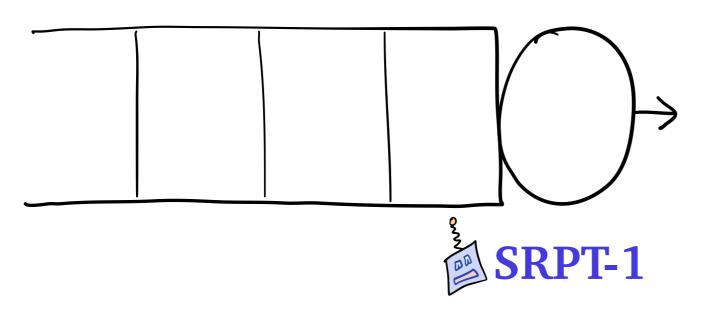
Background: SRPT-k optimality

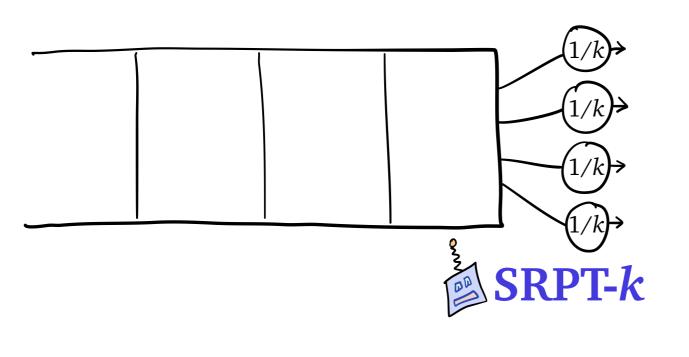
Background: SRPT-k optimality

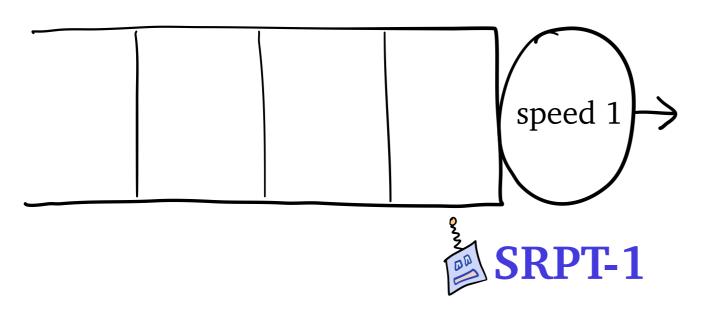
(Grosof, Scully, & Harchol-Balter, 2018)

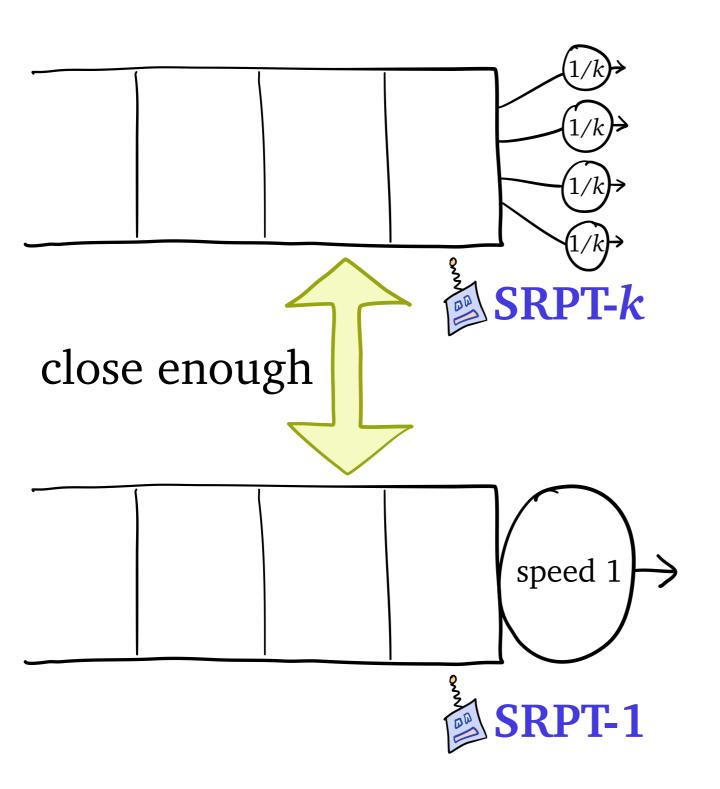


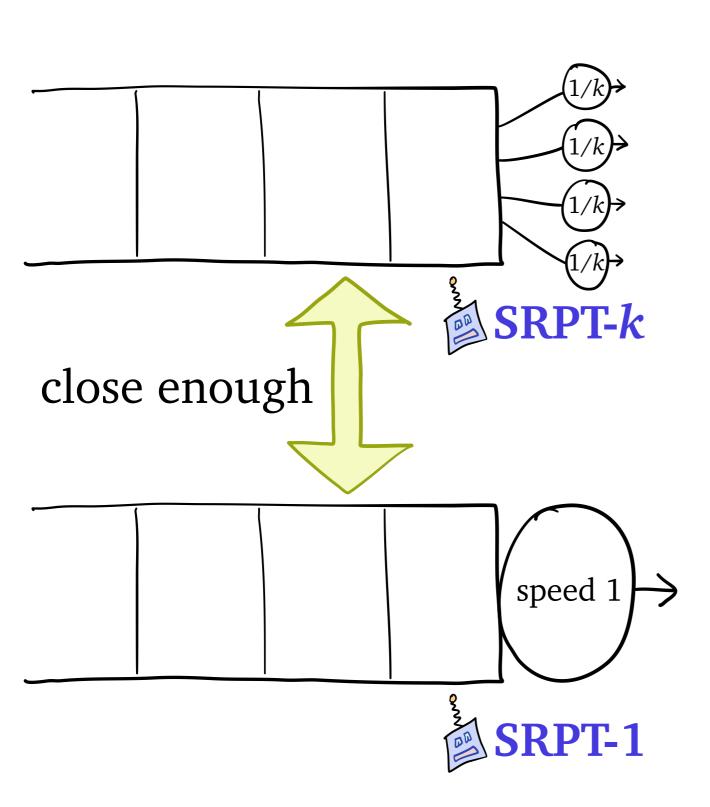






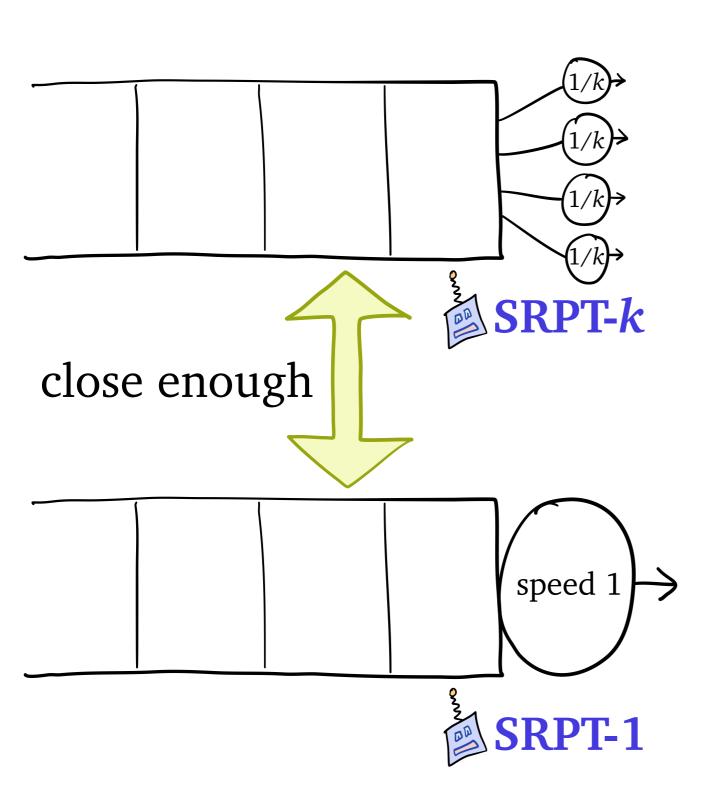






Step 1: link **SRPT-***k* to **SRPT-1**

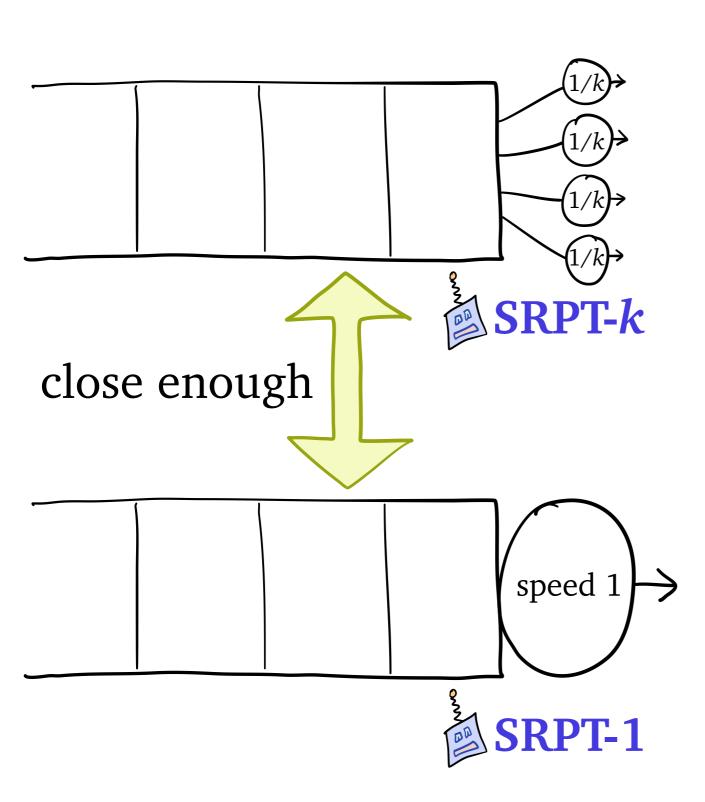
 $\mathbf{E}[T_{\mathbf{SRPT-}k}] \le \mathbf{E}[T_{\mathbf{SRPT-}1}] + k \cdot O\left(\log\frac{1}{1-\rho}\right)$



Step 1: link **SRPT-***k* to **SRPT-1**

 $\mathbf{E}[T_{\mathbf{SRPT-}k}] \le \mathbf{E}[T_{\mathbf{SRPT-}1}] + k \cdot O\left(\log\frac{1}{1-\rho}\right)$

Step 2: analyze heavy-traffic **SRPT-1** $E[T_{SRPT-1}] = \omega \left(\log \frac{1}{1-\rho} \right)$

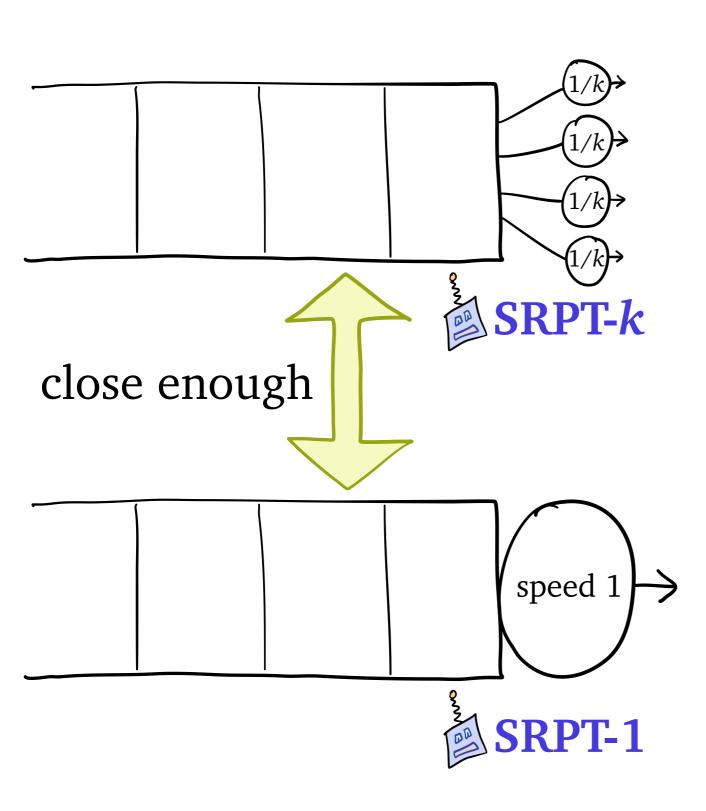


Step 1: link **SRPT-***k* to **SRPT-1**

 $\mathbf{E}[T_{\mathbf{SRPT-}k}] \le \mathbf{E}[T_{\mathbf{SRPT-}1}] + k \cdot O\left(\log\frac{1}{1-\rho}\right)$

Step 2: (Lin, Wierman, & Zwart, 2011) analyze heavy-traffic SRPT-1

$$\mathbf{E}[T_{\text{SRPT-1}}] = \omega \left(\log \frac{1}{1-\rho}\right)$$



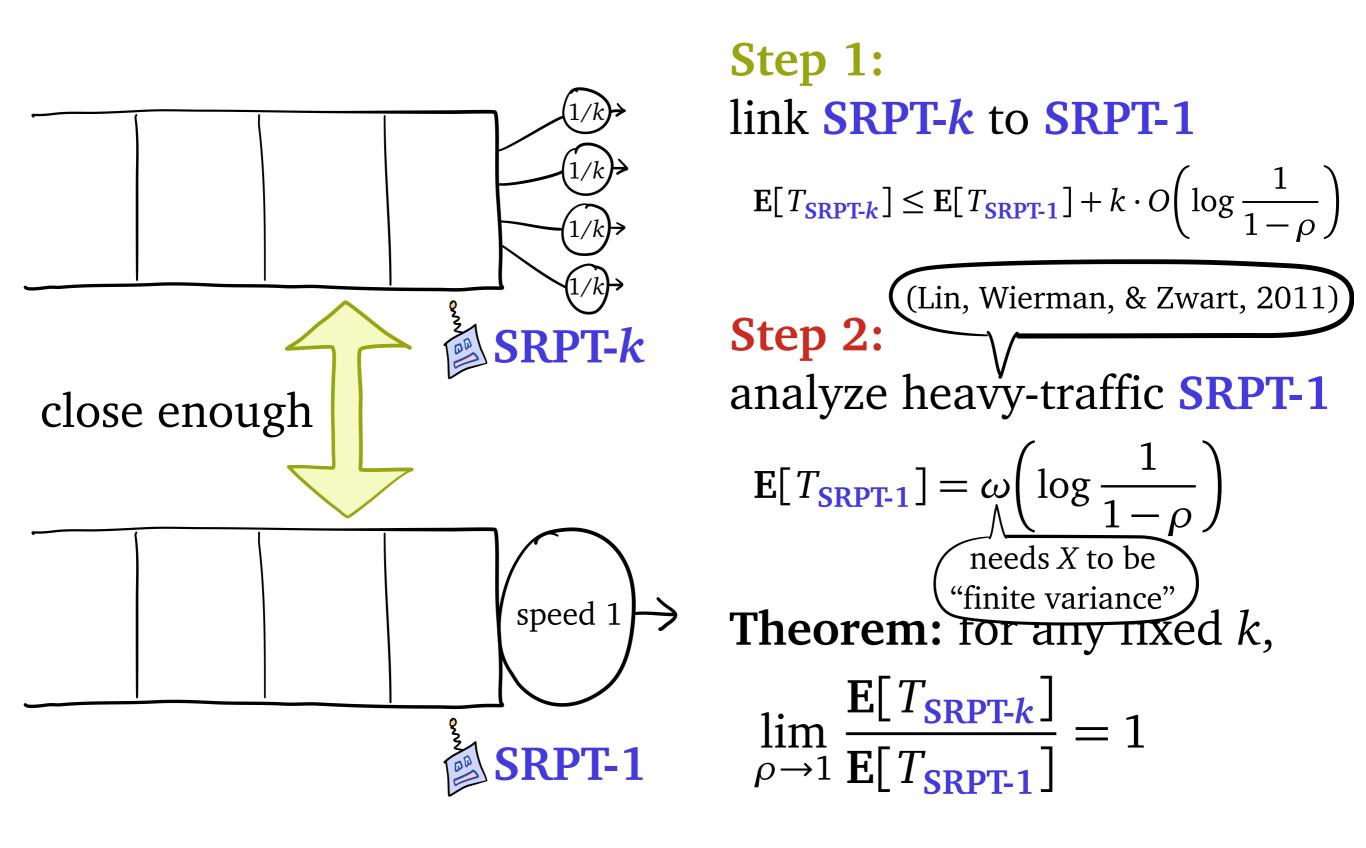
Step 1: link SRPT-*k* to SRPT-1

 $\mathbf{E}[T_{\mathbf{SRPT-}k}] \le \mathbf{E}[T_{\mathbf{SRPT-}1}] + k \cdot O\left(\log\frac{1}{1-\rho}\right)$

Step 2: (Lin, Wierman, & Zwart, 2011) analyze heavy-traffic SRPT-1

$$\mathbf{E}[T_{\mathbf{SRPT-1}}] = \omega \left(\log \frac{1}{1-\rho}\right)$$

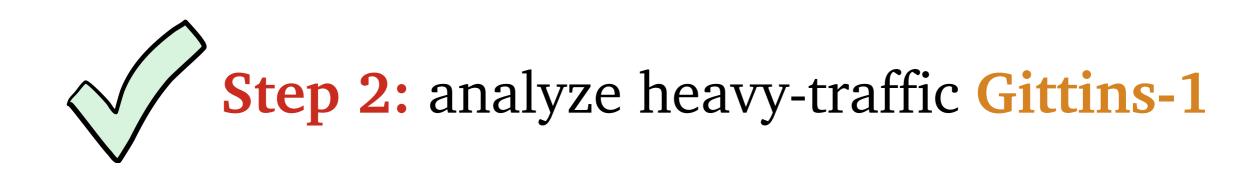
Theorem: for any fixed *k*, $\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\text{SRPT-}k}]}{\mathbf{E}[T_{\text{SRPT-}1}]} = 1$

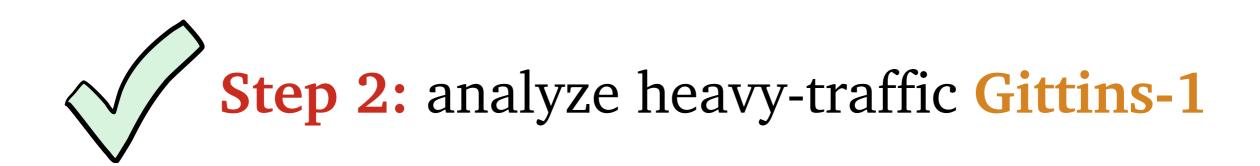


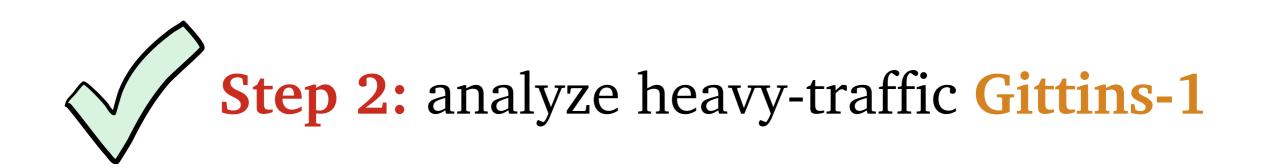
Step 1: link Gittins-k to Gittins-1

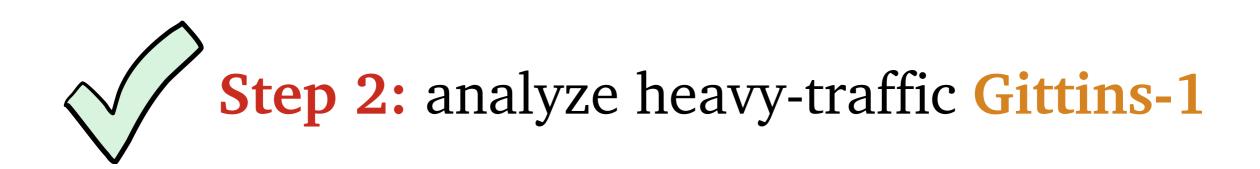
Step 2: analyze heavy-traffic **Gittins-1**

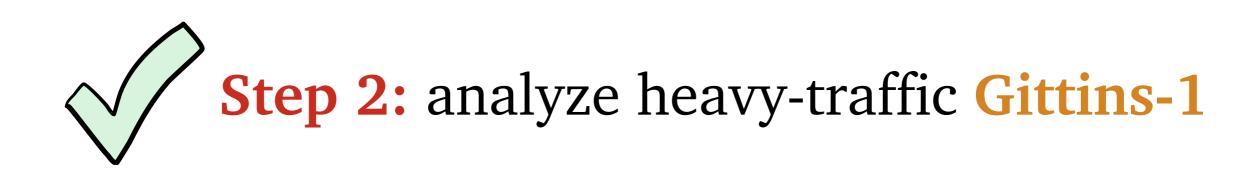
Step 1: link Gittins-k to Gittins-1

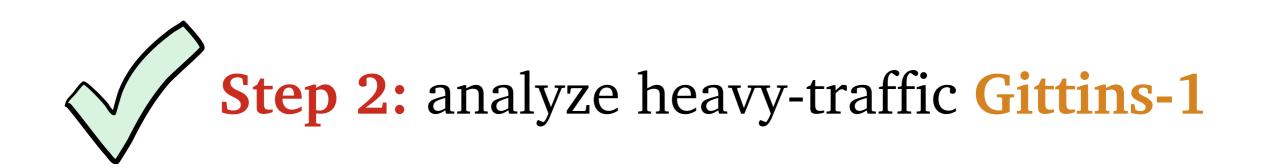










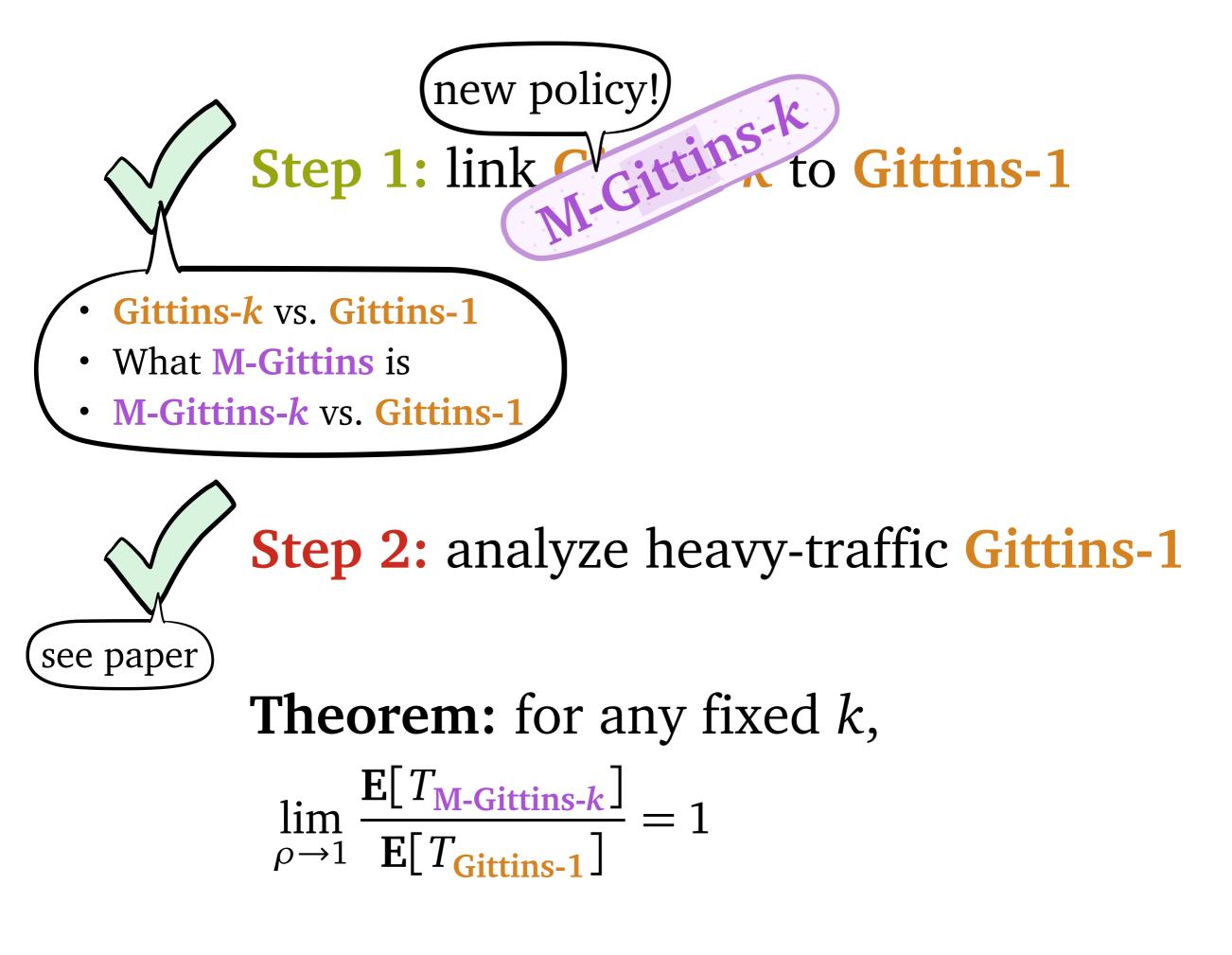


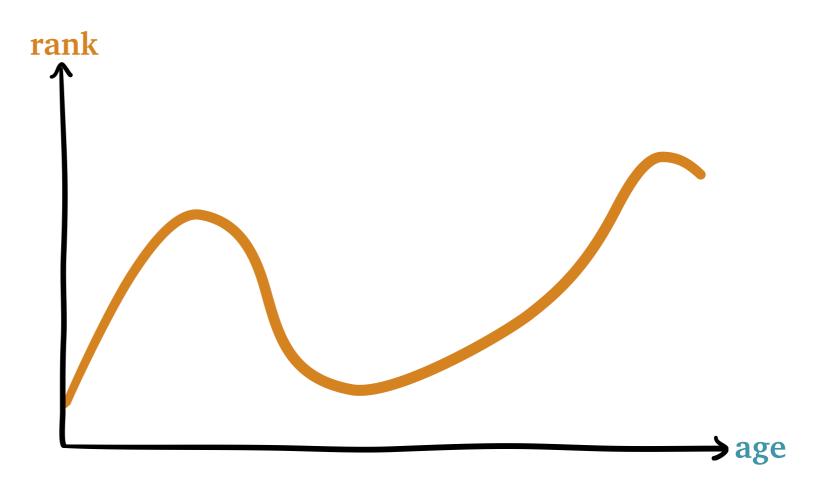
Step 2: analyze heavy-traffic **Gittins-1**

