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ABSTRACT
We consider scheduling to minimize mean response time of
the M/G/k queue with unknown job sizes. In the single-
server k = 1 case, the optimal policy is the Gittins policy,
but it is not known whether Gittins or any other policy is
optimal in the multiserver case. Exactly analyzing the M/G/k
under any scheduling policy is intractable, and Gittins is a
particularly complicated policy that is hard to analyze even
in the single-server case.

In this work we introduce monotonic Gittins (M-Gittins),
a new variation of the Gittins policy, and show that it mini-
mizes mean response time in the heavy-traffic M/G/k for a
wide class of finite-variance job size distributions. We also
show that the monotonic shortest expected remaining process-
ing time (M-SERPT) policy, which is simpler than M-Gittins,
is a 2-approximation for mean response time in the heavy
traffic M/G/k under similar conditions. These results con-
stitute the most general optimality results to date for the
M/G/k with unknown job sizes. Our techniques build upon
work by Grosof et al. [6], who study simple policies, such
as SRPT, in the M/G/k ; Bansal et al. [2], Kamphorst and
Zwart [7], and Lin et al. [9], who analyze mean response time
scaling of simple policies in the heavy-traffic M/G/1; and
Aalto et al. [1] and Scully et al. [11, 13], who characterize
and analyze the Gittins policy in the M/G/1.

1. INTRODUCTION
Scheduling to minimize mean response time1 of the M/G/k

queue is an important problem in queueing theory. The single-
server k = 1 case has been well studied. If the scheduler
has access to each job’s exact size, the shortest remaining
processing time (SRPT) policy is easily shown to be optimal.
If the scheduler does not know job sizes, which is very often
the case in practical systems, then a more complex policy
called the Gittins policy is known to be optimal [1]. The
Gittins policy tailors its priority scheme to the job size
distribution, and it takes a simple form in certain special
cases. For example, for distributions with decreasing hazard
rate (DHR), Gittins becomes the foreground-background (FB)
policy,2 so FB is optimal in the M/G/1 for DHR job size

1A job’s response time, also called sojourn time or latency,
is the amount of time between its arrival and its completion.
2FB is the policy that prioritizes the job of least age, meaning
the job that has been served the least so far. It is also known
as least attained service (LAS).
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distributions [1, 5].
In contrast to the M/G/1, the M/G/k with k ≥ 2 has

resisted exact analysis, even for very simple scheduling poli-
cies. As such, much less is known about minimizing mean
response time in the M/G/k , with the only nontrivial results
holding under heavy traffic.3 For known job sizes, recent
work by Grosof et al. [6] shows that a multiserver analogue of
SRPT is optimal in the heavy-traffic M/G/k . For unknown
job sizes, Grosof et al. [6] address only the case of DHR job
size distributions, showing that a multiserver analogue of
FB is optimal in the heavy-traffic M/G/k . But in general,
optimal scheduling is an open problem for unknown job sizes,
even in heavy traffic, We therefore ask:

What scheduling policy minimizes mean response
time in the heavy-traffic M/G/k with unknown
job sizes and general job size distribution?

This is a very difficult question. In order to answer it, we
draw upon several recent lines of work in scheduling theory.
• As part of their heavy-traffic optimality proofs, Grosof

et al. [6] use a tagged job method to stochastically
bound M/G/k response time under each of SRPT and
FB relative to M/G/1 response time under the same
policy.
• Lin et al. [9] and Kamphorst and Zwart [7] characterize

the heavy-traffic scaling of M/G/1 mean response time
under SRPT and FB, respectively.
• Scully et al. [13] show that a policy called monotonic

shortest expected remaining processing time (M-SERPT),
which is considerably simpler than Gittins, has M/G/1
mean response time within a constant factor of that of
Gittins.

While these prior results do not answer the question on
their own, together they suggest a plan of attack for proving
optimality in the heavy-traffic M/G/k .

When searching for a policy to minimize mean response
time, a natural candidate is a multiserver analogue of Gittins.
As a first step, one might hope to use the tagged job method
of Grosof et al. [6] to stochastically bound M/G/k response
time under Gittins relative to M/G/1 response time. Unfortu-
nately, the tagged job method does not apply to multiserver
Gittins, because it relies on both stochastic and worst-case
properties of the scheduling policy, whereas Gittins has poor
worst-case properties.

One of our key ideas is to introduce a new variant of Git-
tins, called monotonic Gittins (M-Gittins), that has better
worst-case properties than Gittins while maintaining similar

3Here “heavy traffic” refers to the limit as the system load
approaches capacity for a fixed number of servers.



stochastic properties. This allows us to generalize the tagged
job method [6] to M-Gittins, thus bounding its M/G/k re-
sponse time relative to its M/G/1 response time.

