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Goal: schedule to minimize metrics
like mean response time E[T]
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@ Key idea: a job is a Markov process

_ general state space

2 job’s state encodes all known info

- state stochastically evolves with service
» completes upon entering goal state
"1y set of nonpreemptible states

every state has a holding cost
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Theorem: under any policy,

Why does SRPT minimize E[N] in M/G/1?

Because it minimizges E[W(r)] for all r!
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