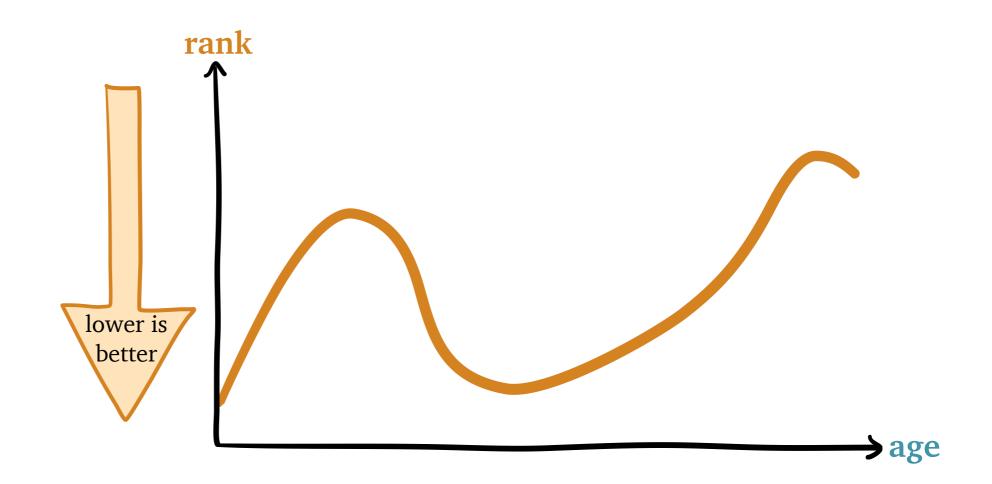
Theorem: for any fixed k, $\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}-\mathbf{Gittins}-k}]}{\mathbf{E}[T_{\mathbf{Gittins}-1}]} = 1$

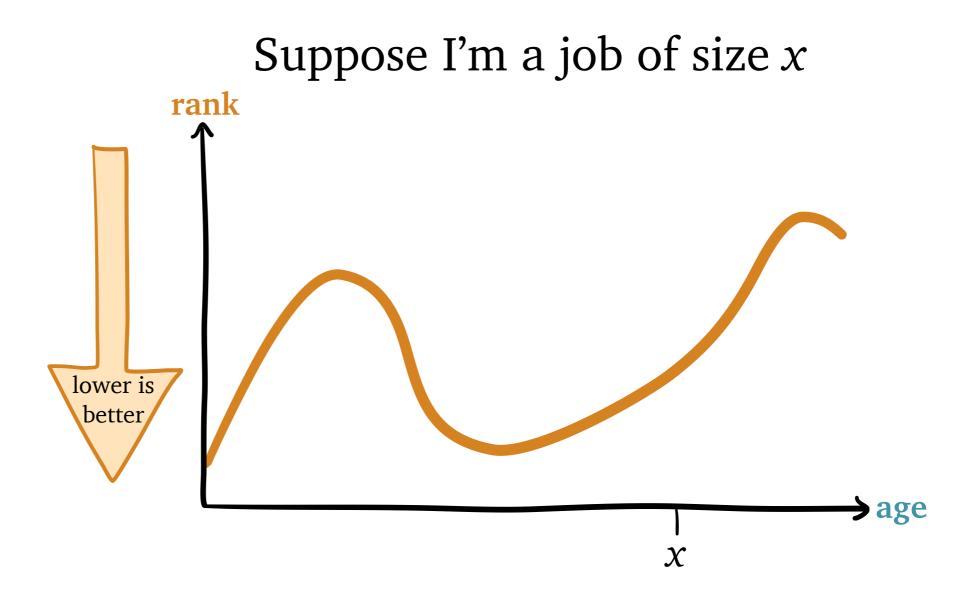
Step 2: analyze heavy-traffic Gittins-1

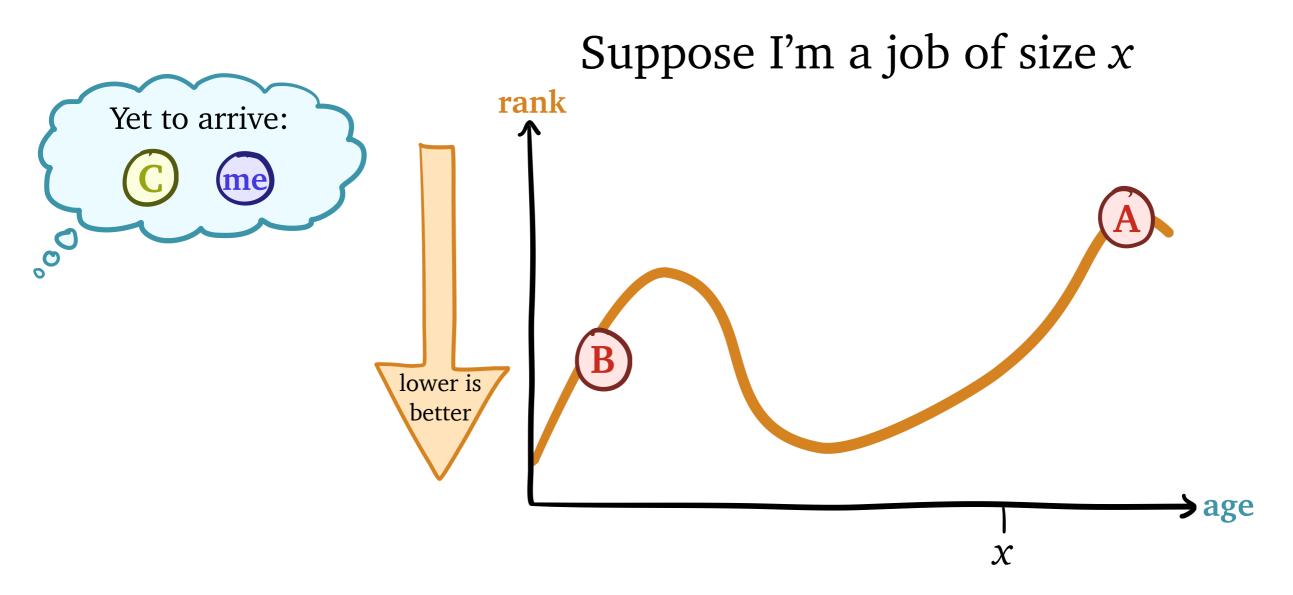
Theorem: for any fixed k, $\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}-\mathbf{Gittins}-k}]}{\mathbf{E}[T_{\mathbf{Gitting}-1}]} = 1$