Our M/G/k analysis of M-Gittins reduces the question
of whether M-Gittins is optimal in the heavy-traffic M/G/k
to analyzing the heavy-traffic scaling of M-Gittins’s M/G/1
mean response time. However, there are no heavy-traffic
scaling results for the M/G/1 under policies other than
SRPT [9], FB [7], first-come, first served (FCFS) [8], and
a small number of other simple policies [2, 4]. To remedy
this, we derive heavy-traffic scaling results for M-Gittins in
the M/G/1. It turns out that analyzing M-Gittins directly
is very difficult. Fortunately, M-Gittins has a simpler cousin,
M-SERPT, which Scully et al. [13] introduce and analyze.
We analyze M-SERPT in heavy traffic as a key stepping
stone in our heavy-traffic analysis of M-Gittins.

We make the following contributions:
• We introduce the M-Gittins policy and prove that

it minimizes mean response time in the heavy-traffic
M/G/k for a large class of finite-variance job size dis-
tributions (Theorem 3.1).
• We also prove that the simple and practical M-SERPT

policy is a 2-approximation for mean response time
in the heavy-traffic M/G/k for a large class of finite-
variance job size distributions (Theorem 3.2).
• We characterize the heavy-traffic scaling of mean re-

sponse time in the M/G/1 under Gittins, M-Gittins,
and M-SERPT (Theorem 3.3).

Section 3 formally states these results and compares them
to prior work. Their proofs can be found in the full version
of this work [12].

2. PRELIMINARIES
We consider an M/G/k queue with arrival rate λ and job

size distribution X. Each of the k servers has speed 1/k, so
regardless of the number of servers, the total service rate is 1
and the system load is system load is ρ = λE[X]. This allows
us to easily compare the M/G/k system to a single-server
M/G/1 system. We assume a preempt-resume model with no
preemption overhead, so the single-server M/G/1 system can
simulate any policy for the M/G/k system by time-sharing
between k jobs.

Throughout this paper we consider the ρ → 1 or heavy-
traffic limit. This is the λ→ 1/E[X] limit with the job size
distribution X and number of servers k held constant.

We write F for the cumulative distribution function of X
and F (x) = 1−F (x) for its tail. We assume that X has a con-
tinuous, piecewise-monotonic hazard rate h(x) = F ′(x)/F (x).
We also frequently work with the expected remaining size of
a job at age a, which is E[X − a | X > a]. We assume it, too,
is continuous and piecewise-monotonic as a function of a.

The above assumptions on hazard rate and expected re-
maining size are not restrictive and serve primarily to sim-
plify presentation. It is very likely that our proofs can be
generalized to relax them.

2.1 SOAP Policies and Rank Functions
All of the scheduling policies considered in this work are in

the class of SOAP policies [11], generalized to a multiserver
setting. In a single-server setting, a SOAP policy π is specified
by a rank function

rπ : R+ → R

which maps a job’s age, namely the amount of service it has
received so far, to its rank, or priority level. Single-server
SOAP policies work by always serving the job of minimal
rank, breaking ties in FCFS fashion.

As an example, FB is a SOAP policy with rFB(a) = a.
Because lower age corresponds to lower rank, under FB, the
server prioritizes the job of least age.4

We define multiserver SOAP policies in much the same way
as the single-server case. The difference is that the system
can serve up to k jobs.
• If there are at most k jobs, the policy serves all of them.
• If there are more than k jobs, the policy serves the k

jobs of minimal rank, breaking ties in FCFS fashion.
We denote the k-server version of policy π by π-k , so π-1 is the
single-server version. We write Tπ-kx for the size-conditional
response time distribution of jobs of size x under π-k , and
we write Tπ-k for the overall response time distribution.

There are three main policies we consider in this work:
M-SERPT, Gittins, and M-Gittins. None of these policies
require knowledge of job sizes, but each uses the job size
distribution to tune its rank function.

Definition 2.1. The monotonic shortest expected remaining
processing time (M-SERPT) policy is the SOAP policy with
monotonic rank function

rM-SERPT(a) = max
b∈[0,a]

E[X − b | X > b].

Definition 2.2. The Gittins policy is the SOAP policy with
rank function

rGittins(a) = inf
b>a

E[min{X, b} − a | X > a]

P{X ≤ b | X > a} =

∫ b
a
F (t) dt

F (a)− F (b)
.

Definition 2.3. The monotonic Gittins (M-Gittins) policy
is the SOAP policy with monotonic rank function

rM-Gittins(a) = max
b∈[0,a]

rGittins(b).