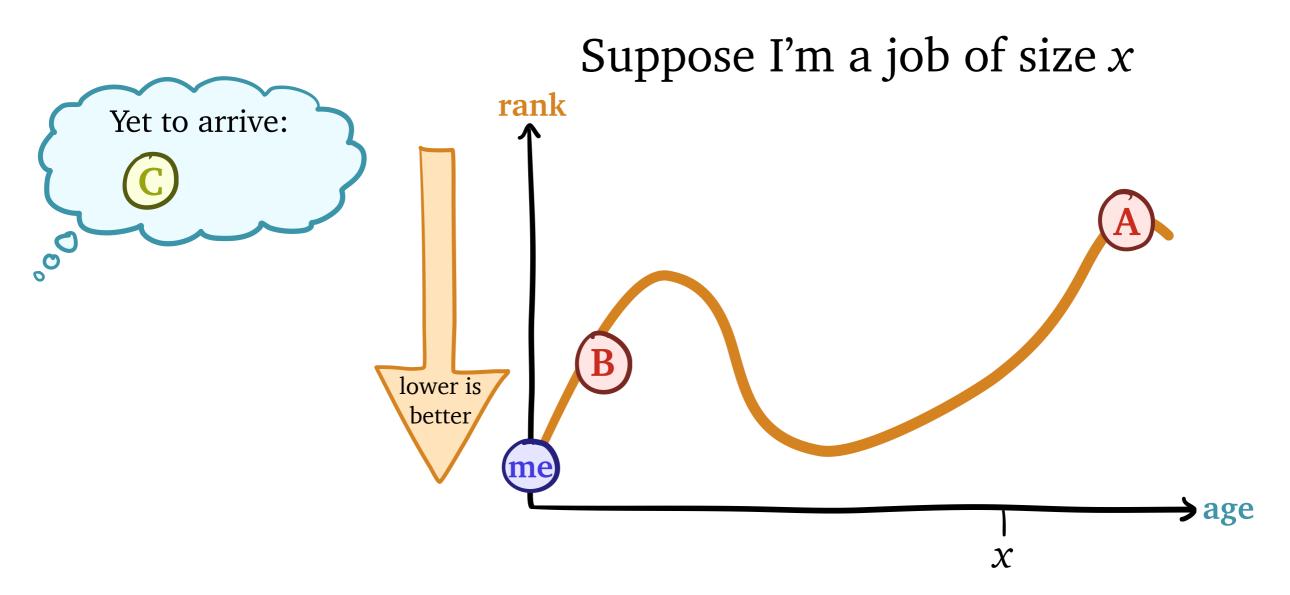


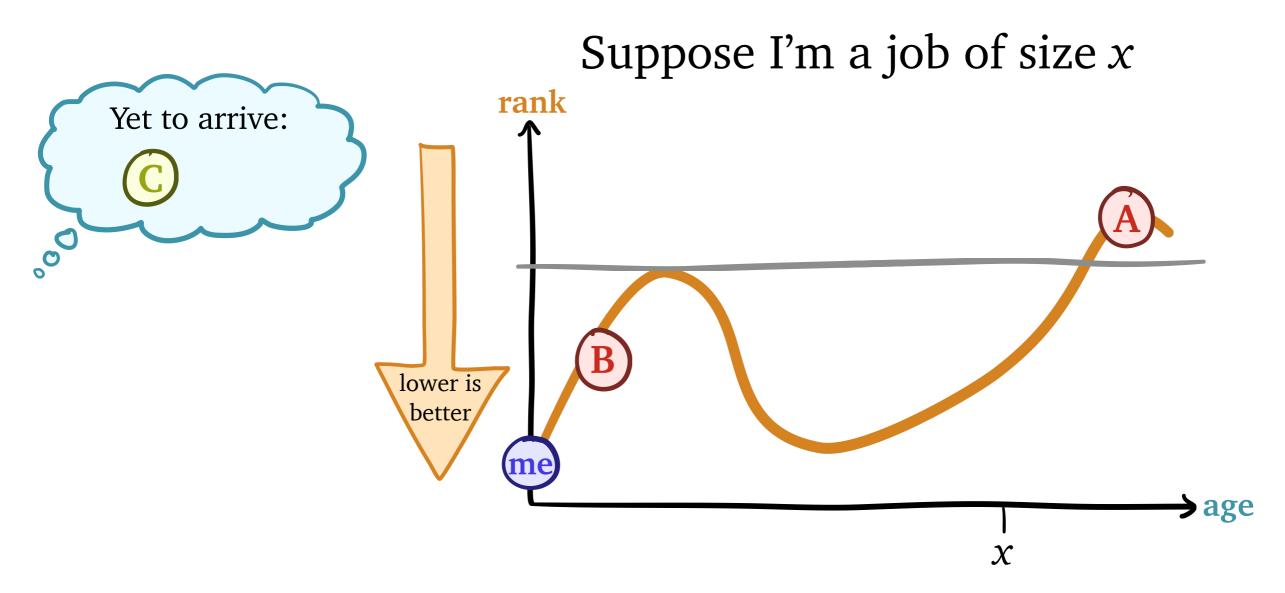


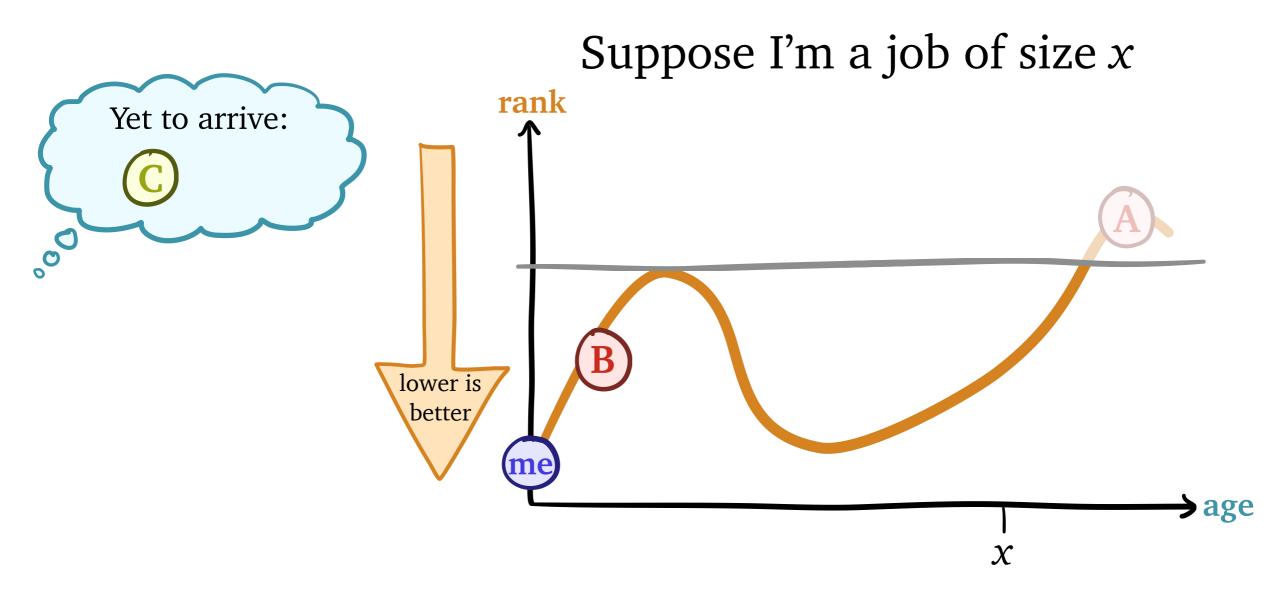


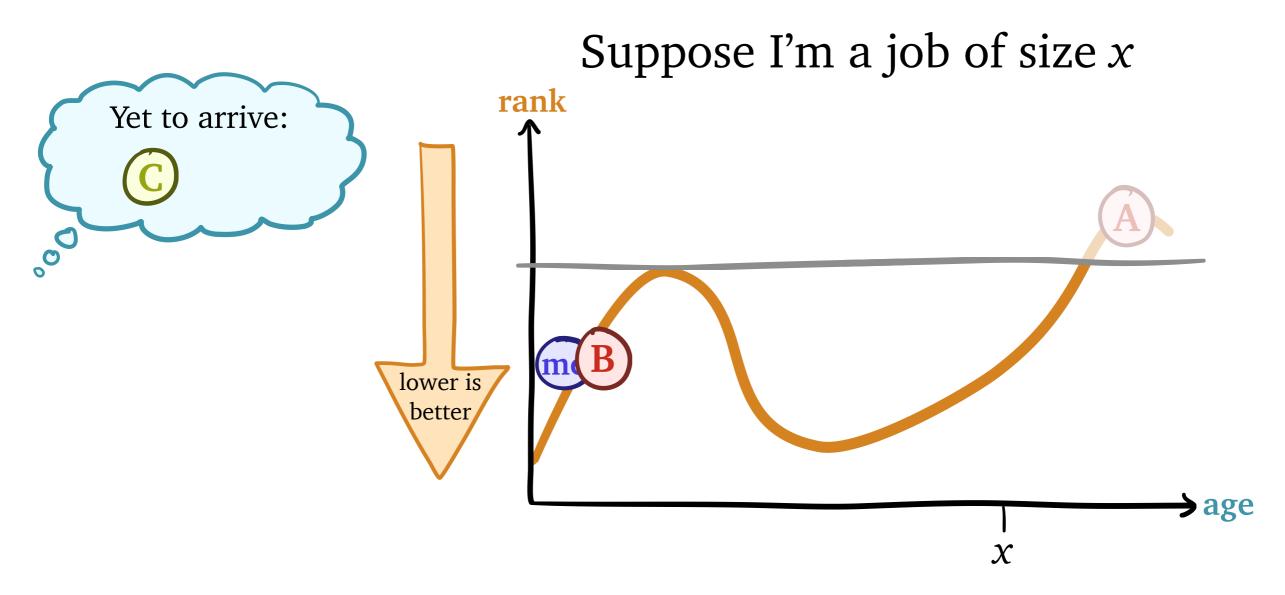


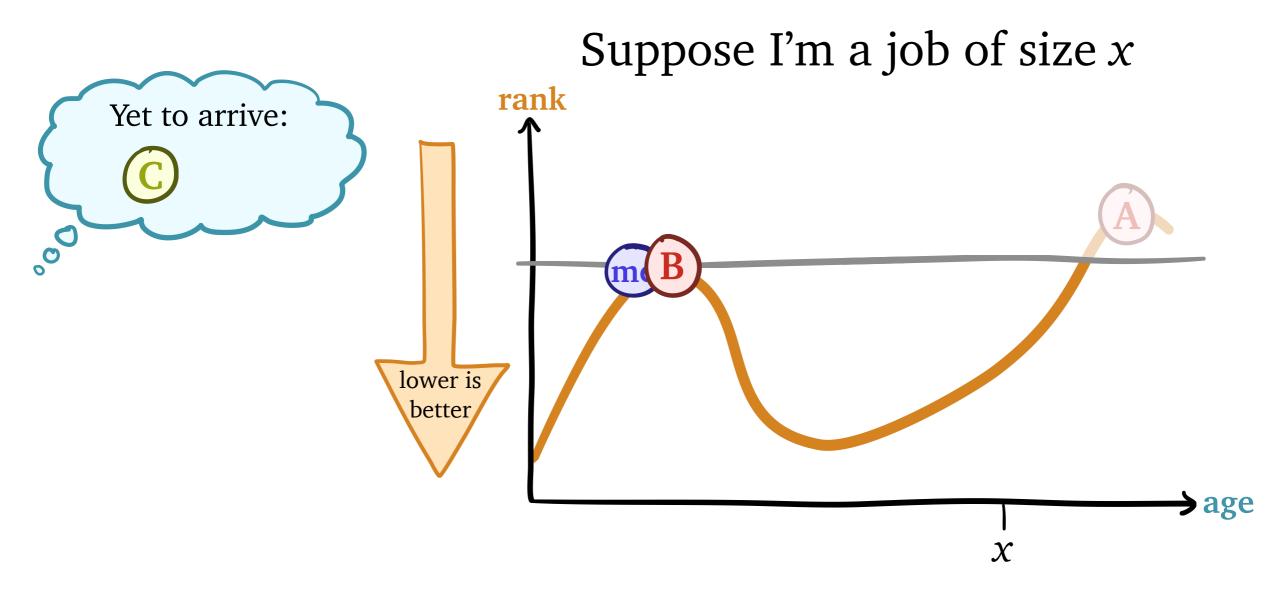


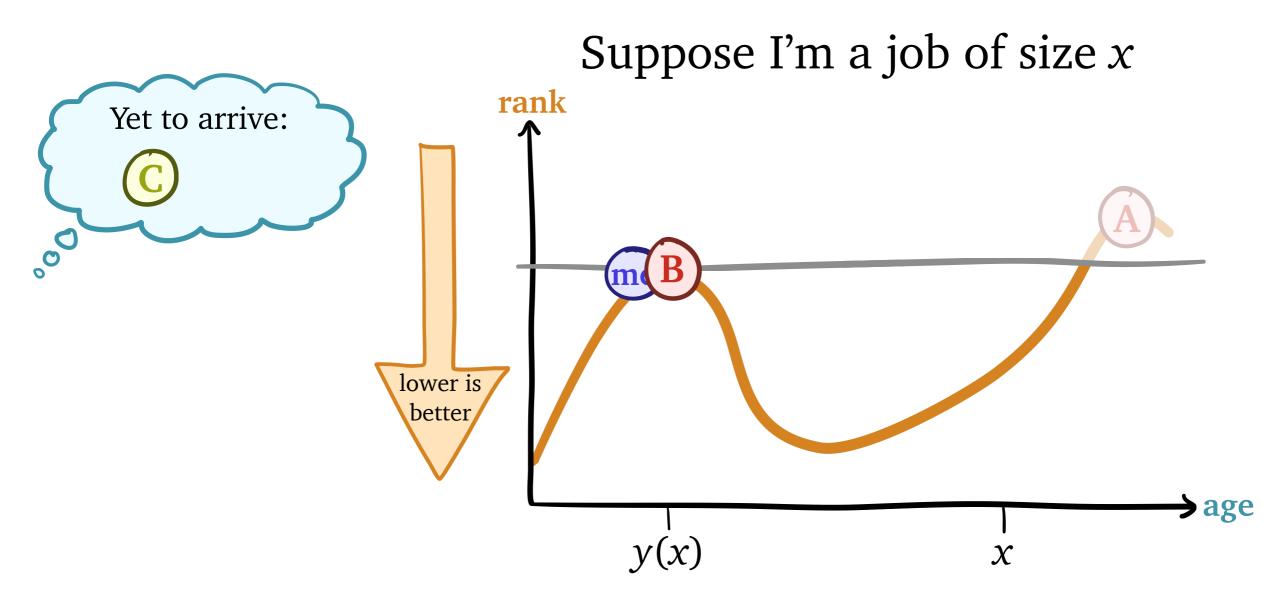


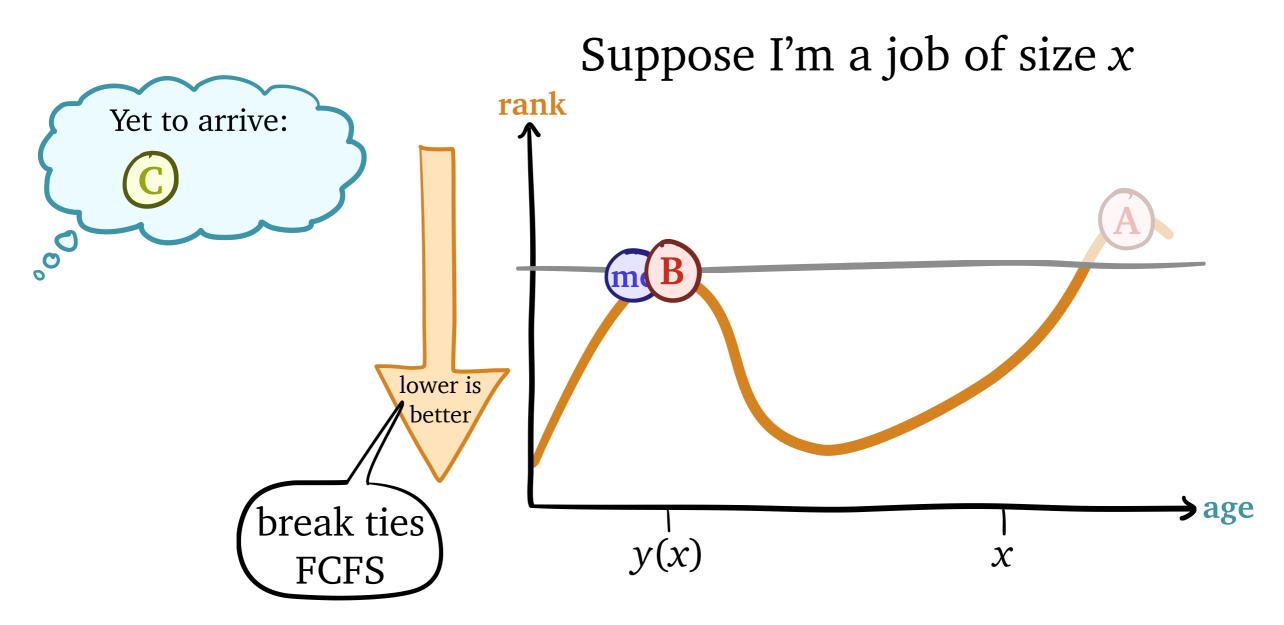


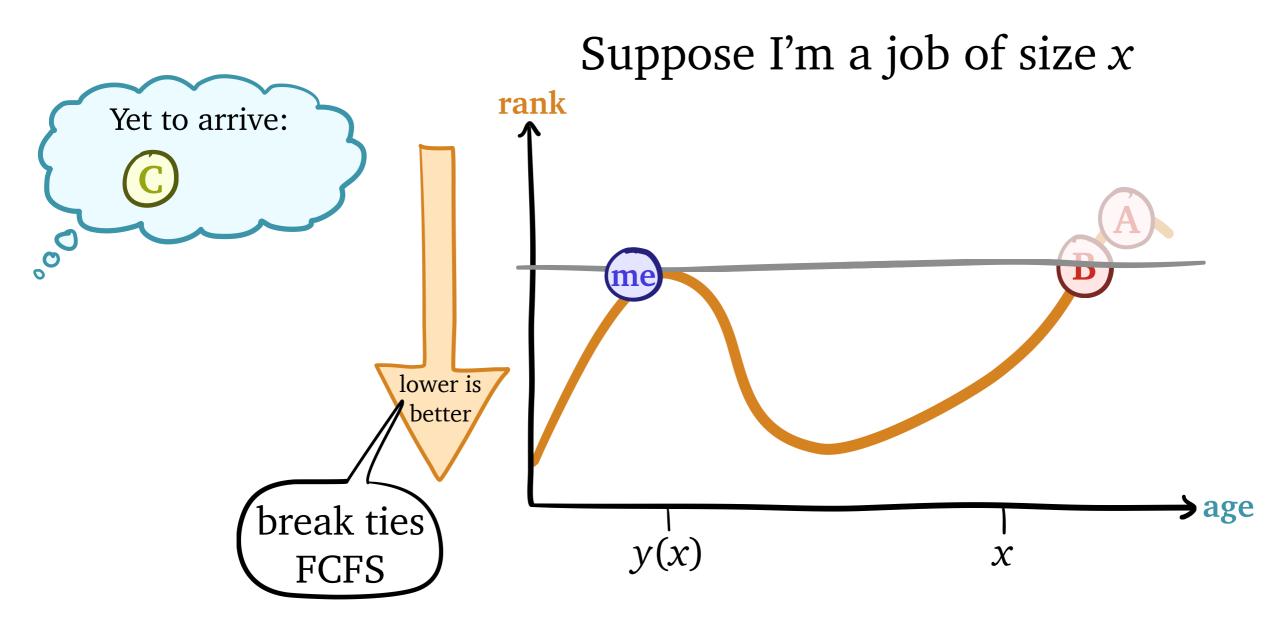


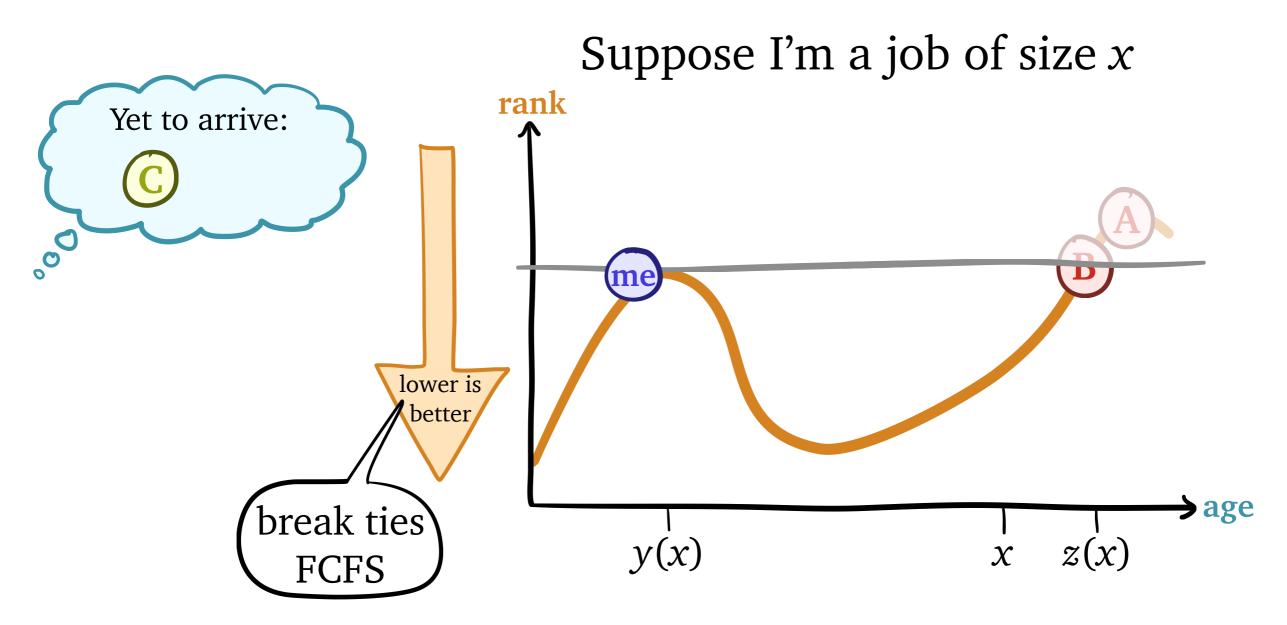


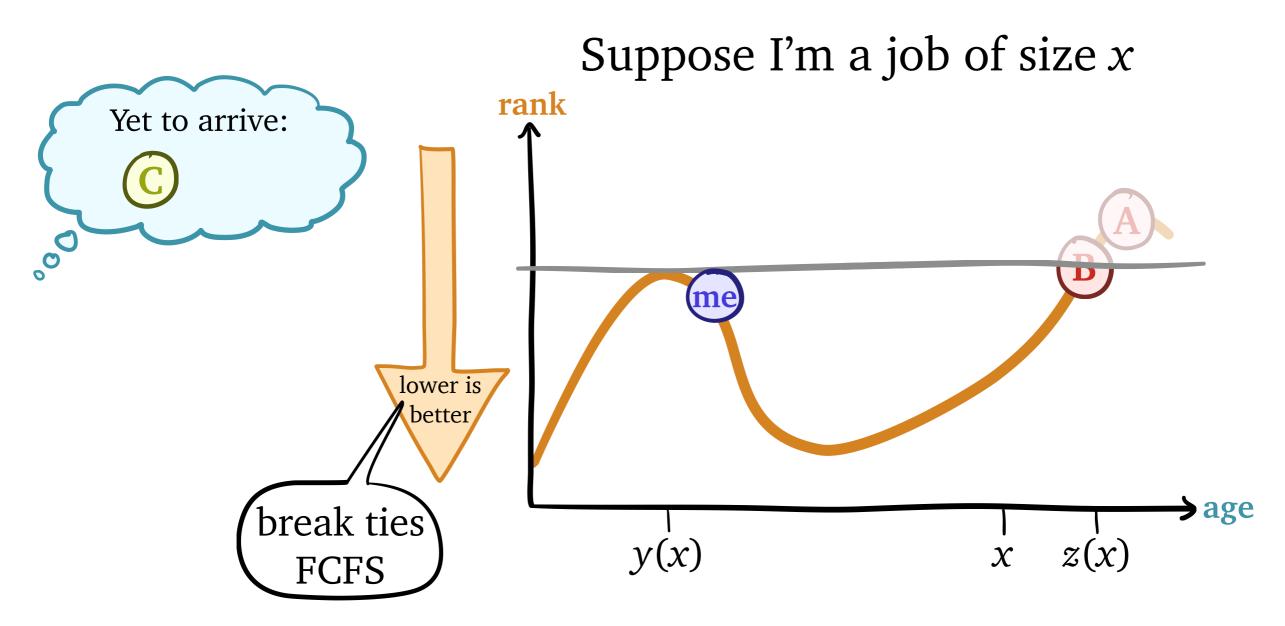


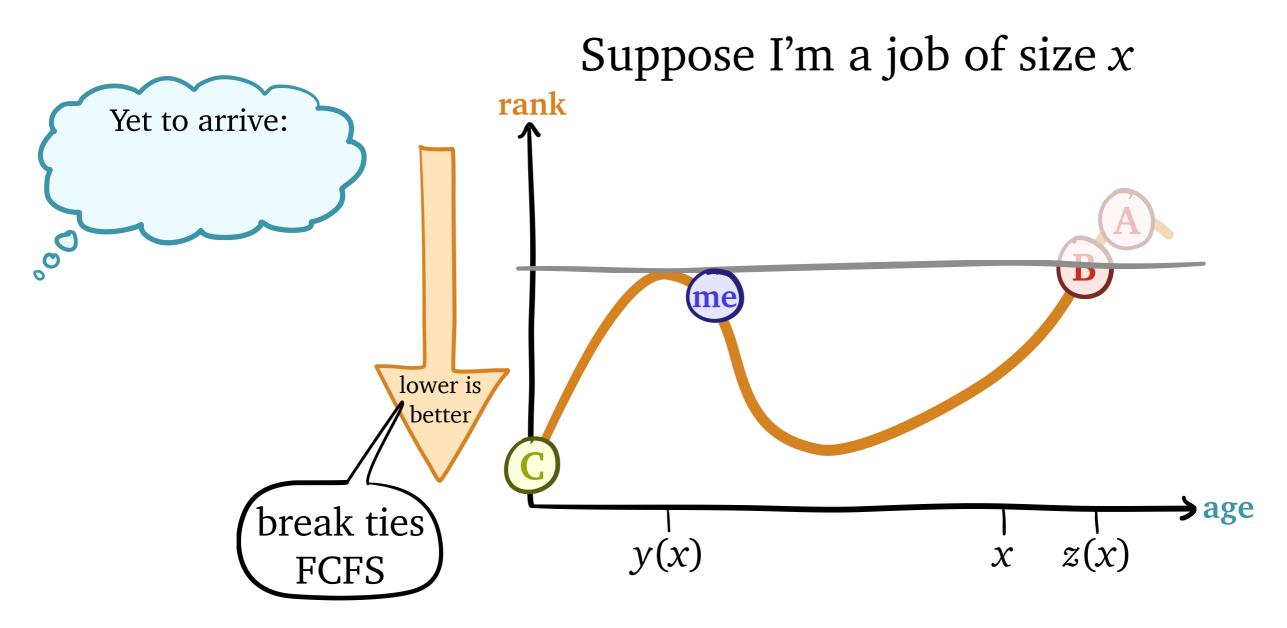


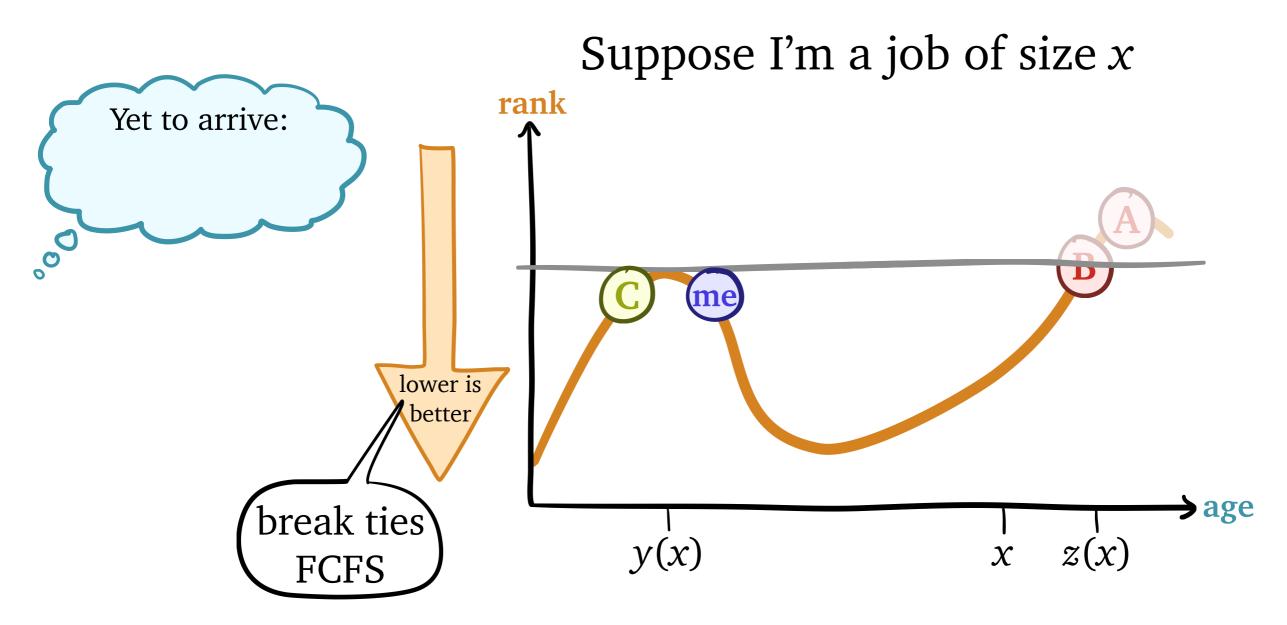


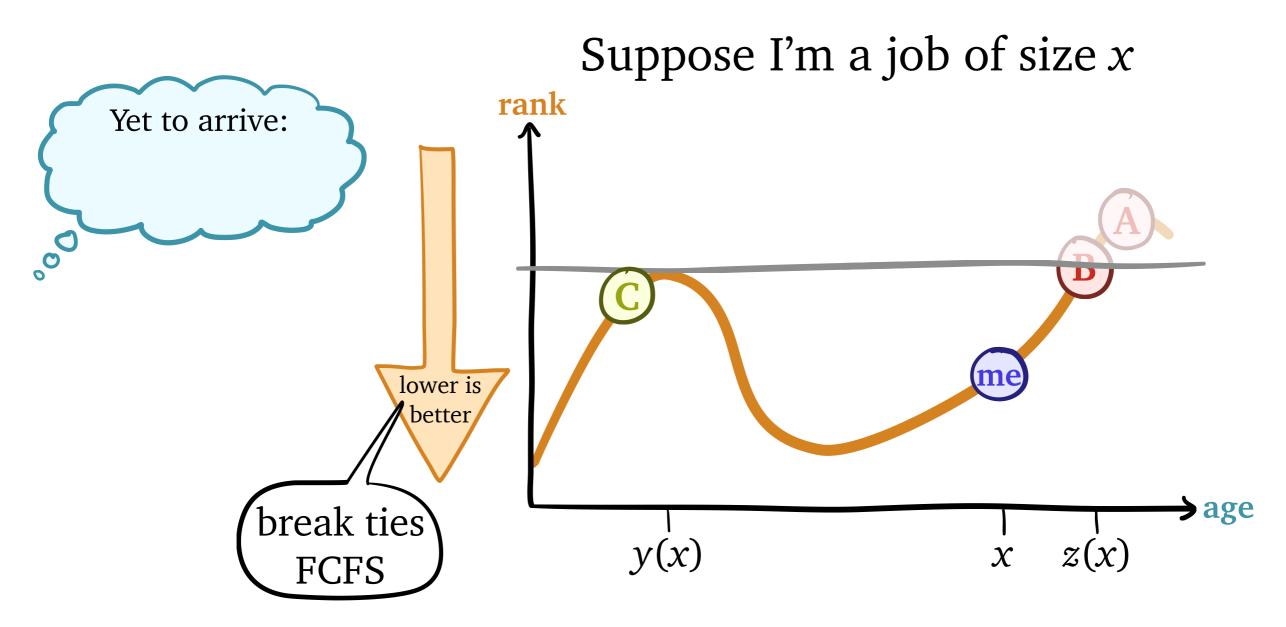


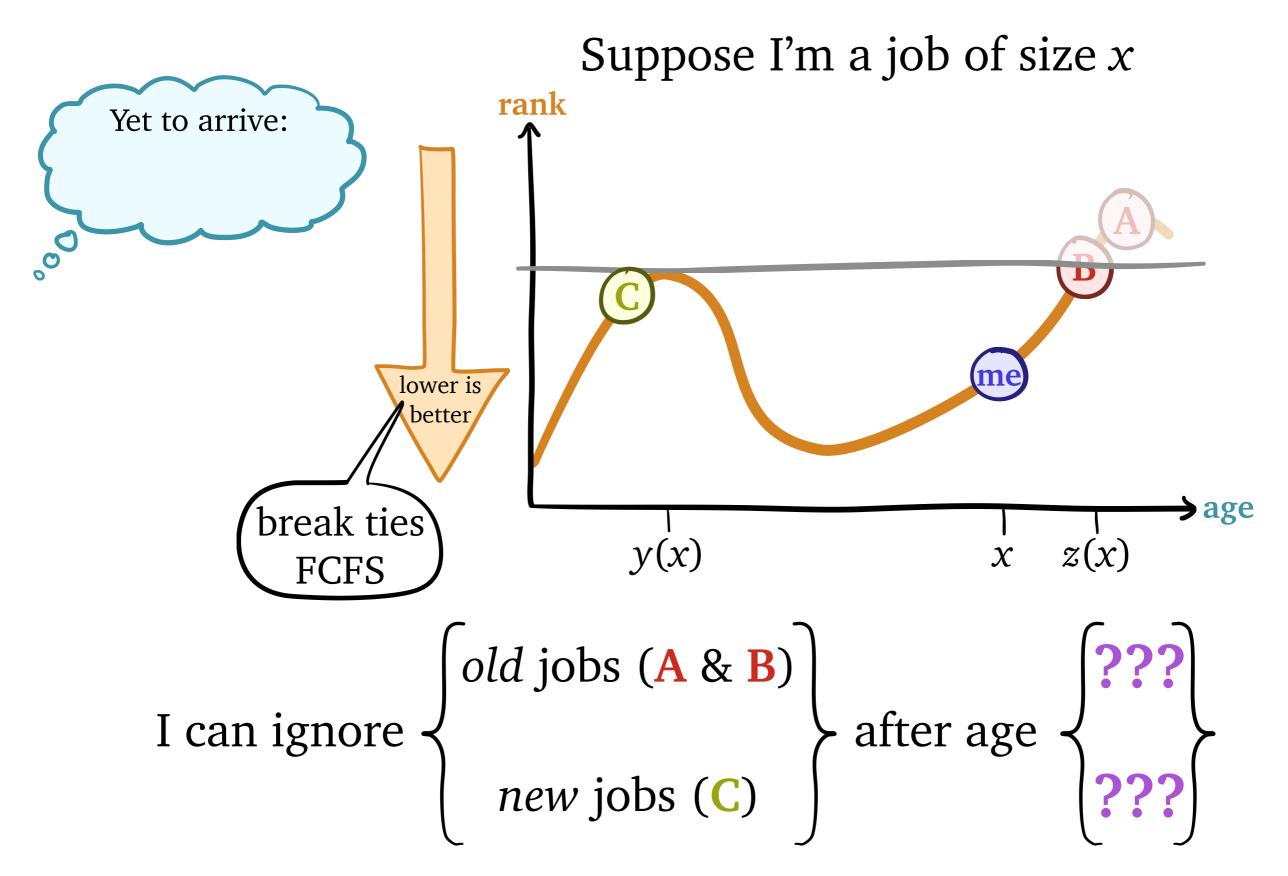


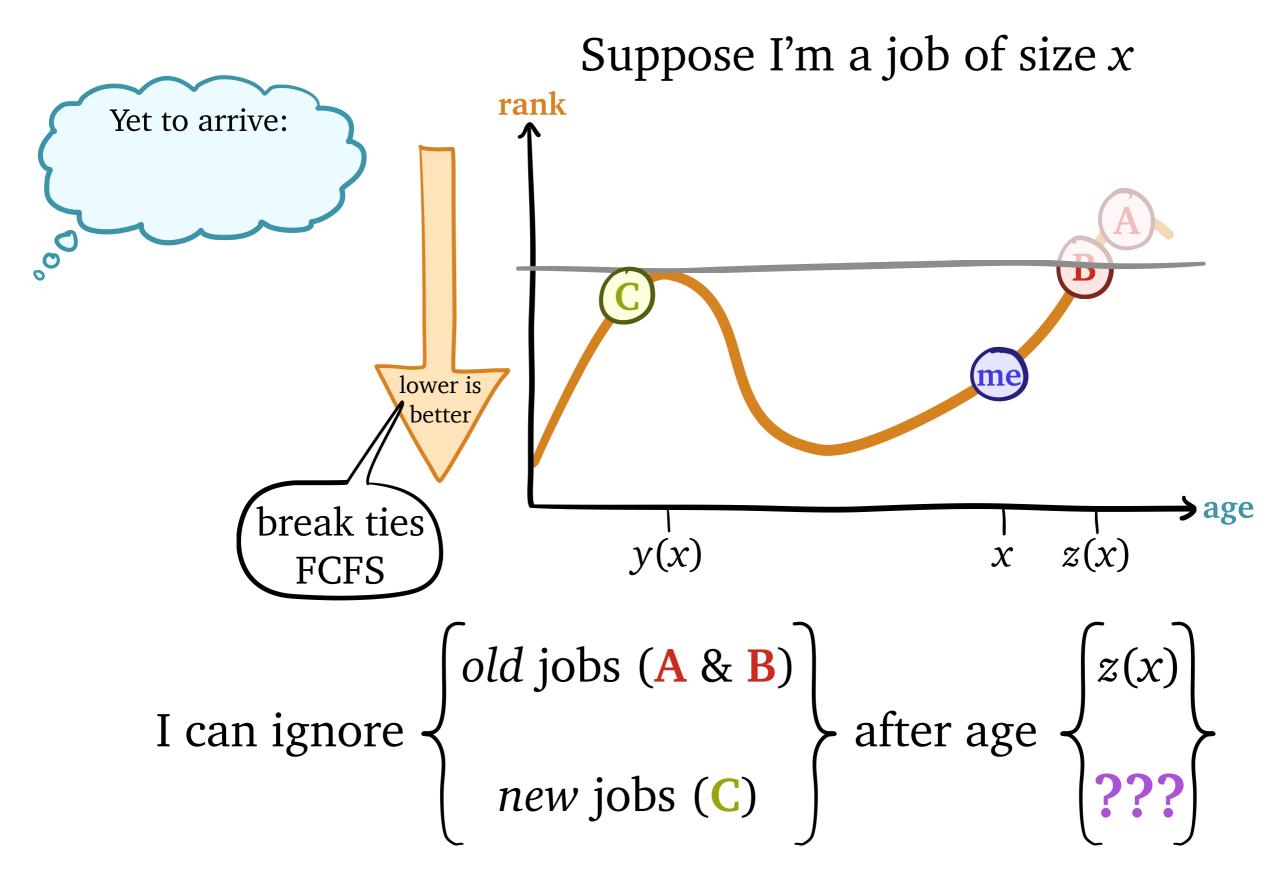


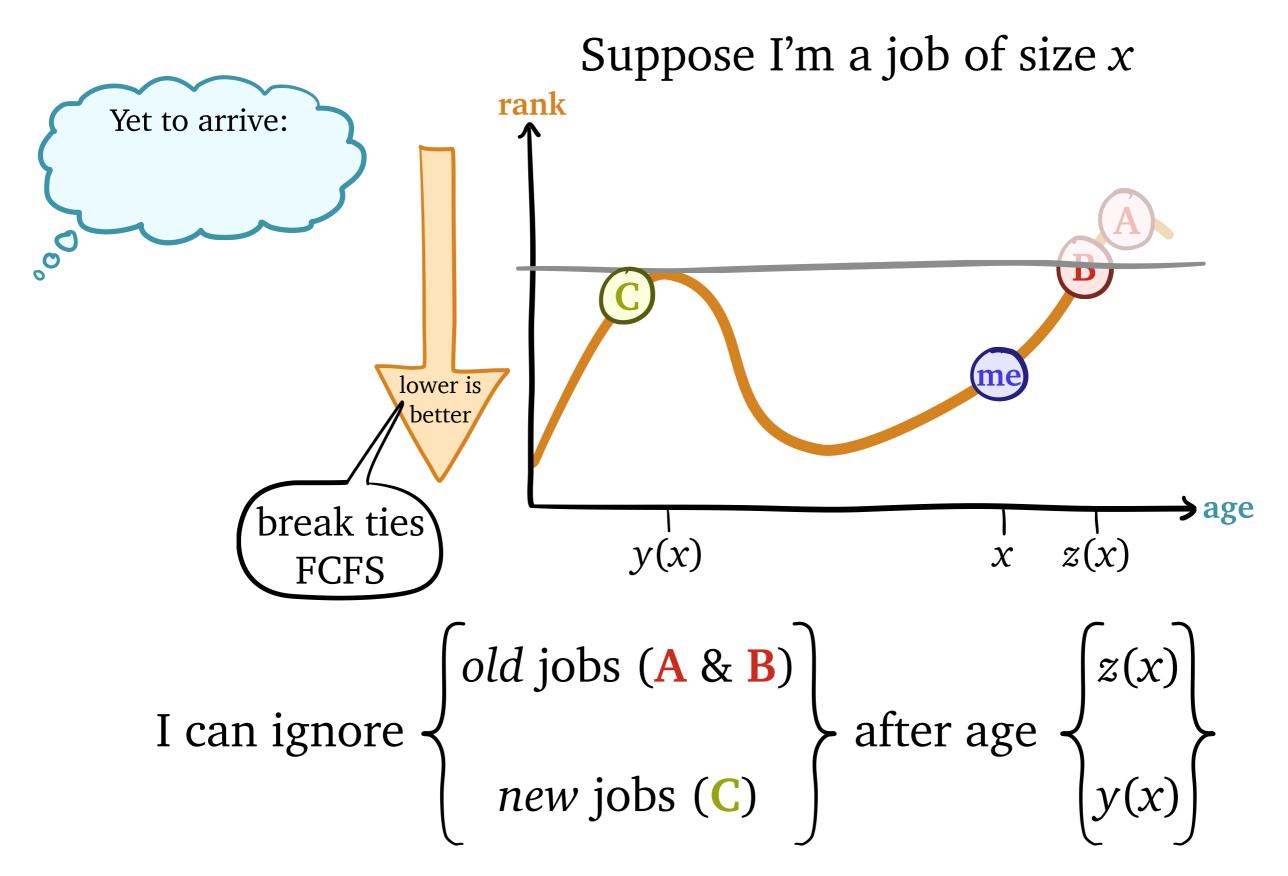




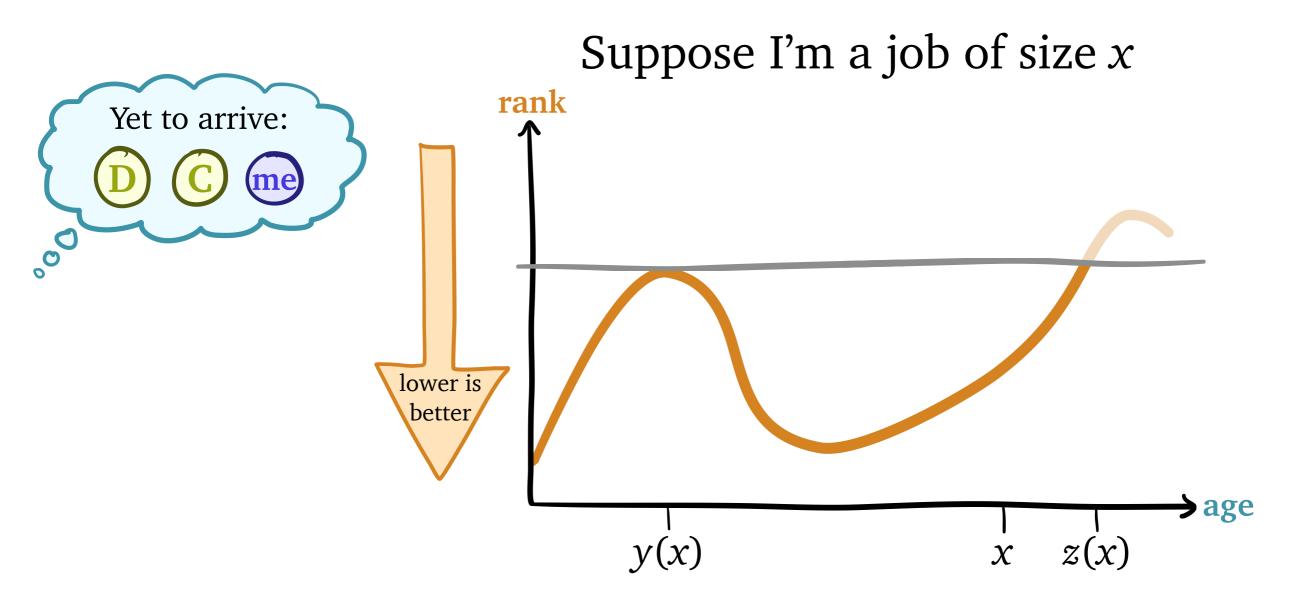


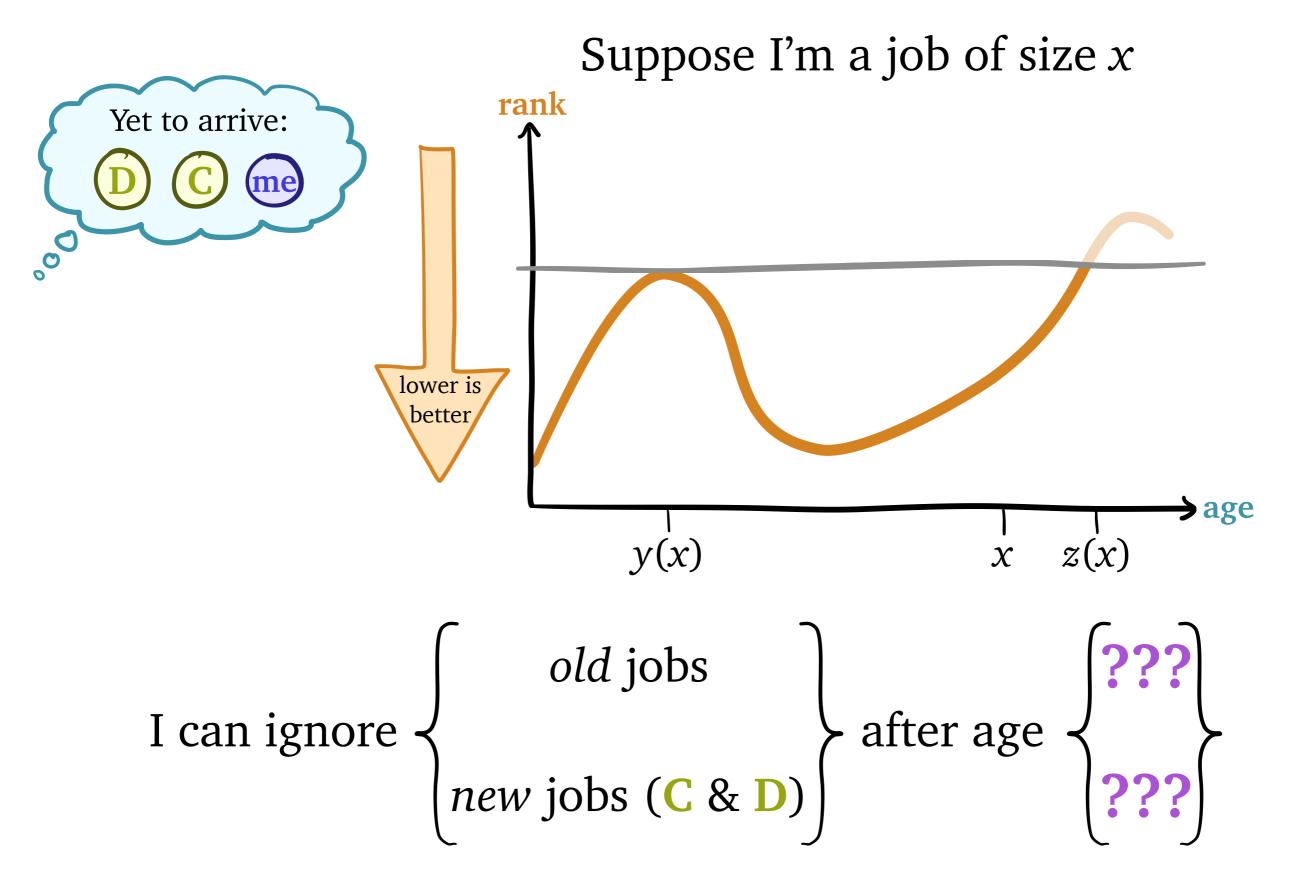


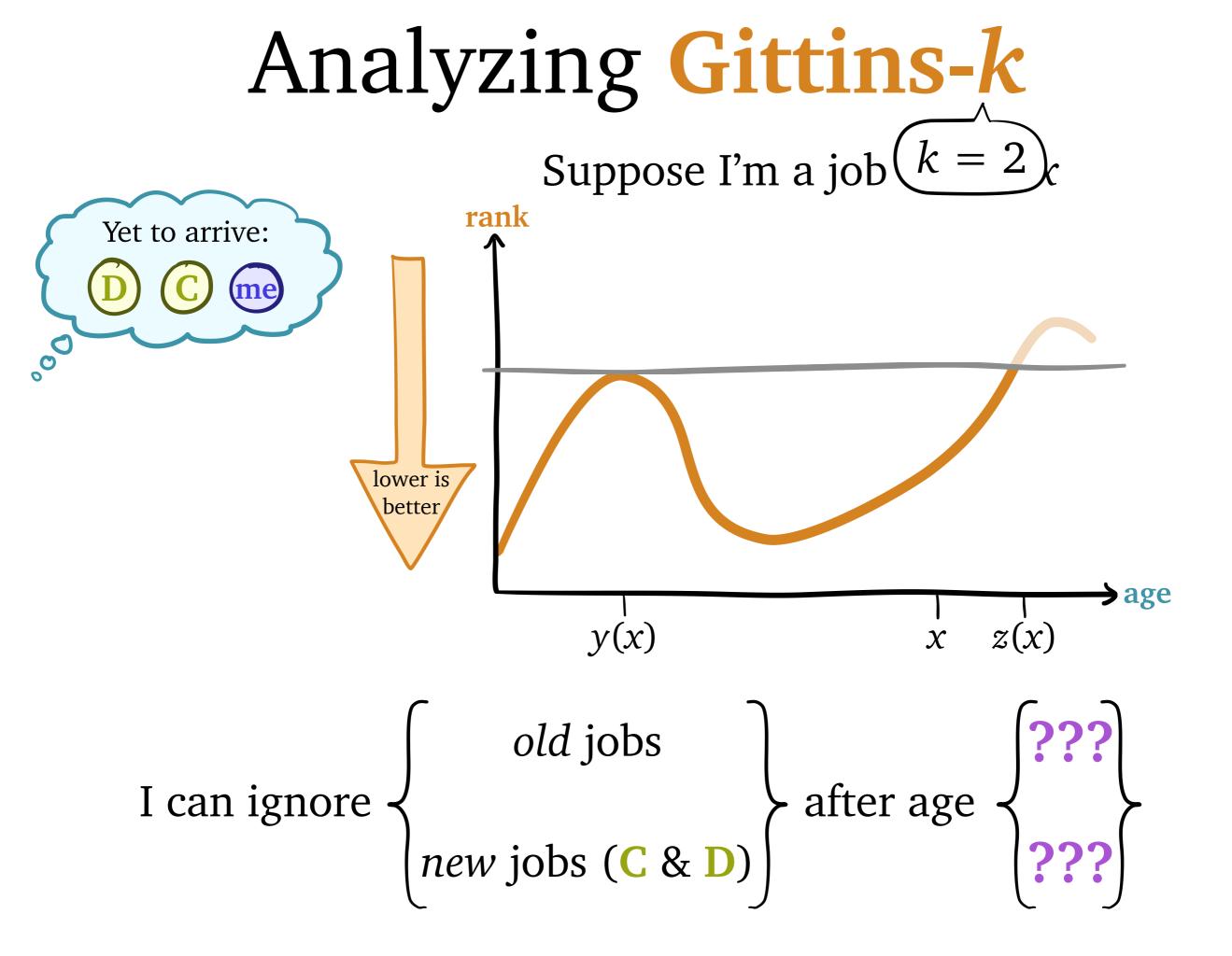


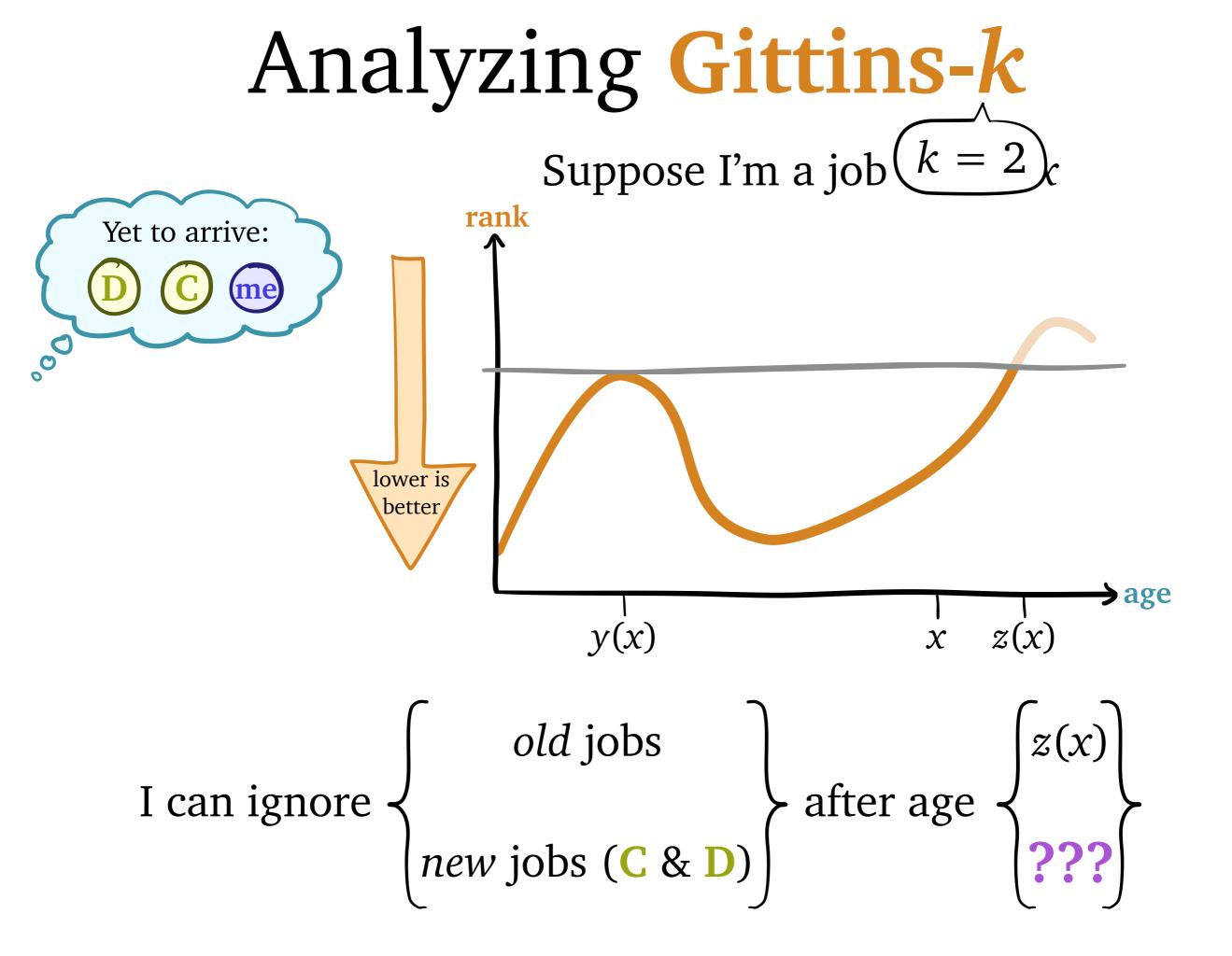


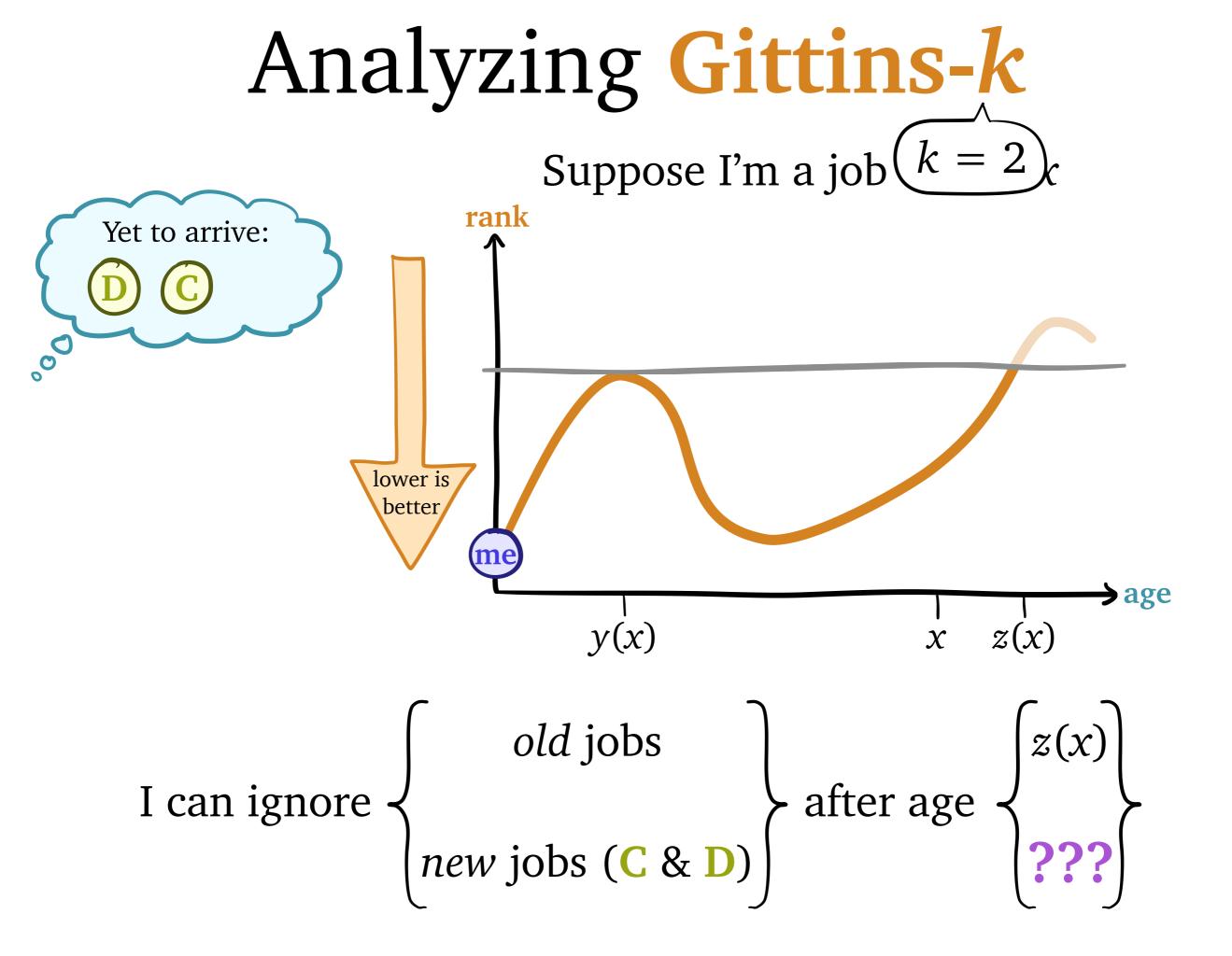
Question: What goes wrong for Gittins-k?