2.2 Job Size Distribution Classes
There are several classes of job size distributions we con-

sider in this paper. We first briefly describe each class, then
give the formal definitions.
• The OR(−∞,−1) class (Definition 2.4) contains, roughly

speaking, distributions with Pareto-like tails.
– We focus especially on the OR(−∞,−2) subclass,

all members of which have finite variance.
• The MDA(Λ) class from extreme value theory [10] con-

tains distributions whose tails are lighter than Pareto
tails. It includes, among others, exponential, normal,
log-normal, Weibull, and Gamma distributions.
• The QDHR and QIMRL classes (Definition 2.5) are relax-

ations of the decreasing hazard rate (DHR) and increas-
ing mean residual lifetime (IMRL) classes [1, 5]. QDHR
contains distributions whose hazard rate is roughly
decreasing with age, even if it is not perfectly mono-
tonic, and QIMRL contains distributions with roughly
increasing expected remaining size.
• The ENBUE class (Definition 2.6) is a relaxation of the

new better than used in expectation (NBUE) class [1]. It
contains distributions whose expected remaining size
reaches a global maximum at some age.

4When multiple jobs are tied for least age, FB equally shares
the server among all such jobs because the rank function is
increasing. See Scully et al. [11, Appendix B] for details.



– We focus especially on the Bounded subclass, which
contains all bounded distributions.

Definition 2.4. A job size distribution is O-regularly vary-
ing if there exist exponents β ≥ α > 0 along with constants
C0, x0 > 0 such that for all y ≥ x > x0,

1

C0

( y
x

)−β
≤ F (y)

F (x)
≤ C0

( y
x

)−α
.

We write OR(−β0,−α0) for the set of O-regularly varying
distributions where the exponents α and β above may be
chosen such that α0 < α ≤ β < β0.5

Definition 2.5. A job size distribution is in the quasi-
decreasing hazard rate (QDHR) class, if there exist a strictly
increasing function m : R+ → R+, an exponent γ ≥ 1, and
constants C0, x0 > 0 such that for all x > x0,

m(x) ≤ 1

h(x)
≤ m(C0x

γ).

Similarly, a distribution is in the quasi-increasing mean resid-
ual lifetime (QIMRL) class if under the same conditions,

m(x) ≤ E[X − x | X > x] ≤ m(C0x
γ).

Definition 2.6. A job size distribution is in the eventually
new better than used in expectation (ENBUE) class, if there
exists an age a∗ ≥ 0 at which a job’s expected remaining
size reaches a global maximum, meaning that for all x 6= a∗,

E[X − a∗ | X > a∗] ≥ E[X − x | X > x].

ENBUE contains Bounded, distributions with bounded support.

3. MAIN RESULTS
We now present our main results, beginning with our

heavy-traffic M/G/k optimality result.

Theorem 3.1. In an M/G/k, if

X ∈ OR(−∞,−2) ∪ (MDA(Λ) ∩ QDHR) ∪ Bounded,

then limρ→1 E[TM-Gittins-k]/E[TGittins-1] = 1. In such cases,
M-Gittins-k minimizes mean response time in heavy traffic.

The M-Gittins policy is based on the Gittins policy, which
is somewhat complex to describe and compute. Fortunately,
the M-SERPT policy, which can be much simpler to com-
pute [13], also performs well in the heavy-traffic M/G/k .

Theorem 3.2. In an M/G/k, if

X ∈ OR(−∞,−2) ∪ (MDA(Λ) ∩ (QDHR ∪ QIMRL)) ∪ Bounded,

then limρ→1 E[TM-SERPT-k]/E[TGittins-1] ≤ 2. In such cases,
M-SERPT-k is a 2-approximation for mean response time
in heavy traffic.

Theorems 3.1 and 3.2 apply to a broad class of finite-
variance job size distributions. Roughly speaking, OR(−∞,−2)
covers heavy-tailed distributions, and MDA(Λ) covers non-
heavy-tailed distributions that are unbounded (Section 2.2).
Assuming membership in these sets is standard for heavy-
traffic analysis [7]. The main restriction the results impose
is on MDA(Λ) distributions, for which we additionally require

5This is not the standard definition of O-regular variation,
but it is equivalent to it [3, Section 2.2.1].

membership in QDHR or QIMRL. While slightly relaxing this
restriction is possible, removing it entirely appears to be very
difficult [12, Section 8].

A key step in the proofs of Theorems 3.1 and 3.2 is ana-
lyzing M-Gittins and M-SERPT in the heavy-traffic M/G/1.
This analysis is itself a new result of independent interest.
Notably, it extends to ordinary Gittins in addition to M-Git-
tins, thus characterizing the optimal heavy-traffic scaling
attainable by any scheduling policy.

Theorem 3.3. Let π-1 be one of Gittins-1, M-Gittins-1, or
M-SERPT-1. If X ∈ OR(−2,−1), then in the ρ→ 1 limit,

E[Tπ-1] = Θ

(
log

1

1− ρ

)
and if X ∈ OR(−∞,−2)∪MDA(Λ)∪ENBUE, then in the ρ→ 1
limit,

E[Tπ-1] = Θ

(
1

(1− ρ) · rM-SERPT
(
F−1
e (1− ρ)

)),
where F−1

e is the inverse of the tail of the excess of X, namely

Fe(x) =
1

E[X]

∫ ∞
x

F (t) dt.
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