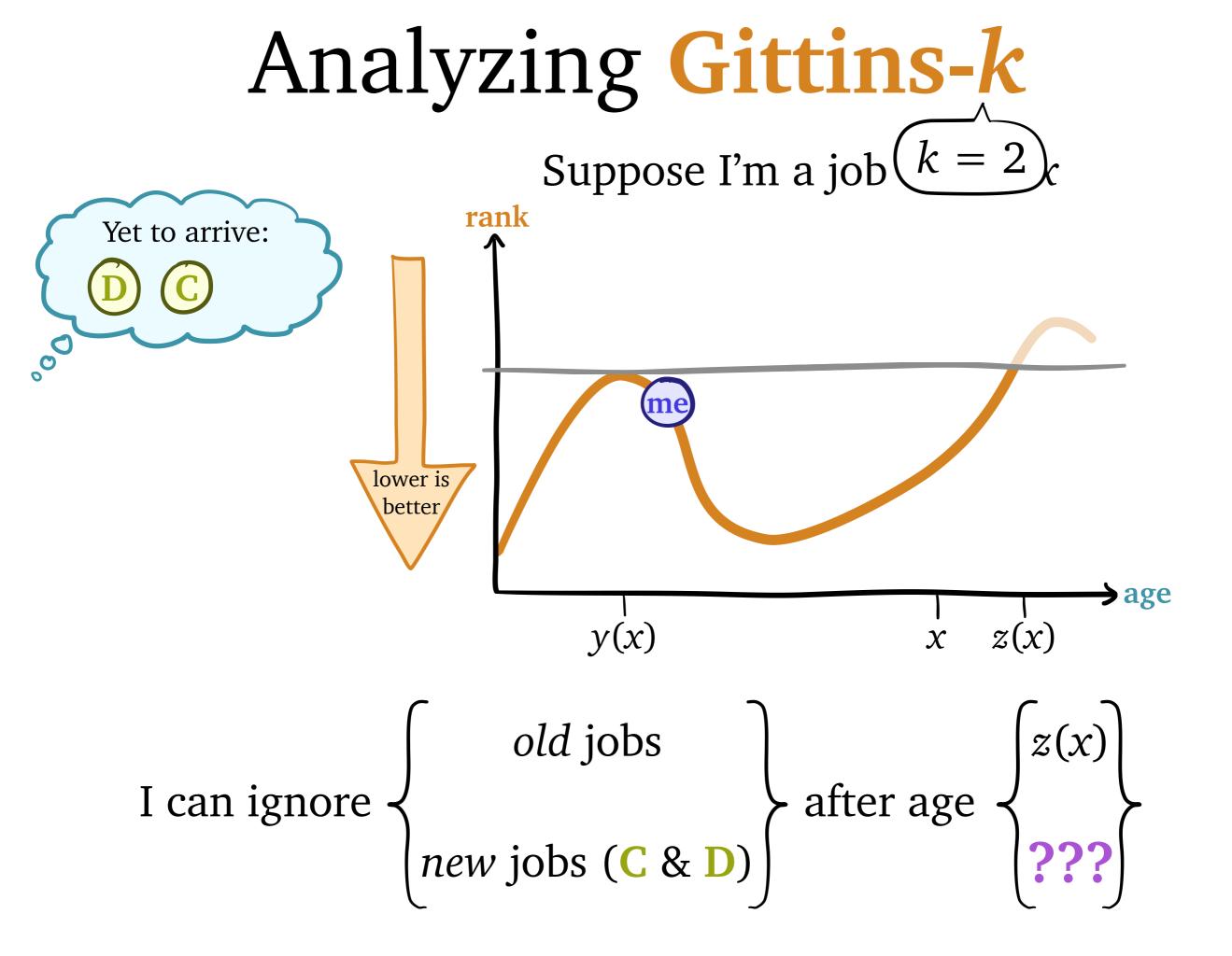


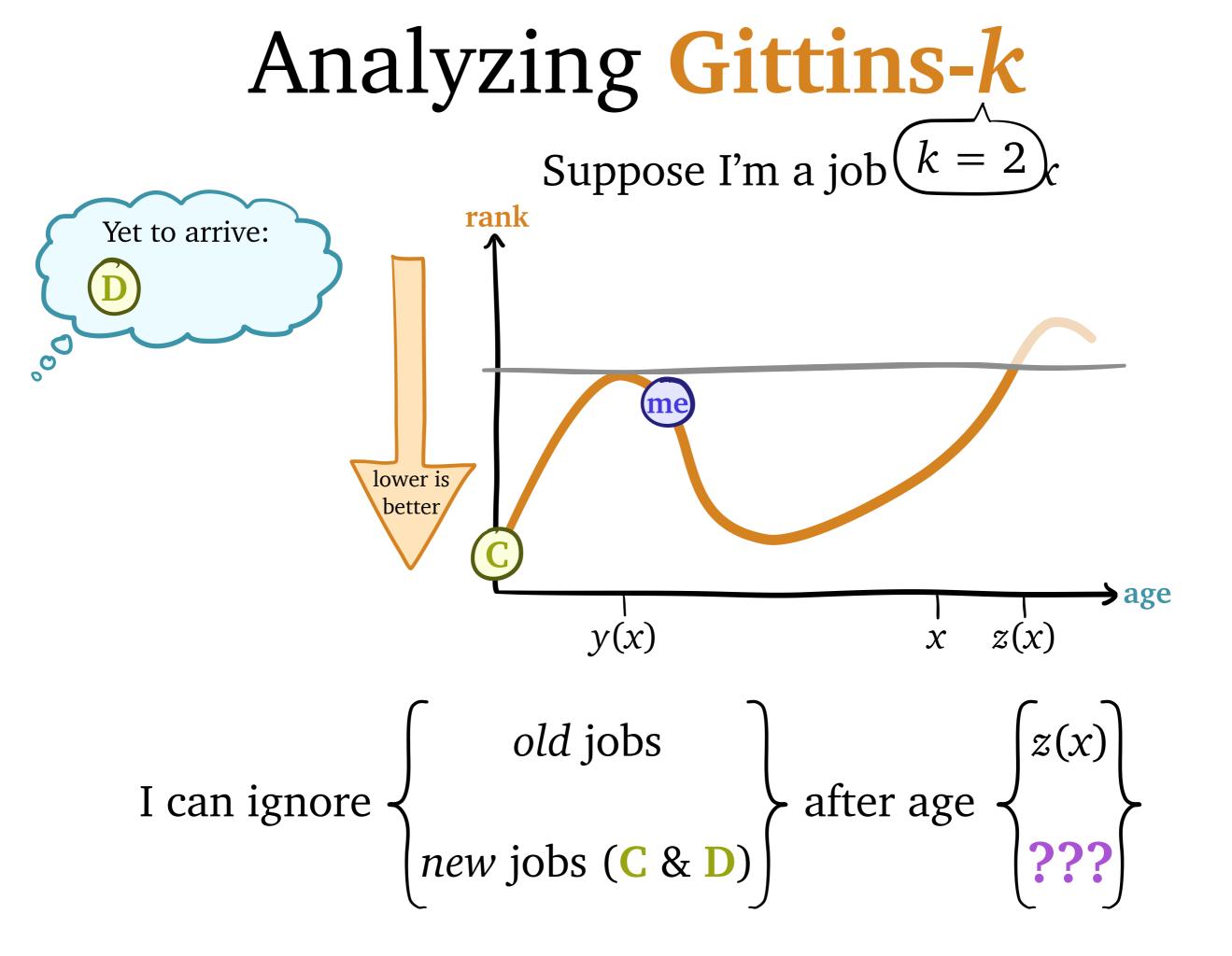


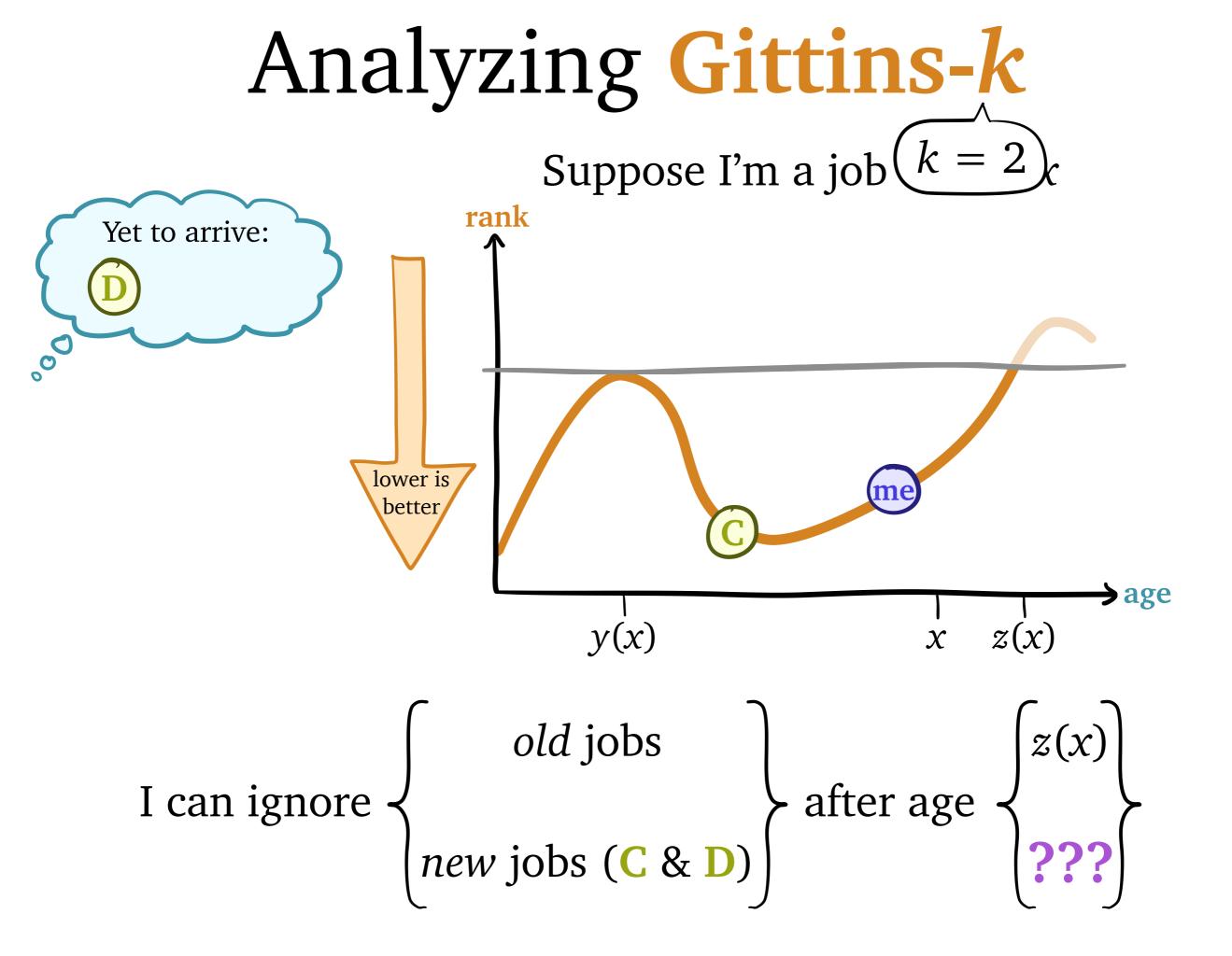


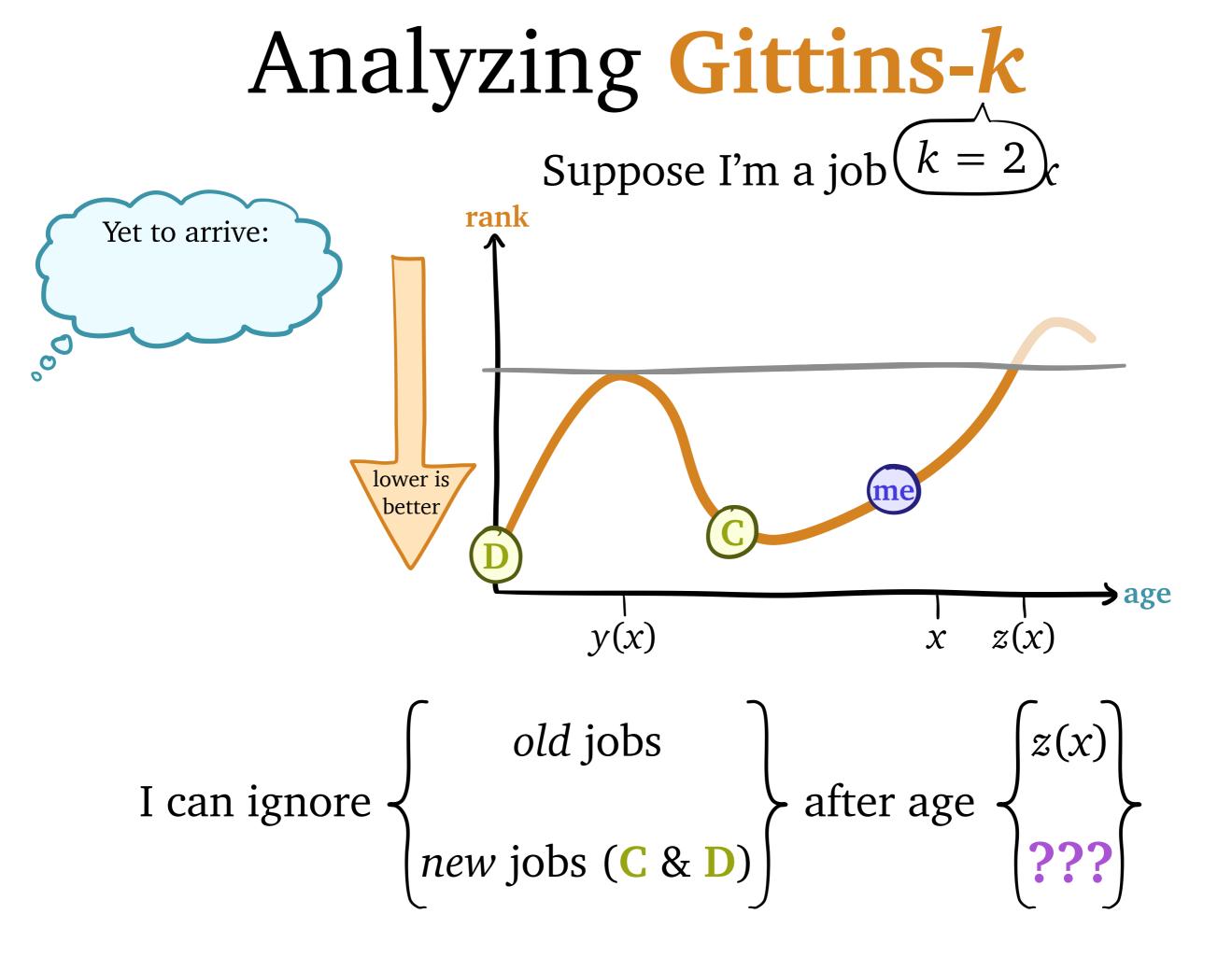


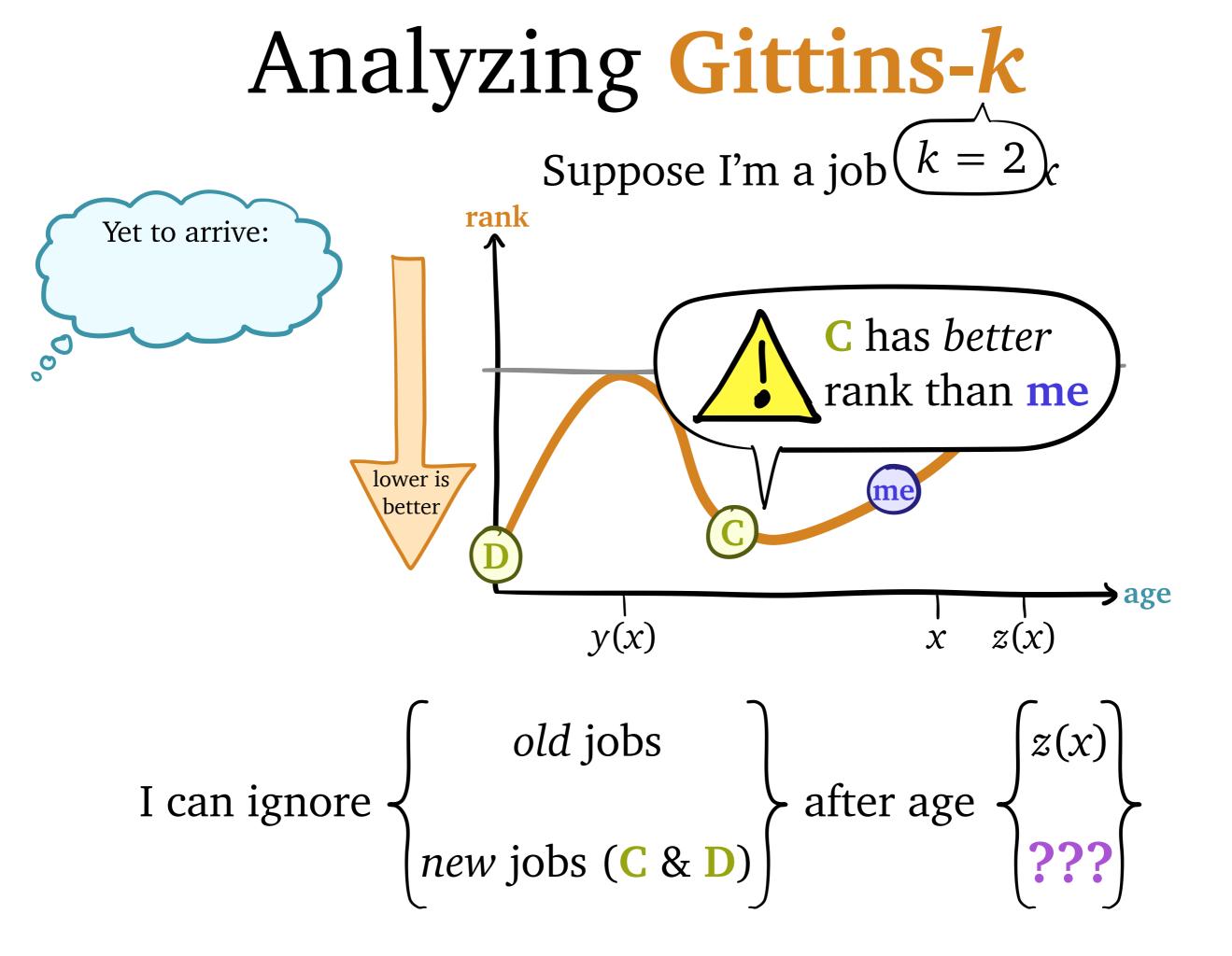


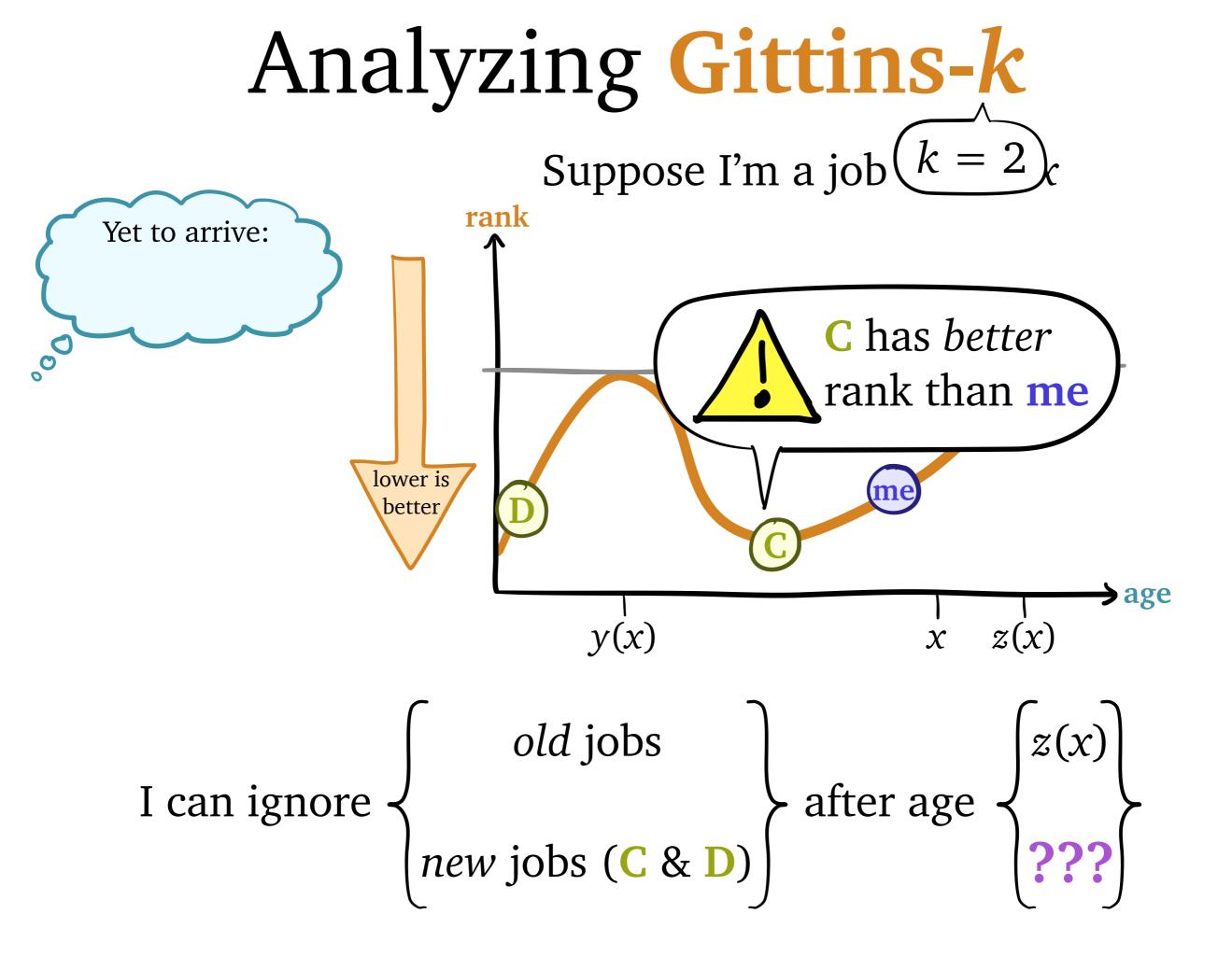


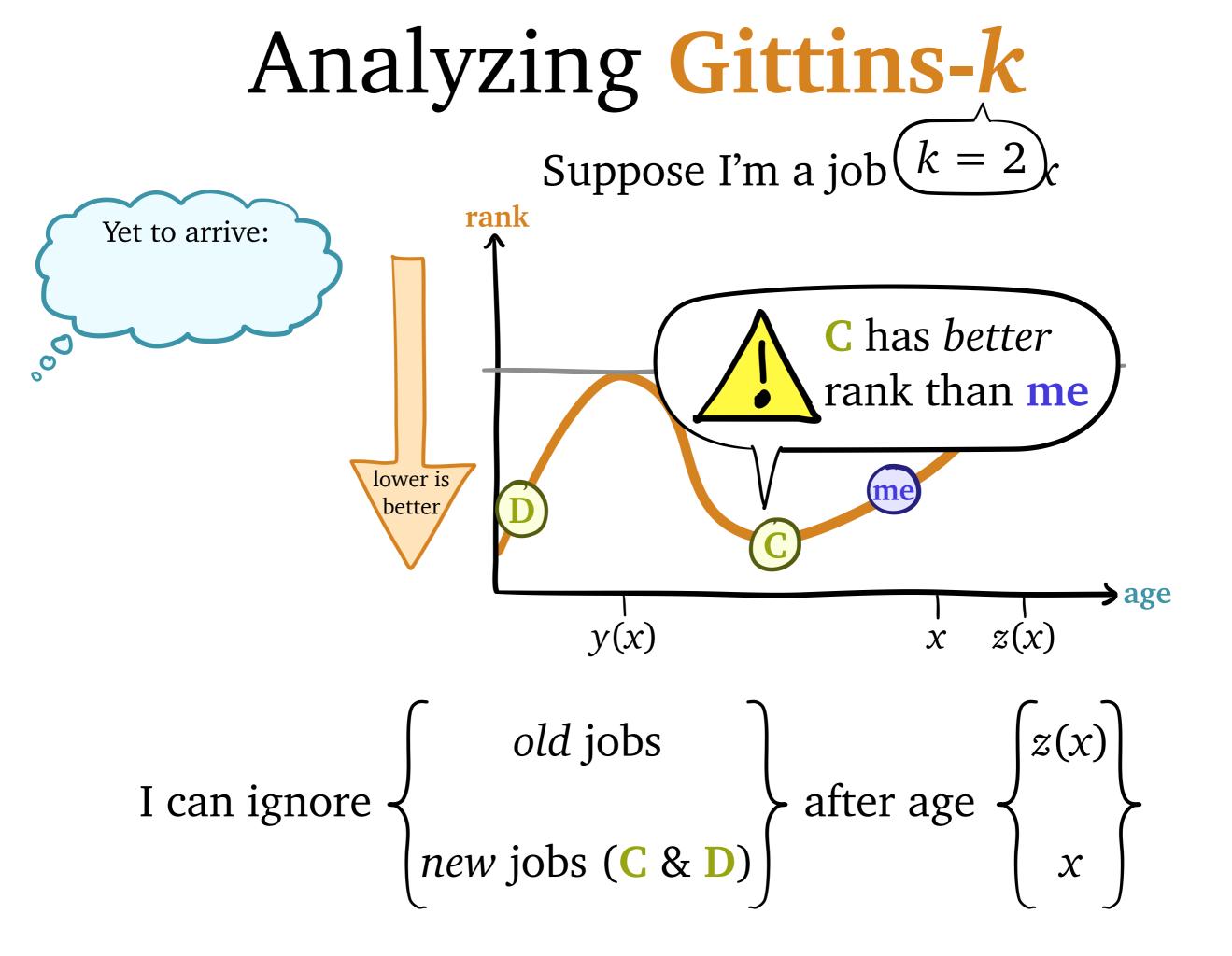


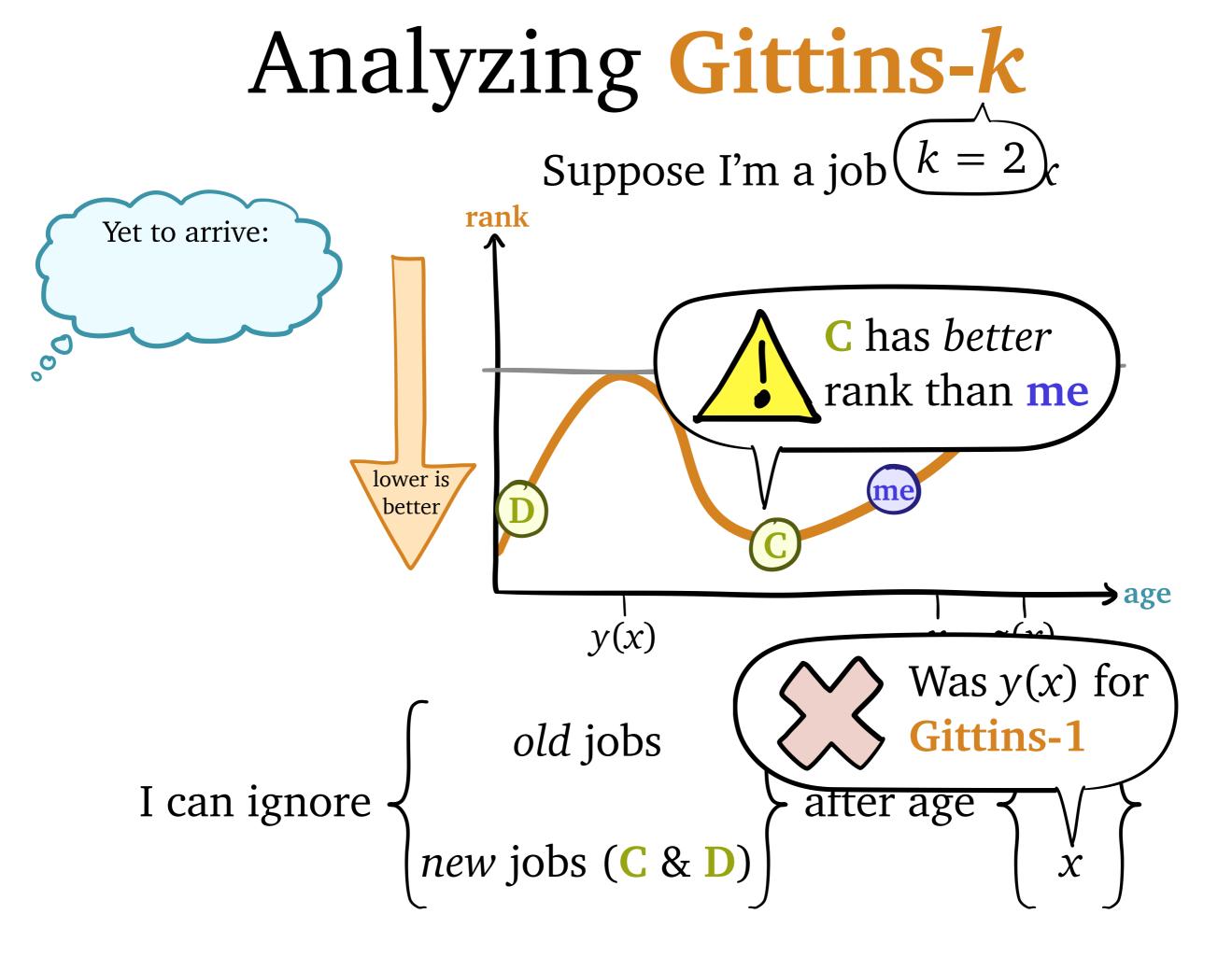




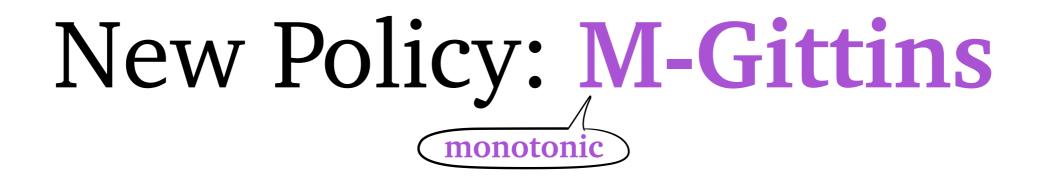


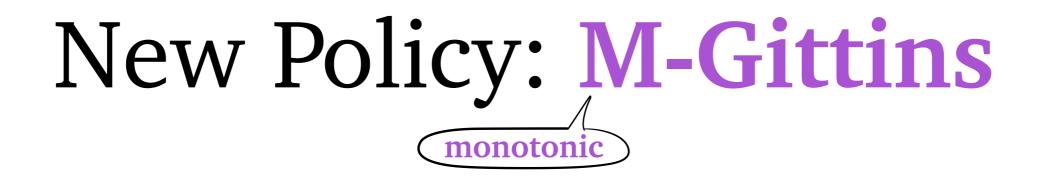


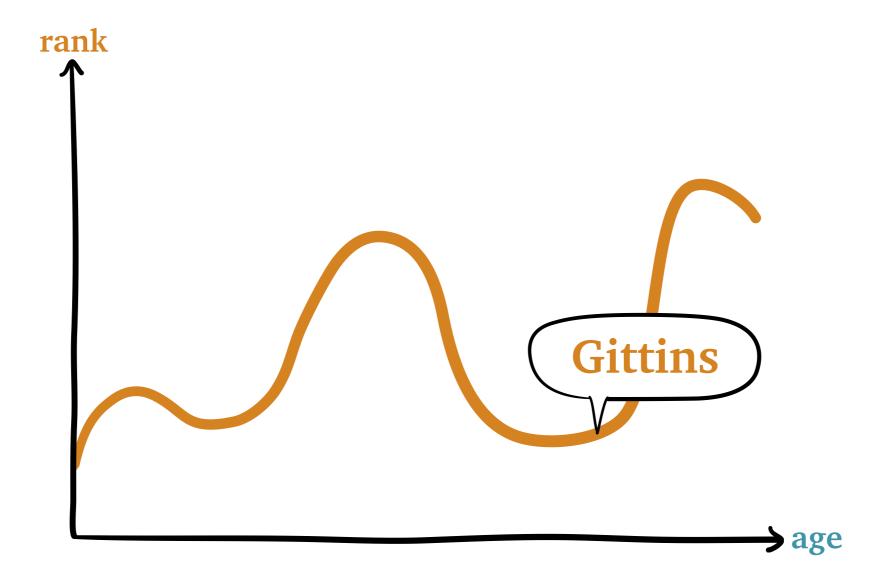


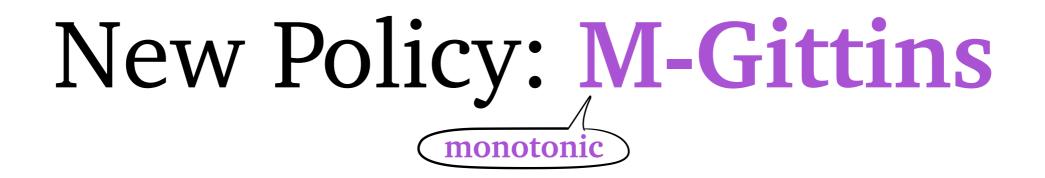


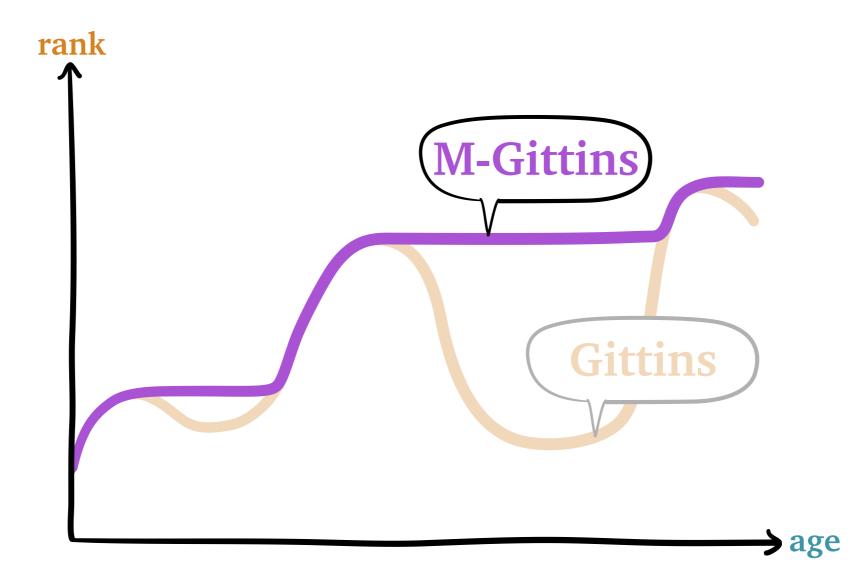
New Policy: M-Gittins

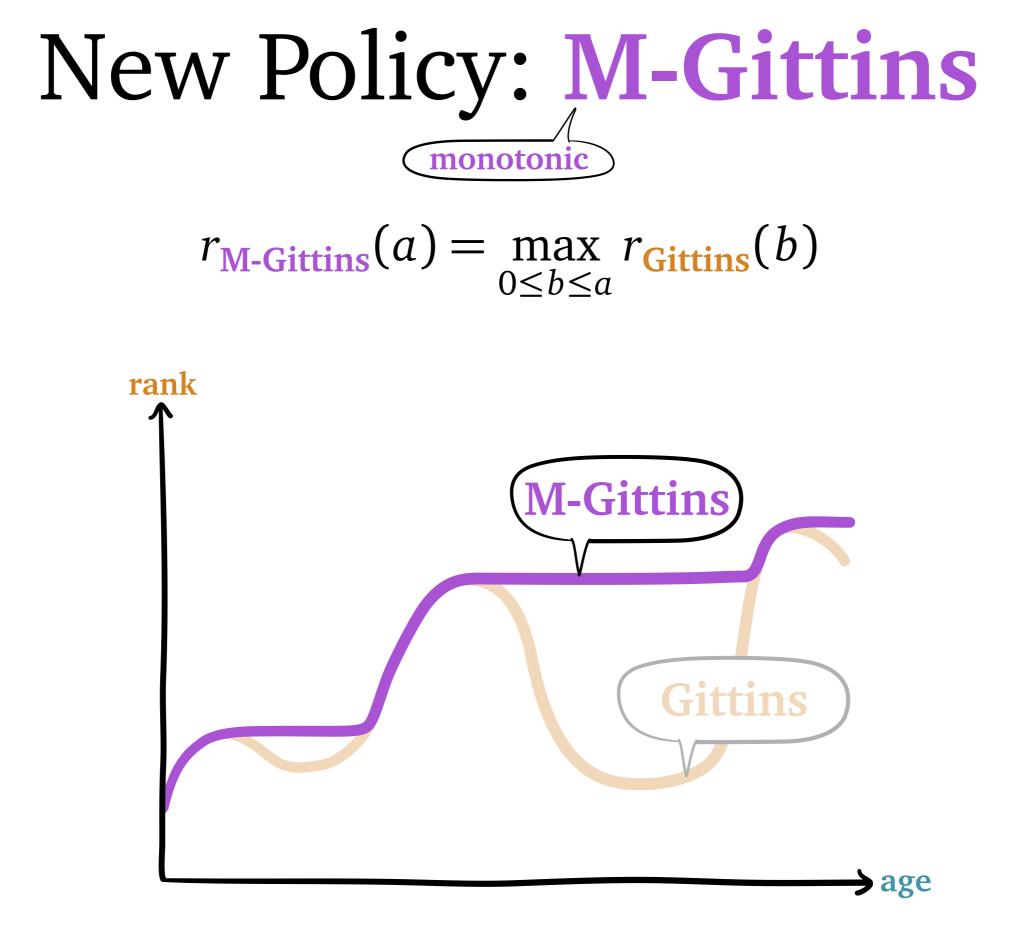




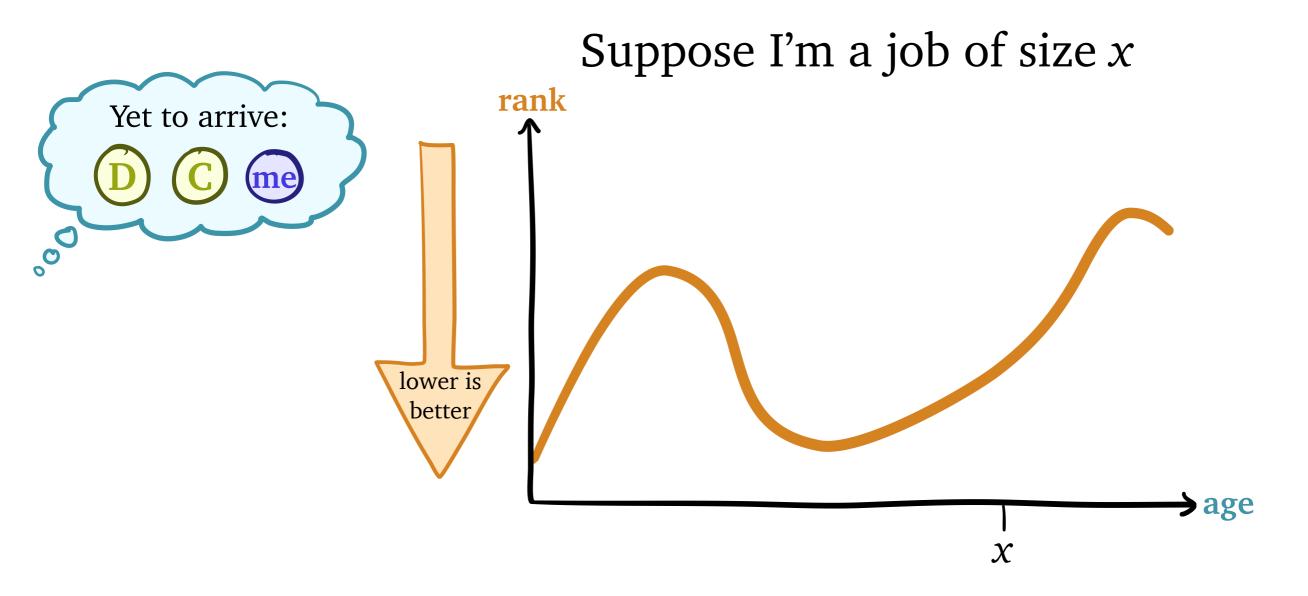




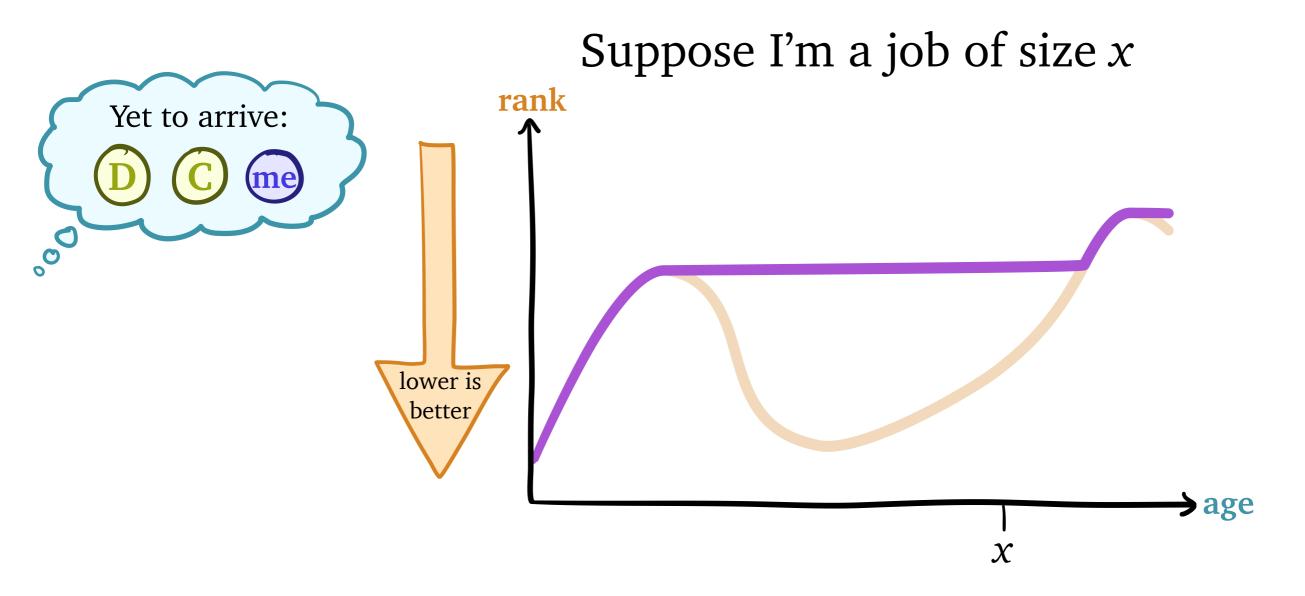




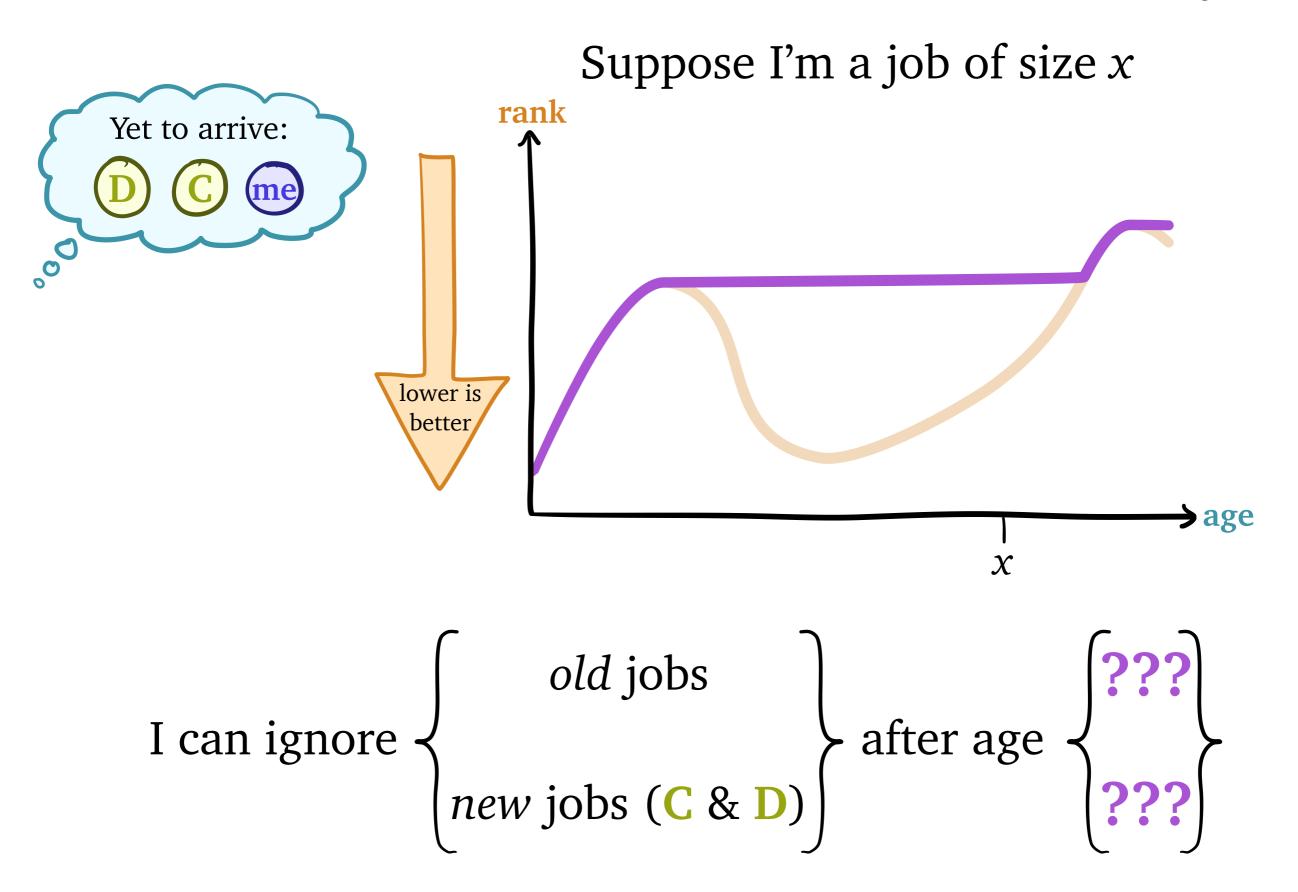
M-Gittins-k Saves the Day

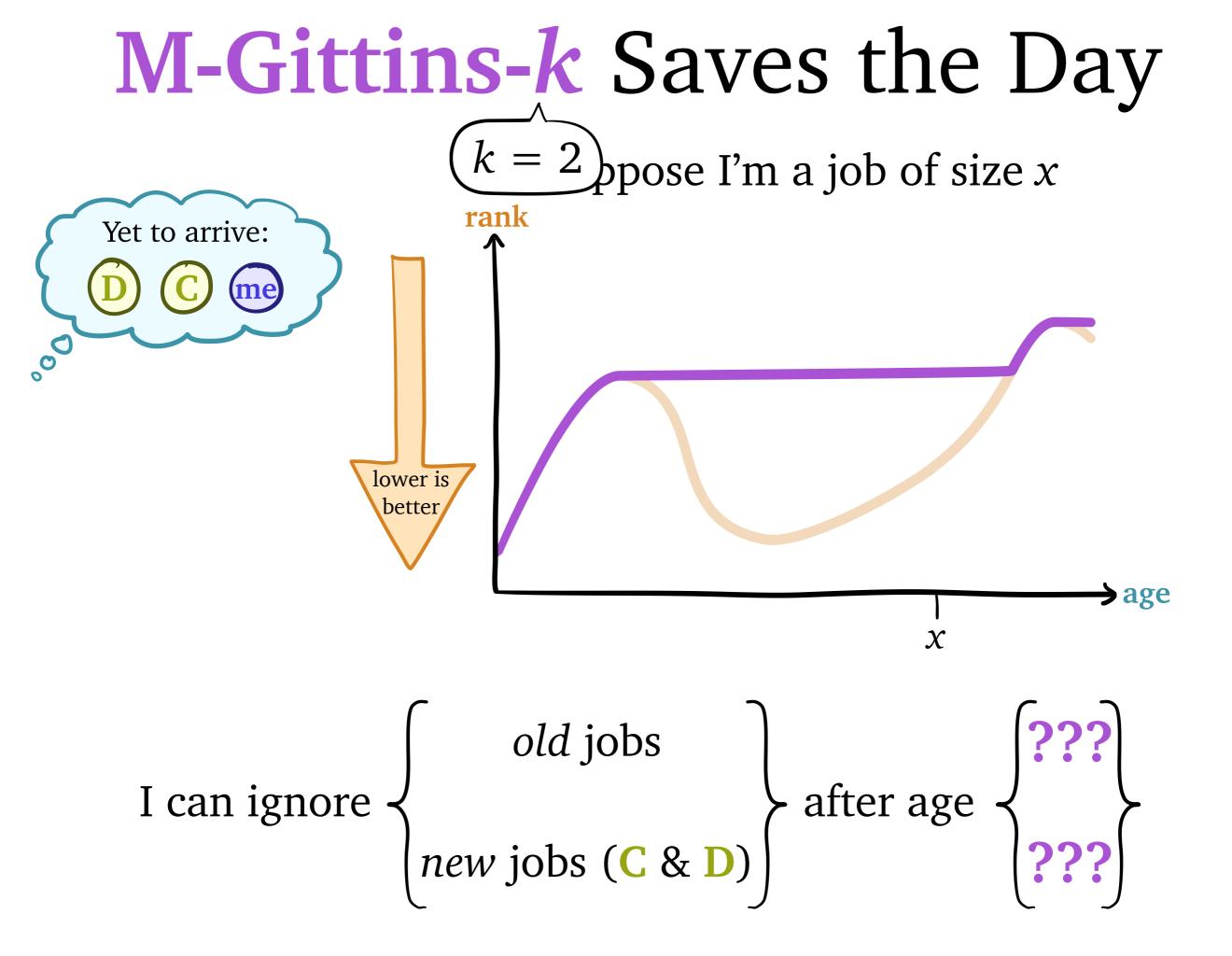


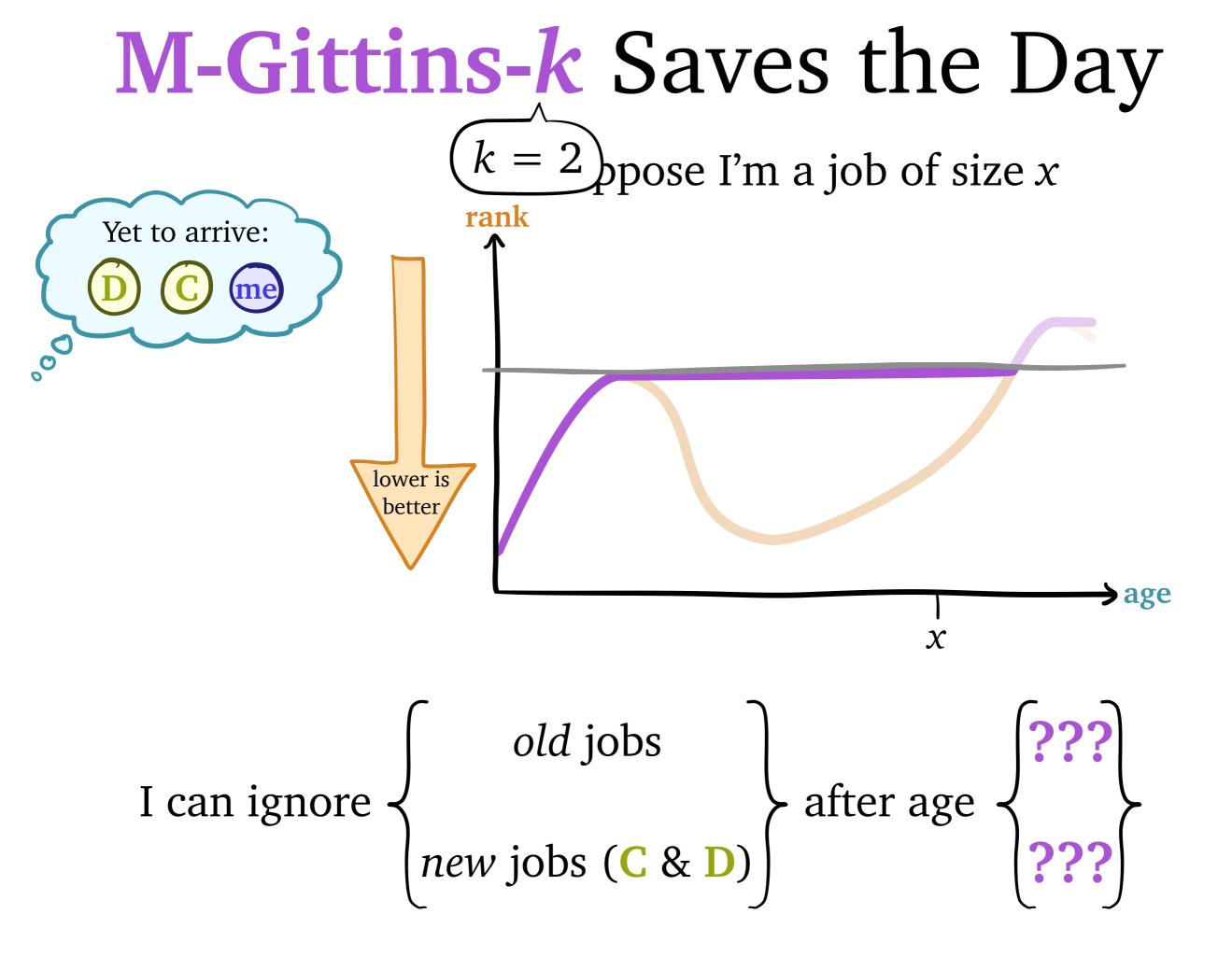
M-Gittins-k Saves the Day

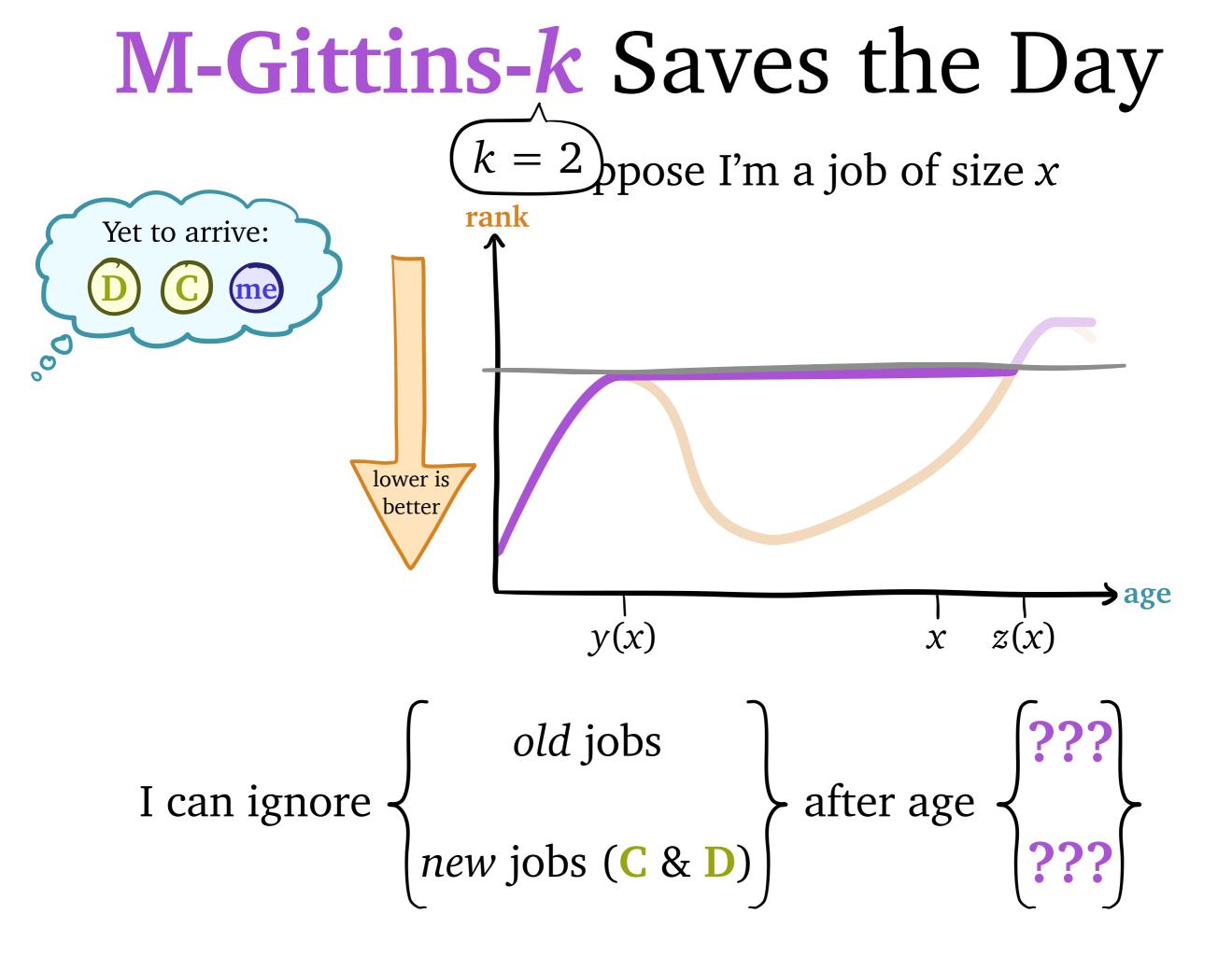


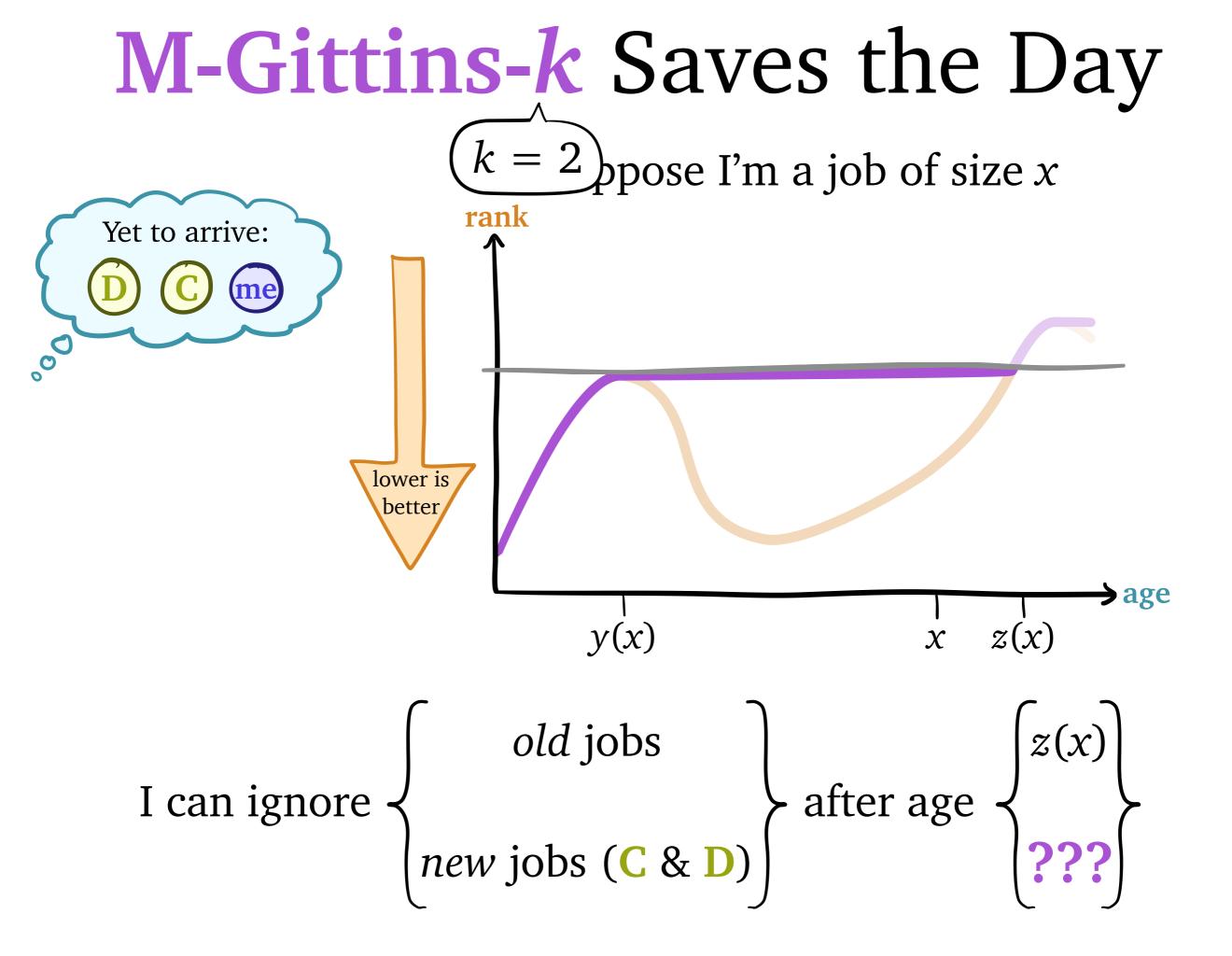
M-Gittins-k Saves the Day

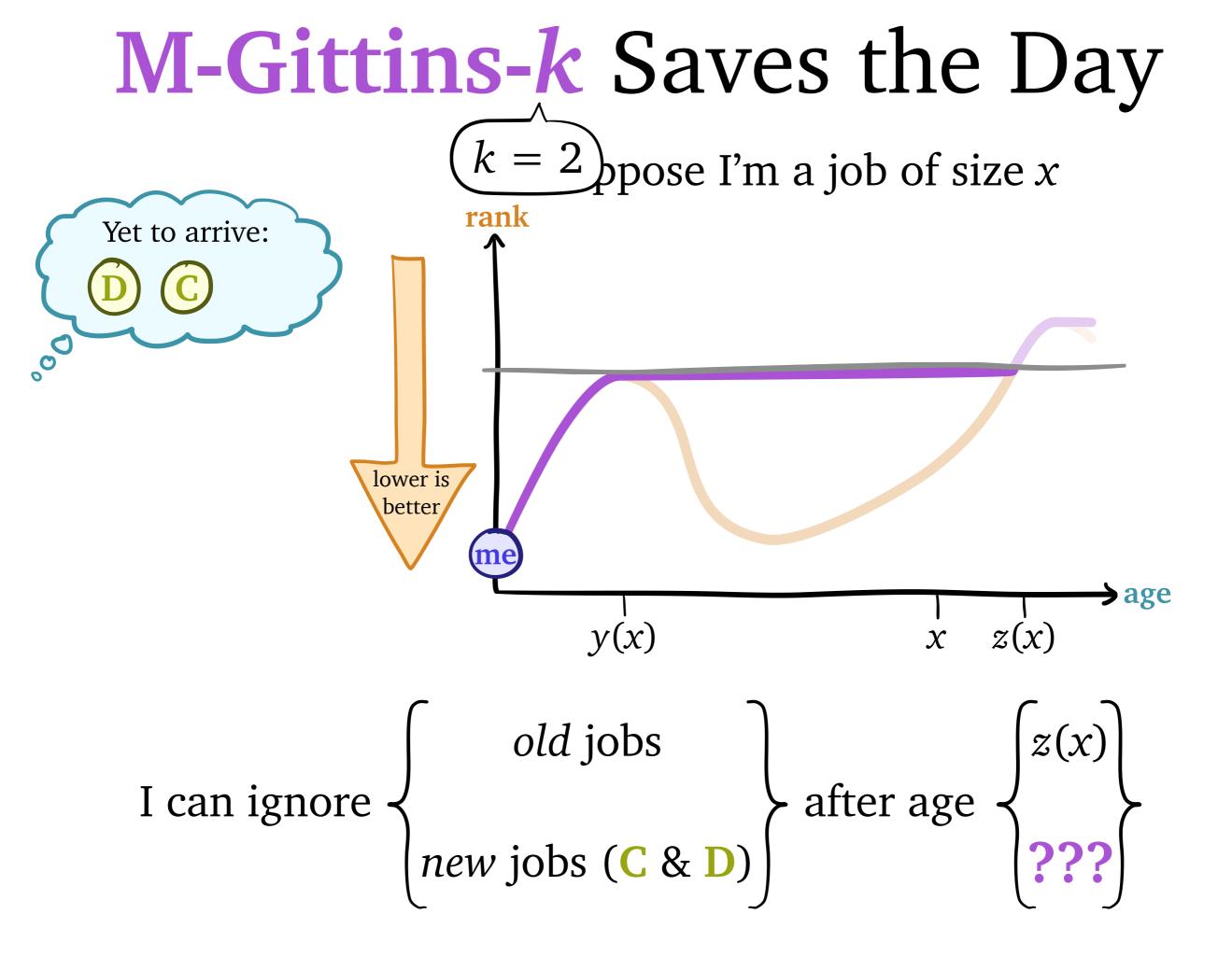


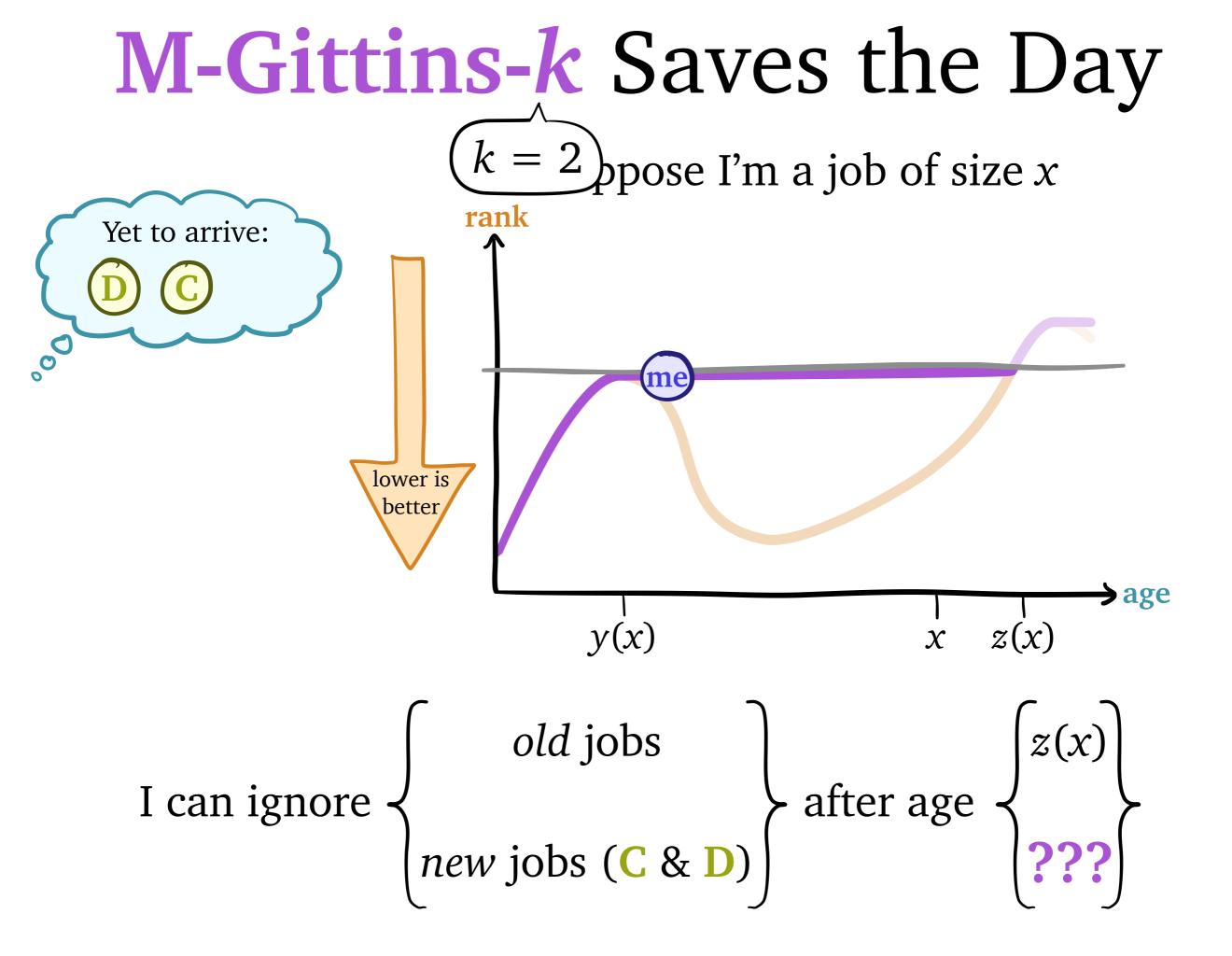


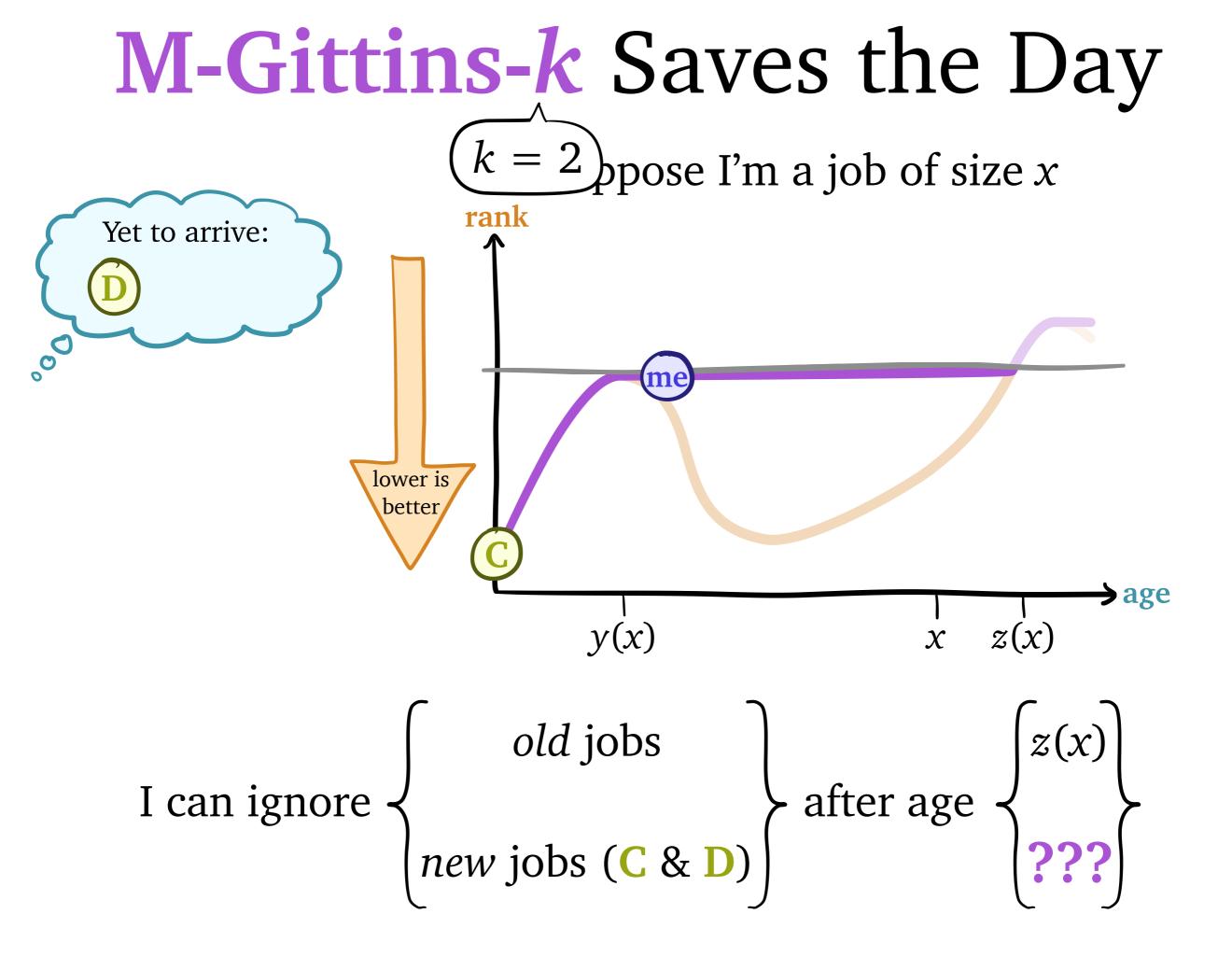


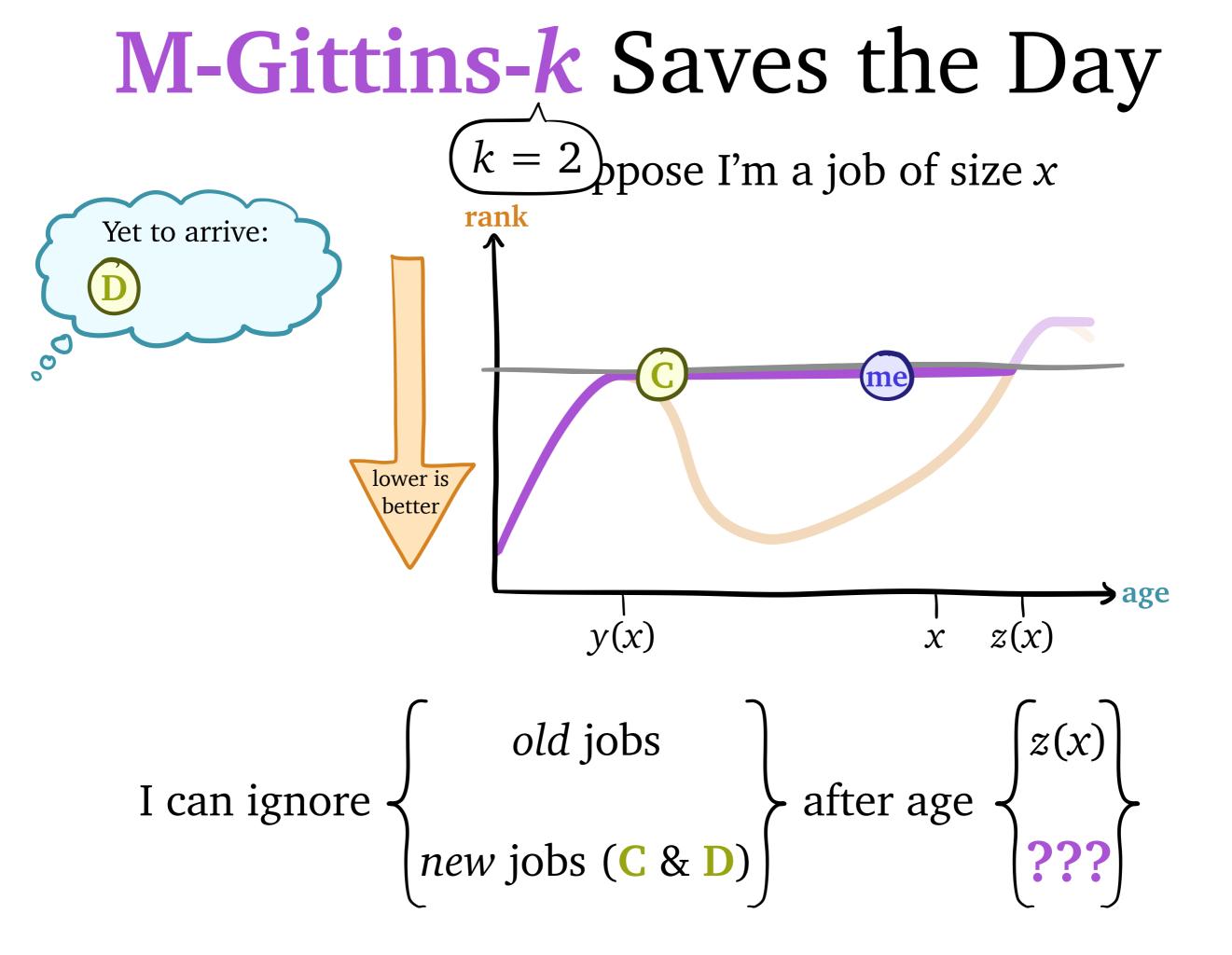


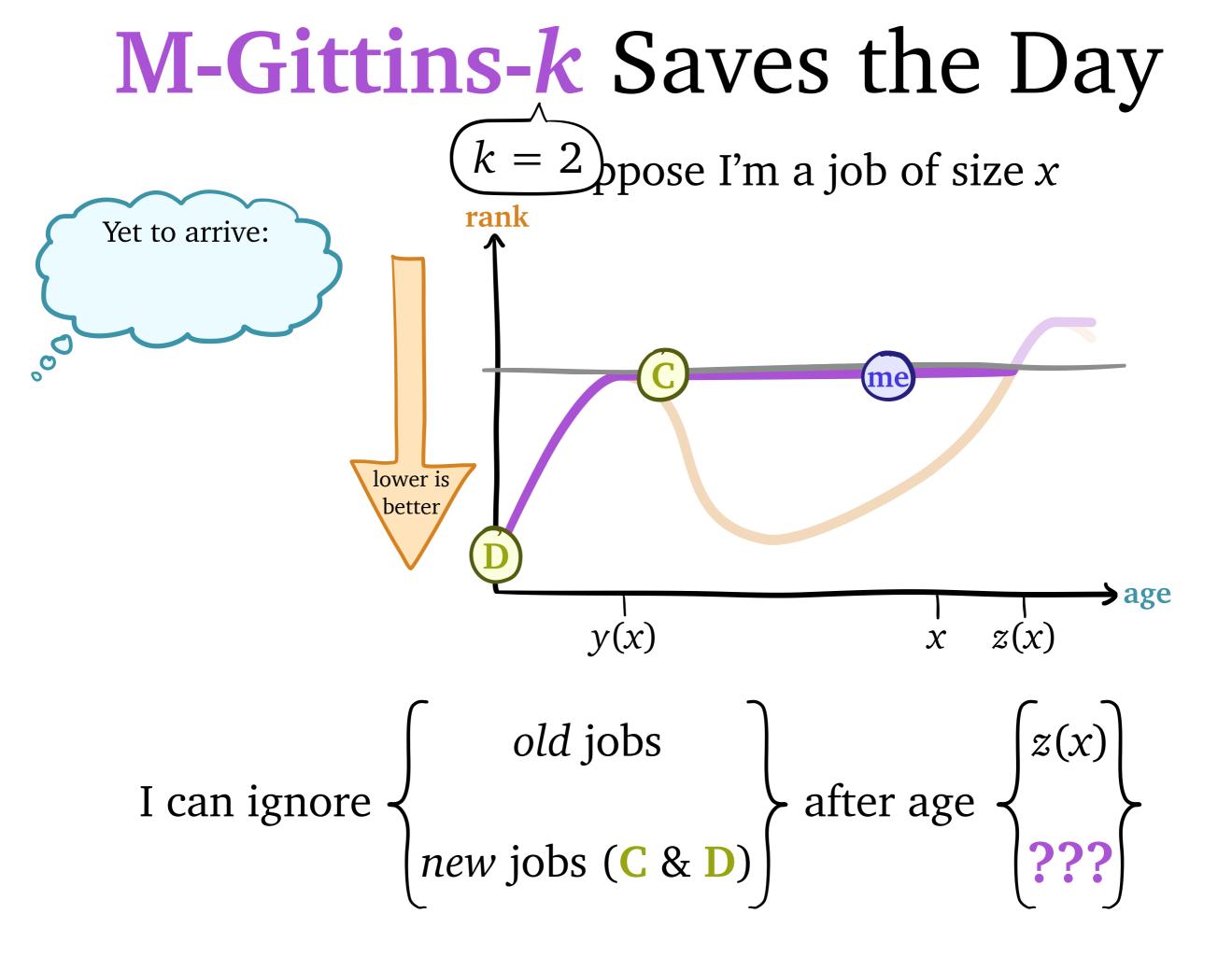


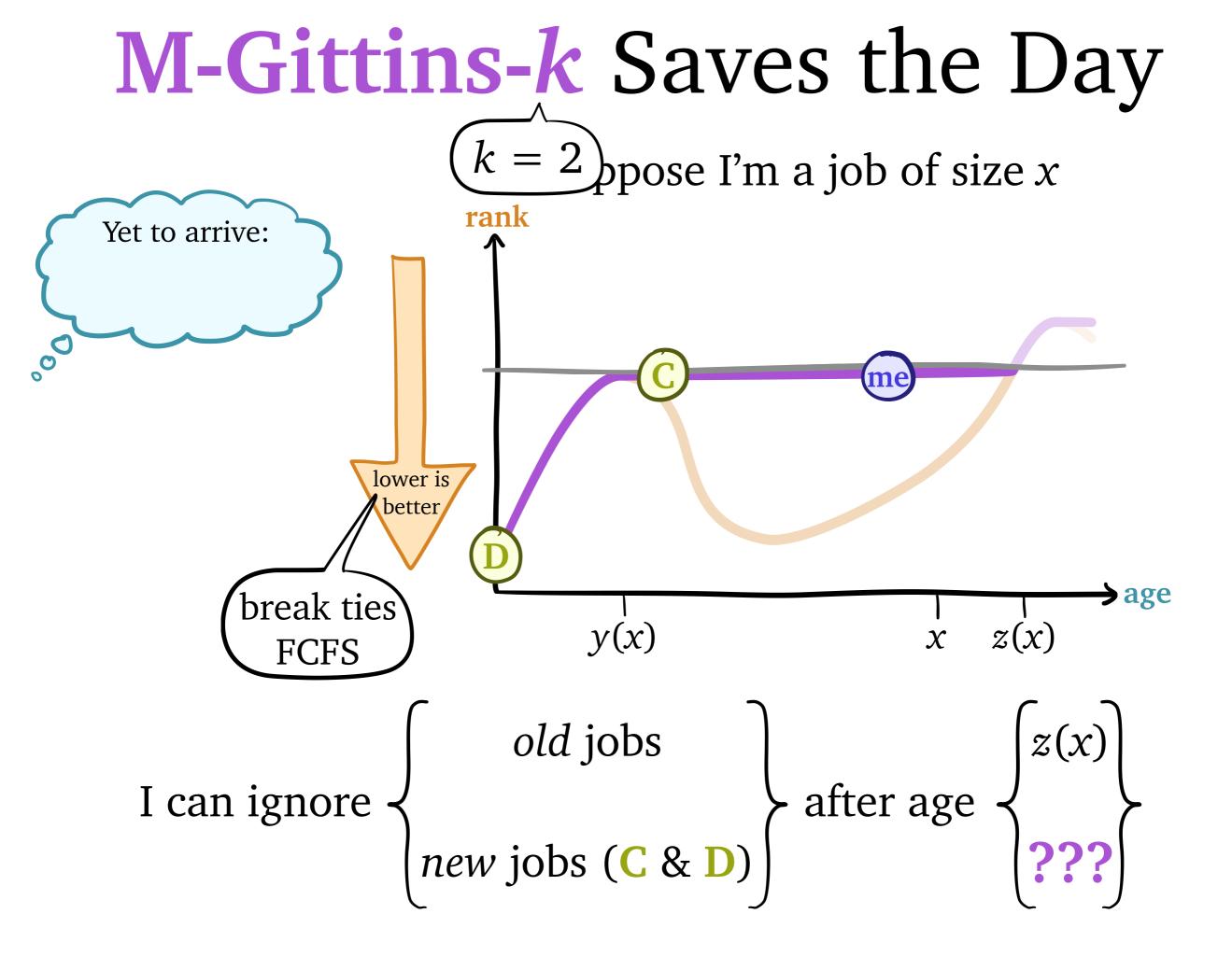


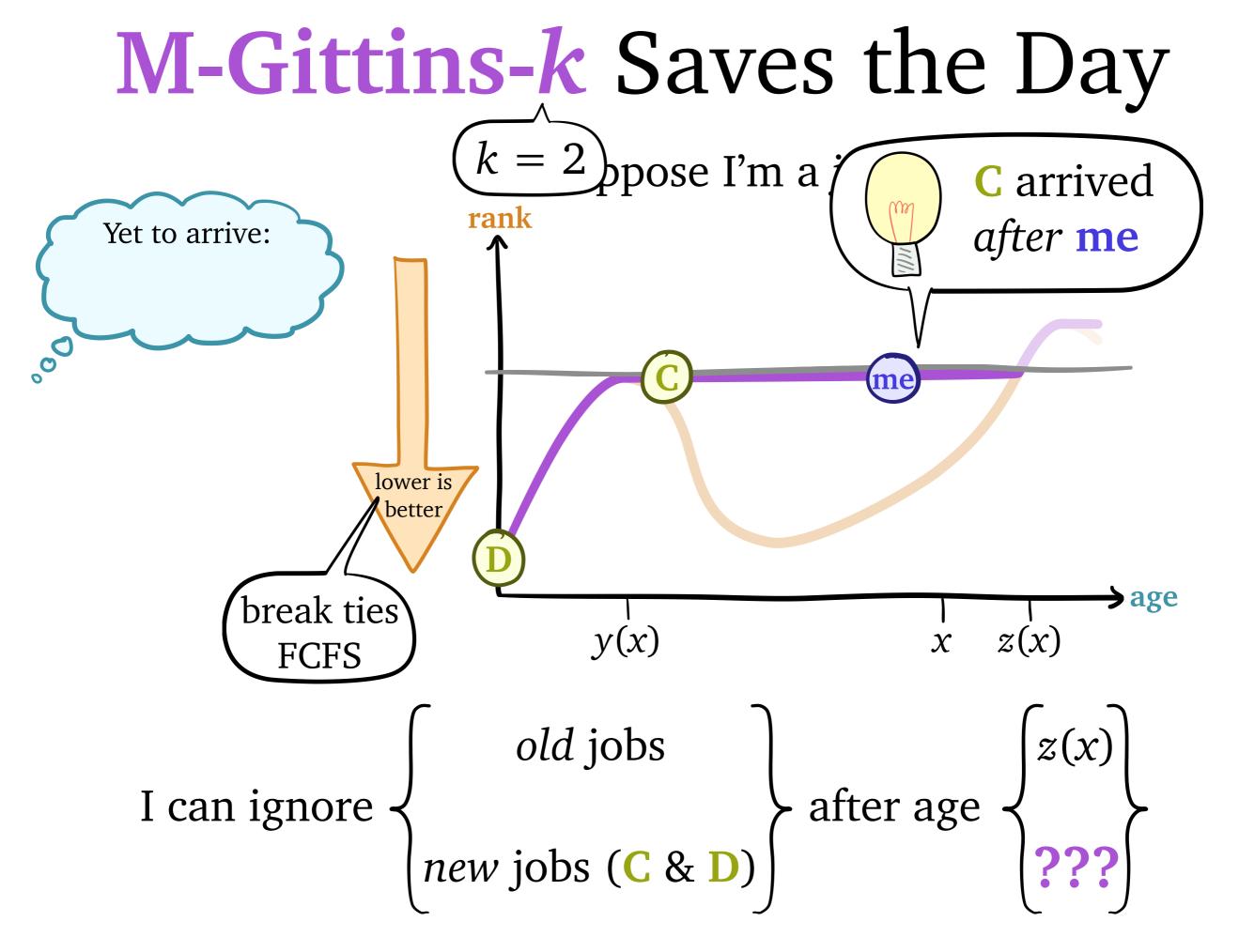


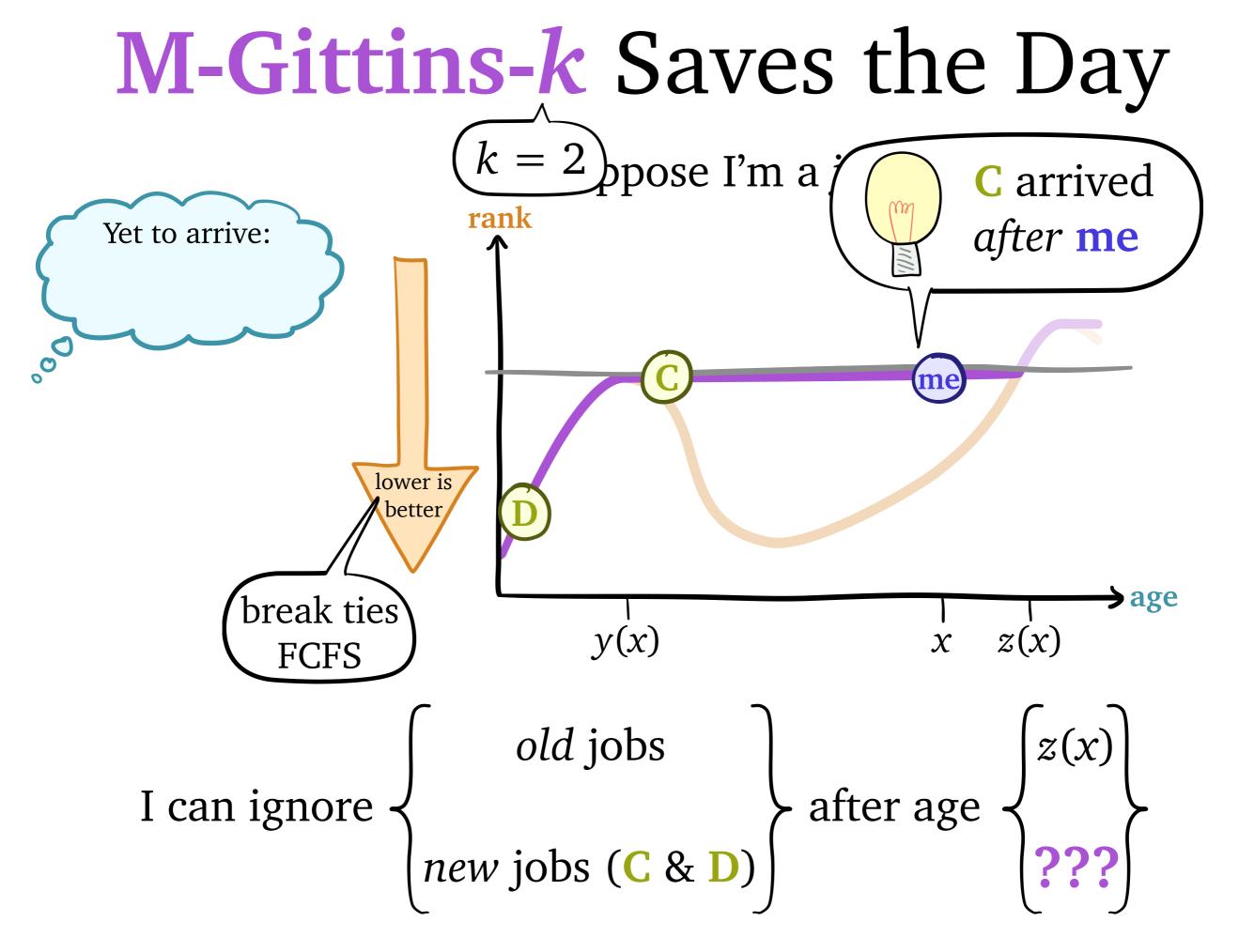


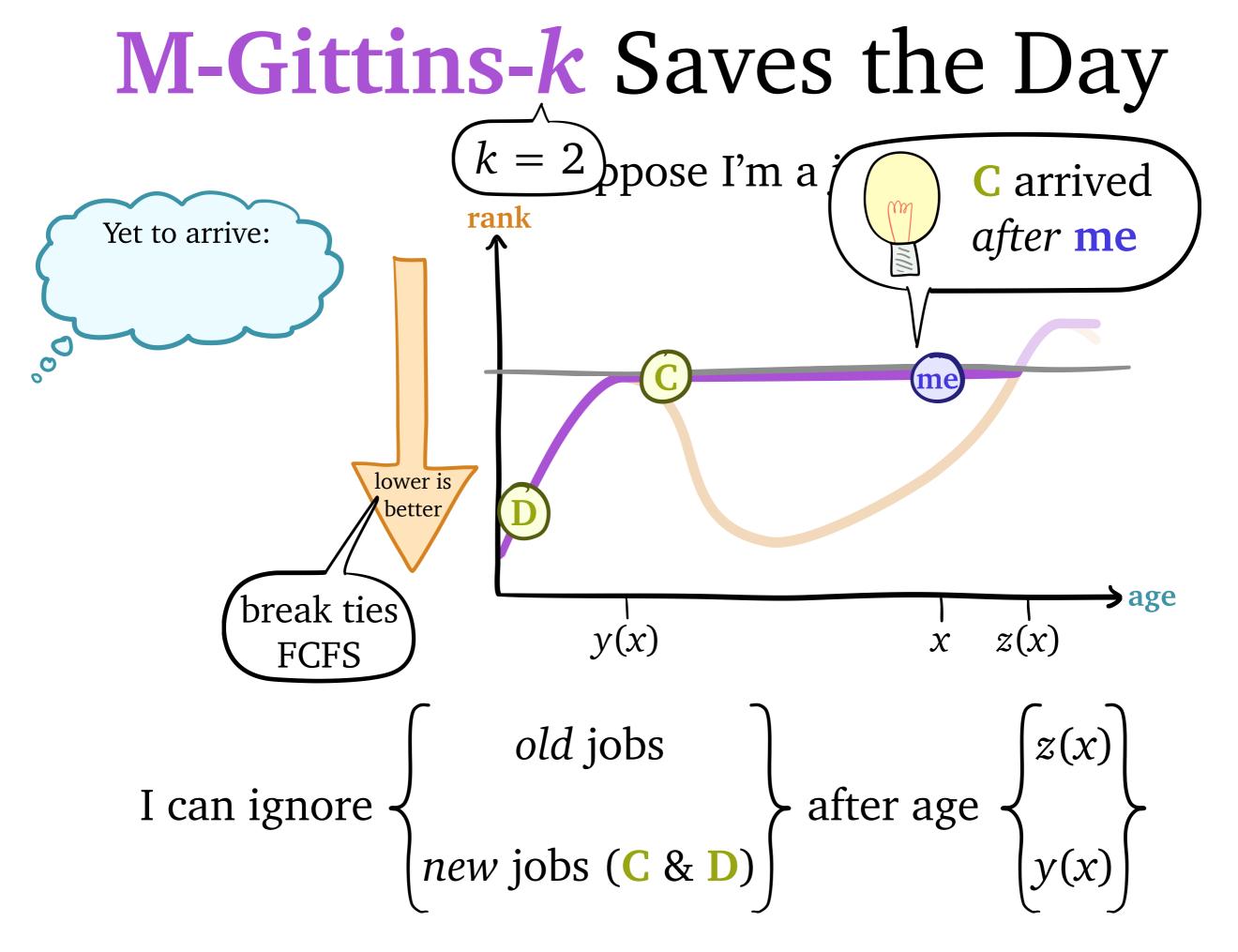


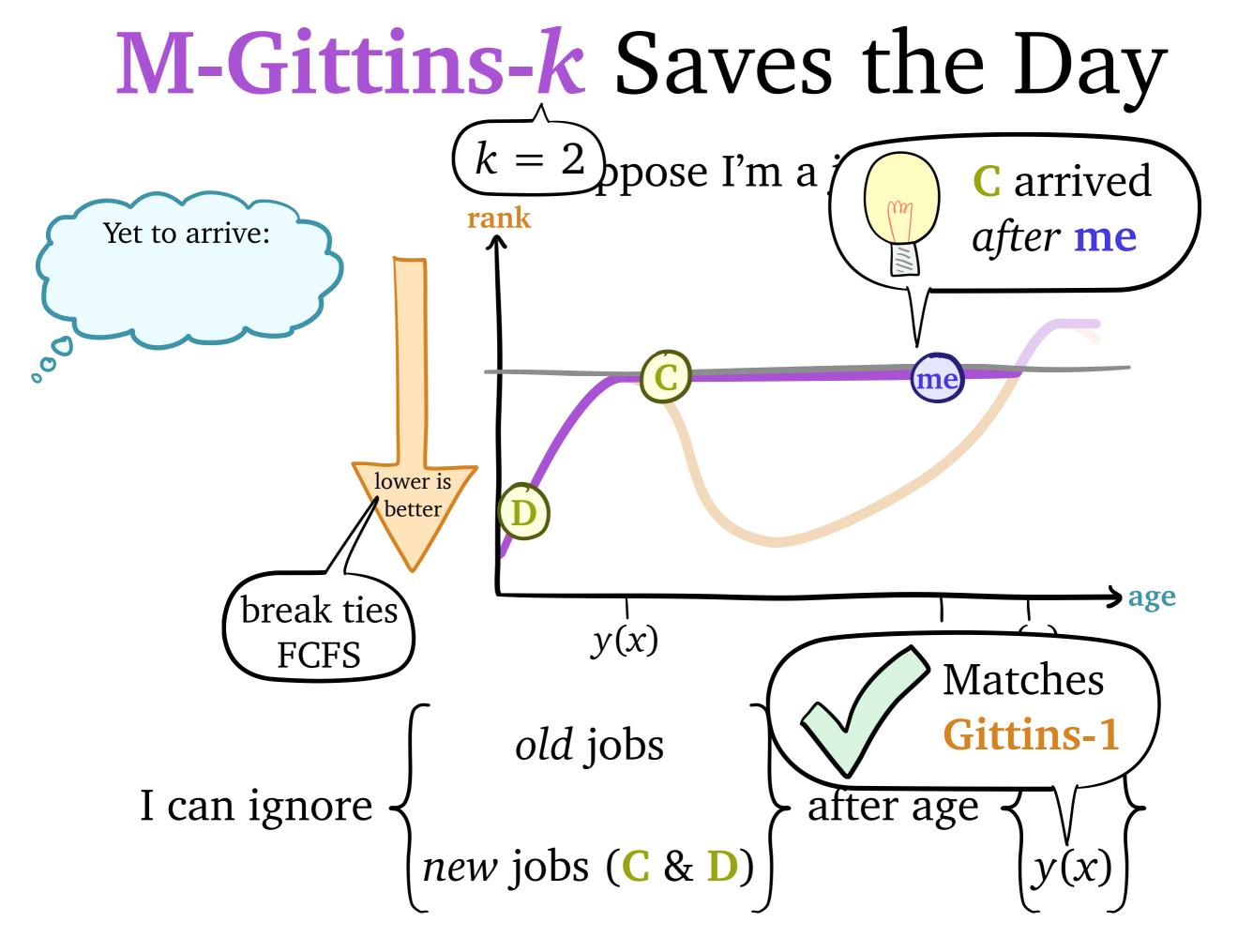












Suppose *X* is heavy-tailed with finite variance

Suppose *X* is heavy-tailed with finite variance

similar results for some light-tailed *X* (see paper)

Suppose *X* is heavy-tailed with finite variance

similar results for some light-tailed X (see paper)

Step 1: link **M-Gittins-***k* to **Gittins-1**

Step 2: analyze heavy-traffic Gittins-1

Suppose *X* is heavy-tailed with finite variance

similar results for some light-tailed *X* (see paper)

- **Step 1:** link **M-Gittins-***k* to **Gittins-1**
 - $\mathbf{E}[T_{\mathbf{M}\text{-}\mathbf{Gittins}\text{-}k}] \le \mathbf{E}[T_{\mathbf{Gittins}\text{-}1}] + k \cdot O\left(\log\frac{1}{1-\rho}\right)$

Step 2: analyze heavy-traffic Gittins-1

Suppose *X* is heavy-tailed with finite variance

similar results for some light-tailed *X* (see paper)

Step 1: link **M-Gittins-***k* to **Gittins-1**

$$\mathbf{E}[T_{\mathbf{M}\text{-}\mathbf{Gittins}\text{-}k}] \le \mathbf{E}[T_{\mathbf{Gittins}\text{-}1}] + k \cdot O\left(\log\frac{1}{1-\rho}\right)$$

Step 2: analyze heavy-traffic **Gittins-1** $E[T_{\text{Gittins-1}}] = \omega \left(\log \frac{1}{1-\rho} \right)$

Suppose *X* is heavy-tailed with finite variance

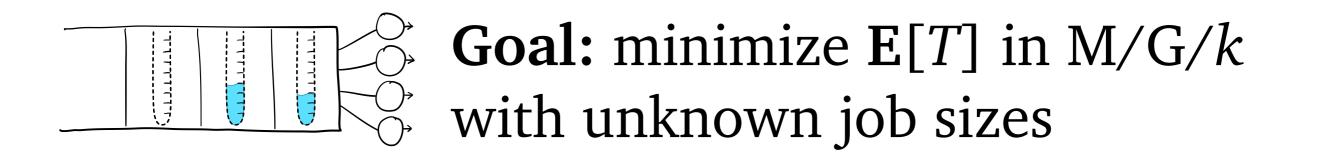
similar results for some light-tailed *X* (see paper)

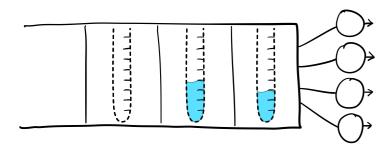
Step 1: link **M-Gittins-***k* to **Gittins-1**

$$\mathbf{E}[T_{\mathbf{M}\text{-}\mathbf{Gittins}\text{-}k}] \le \mathbf{E}[T_{\mathbf{Gittins}\text{-}1}] + k \cdot O\left(\log\frac{1}{1-\rho}\right)$$

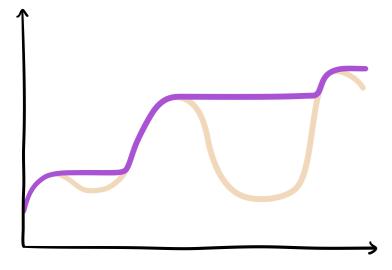
Step 2: analyze heavy-traffic Gittins-1

$$\mathbf{E}[T_{\mathbf{Gittins-1}}] = \omega \left(\log \frac{1}{1-\rho} \right)$$
$$\Theta \left(\frac{1}{1-\rho} \middle/ \max_{0 \le b \le \overline{F}_e^{-1}(1-\rho)} \mathbf{E}[X-b \mid X > b] \right)$$

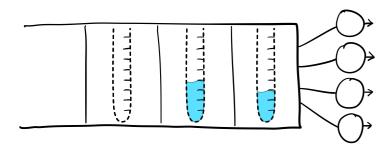




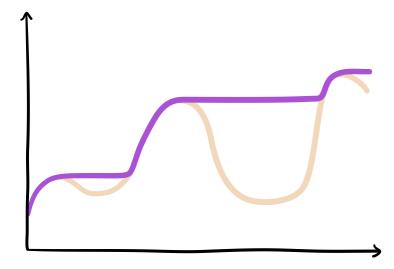
Goal: minimize E[T] in M/G/k with unknown job sizes



Key idea: new *monotonic* variant of **Gittins**, namely **M-Gittins**

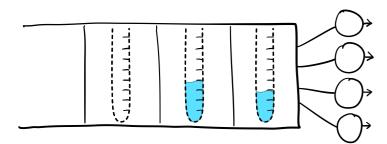


Goal: minimize E[T] in M/G/k with unknown job sizes

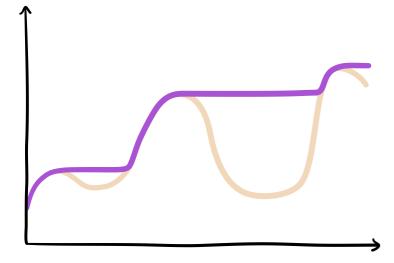


Key idea: new *monotonic* variant of **Gittins**, namely **M-Gittins**

Theorem:
$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}-\mathbf{Gittins}-k}]}{\mathbf{E}[T_{\mathbf{Gittins}-1}]} = 1$$



Goal: minimize E[T] in M/G/k with unknown job sizes



Key idea: new *monotonic* variant of **Gittins**, namely **M-Gittins**

Theorem:
$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}-\mathbf{Gittins}-k}]}{\mathbf{E}[T_{\mathbf{Gittins}-1}]} = 1$$

Get in touch: zscully@cs.cmu.edu

Bonus Slides

Theorem:

M-Gittins-k is heavy-traffic optimal in the M/G/k, specifically

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}-\mathbf{Gittins}-k}]}{\mathbf{E}[T_{\mathbf{Gittins}-1}]} = 1,$$

Theorem:

M-Gittins-k is heavy-traffic optimal in the M/G/k, specifically

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}\text{-}\mathbf{Gittins}\text{-}k}]}{\mathbf{E}[T_{\mathbf{Gittins}\text{-}1}]} = 1,$$

if *X* is in *any* of the following classes:

Theorem:

M-Gittins-*k* is *heavy-traffic optimal* in the M/G/*k*, specifically

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}\text{-}\mathbf{Gittins}\text{-}k}]}{\mathbf{E}[T_{\mathbf{Gittins}\text{-}1}]} = 1,$$

if *X* is in *any* of the following classes:

• bounded

Theorem:

M-Gittins-k is *heavy-traffic optimal* in the M/G/k, specifically

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}\text{-}\mathbf{Gittins}\text{-}k}]}{\mathbf{E}[T_{\mathbf{Gittins}\text{-}1}]} = 1,$$

if *X* is in *any* of the following classes:

- bounded
- "finite-variance heavy-tailed" (O-regularly varying with Matuszewska indices less than –2)

Theorem:

M-Gittins-k is *heavy-traffic optimal* in the M/G/k, specifically

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}\text{-}\mathbf{Gittins}\text{-}k}]}{\mathbf{E}[T_{\mathbf{Gittins}\text{-}1}]} = 1,$$

if *X* is in *any* of the following classes:

- bounded
- "finite-variance heavy-tailed" (O-regularly varying with Matuszewska indices less than –2)
- MDA(Λ) with "quasi-decreasing hazard rate", e.g. $h(x) = \Theta(x^{-\gamma})$

Theorem:

M-Gittins-k is *heavy-traffic optimal* in the M/G/k, specifically

$$\lim_{\rho \to 1} \frac{\mathbf{E}[T_{\mathbf{M}\text{-}\mathbf{Gittins}\text{-}k}]}{\mathbf{E}[T_{\mathbf{Gittins}\text{-}1}]} = 1,$$

if *X* is in *any* of the following classes:

• bounded

exponential, log-normal, Weibull...

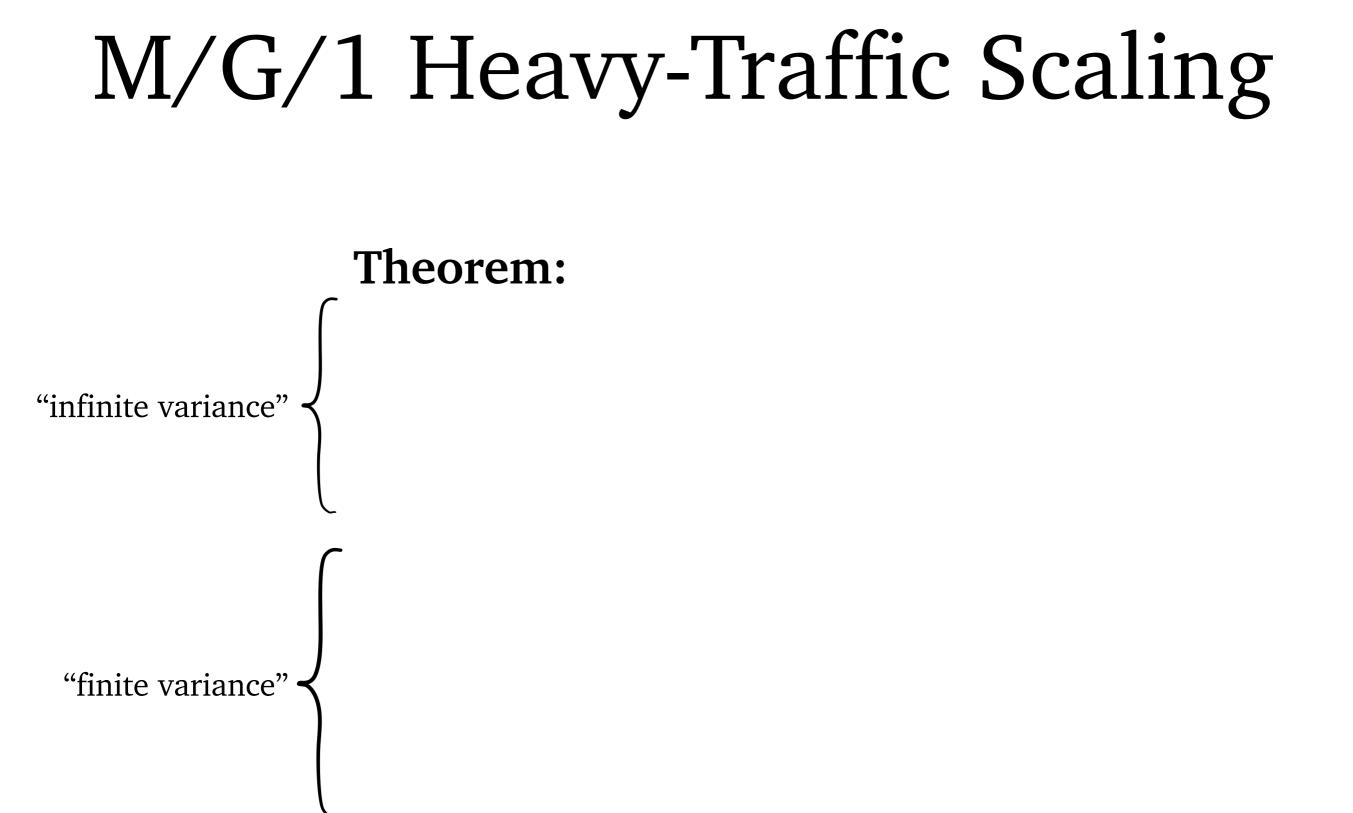
"finite-variance heavy-tailed"

(O-regularly varying with Matuszewska indices less than –2)

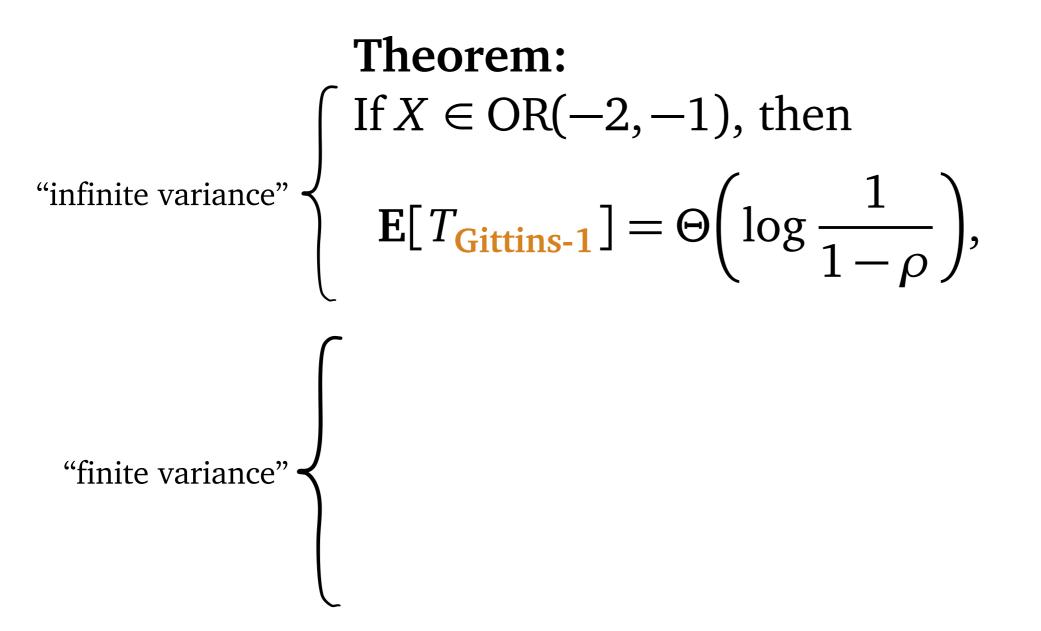
•••MDA(Λ) with "quasi-decreasing hazard rate", e.g. $h(x) = \Theta(x^{-\gamma})$

22

M/G/1 Heavy-Traffic Scaling



M/G/1 Heavy-Traffic Scaling



M/G/1 Heavy-Traffic Scaling

Theorem: "infinite variance" $\begin{cases} \text{If } X \in \text{OR}(-2, -1), \text{ then} \\ E[T_{\text{Gittins-1}}] = \Theta\left(\log\frac{1}{1-\rho}\right), \end{cases}$ "finite variance" $\begin{cases} \text{and if } X \in OR(-\infty, -2) \cup MDA(\Lambda) \cup ENBUE, \\ \text{then} \\ E[T_{\text{Gittins-1}}] = \Theta\left(\frac{1}{1-\rho} \middle/ \max_{0 \le b \le \overline{F}_e^{-1}(1-\rho)} E[X-b \mid X > b]\right). \end{cases}$