The Gittins Policy

in the M/G/1 Queue

Ziv Scully (i x
Mor Harchol-Balter ‘)
e

Carnegie Mellon University

In a Nutshell

In a Nutshell

The Gittins policy solves a variety
g of queue scheduling problems

In a Nutshell

The Gittins policy solves a variety
g of queue scheduling problems

A But prior results have limitations

In a Nutshell

The Gittins policy solves a variety
@ of queue scheduling problems
A But prior results have limitations

We unify and generalize all prior
Gittins optimality results

M/G/1 Queue

M/G/1 Queue

qucuce server

M/G/1 Queue

qucuce server

job

M/G/1 Queue

qucuce server

job

size <

M/G/1 Queue

qucuce server

job

size <

M/G/1 Queue

qucuce server

job

size <

M/G/1 Queue

qucuce server

job

size <

size <

-

L

M/G/1 Queue

queue

J

remaining size

age

job

SErver

%1

random
arrivals

size <

-

L

M/G/1 Queue

queue

J

remaining size

age

job

SErver

M/G/1 Queue

<3

random
arrivals

qucuce server

job

)
}remaining size
size <
G

random
arrivals

-

size <

L

S = size distribution
A = arrival rate
p=AE[S] <1

J

M/G/1 Queue

queue

remaining size

age

job

SErver

random
arrivals

-

size <

L

S = size distribution
A = arrival rate
p=AE[S] <1

J

M/G/1 Queue

queue

SErver

remaining size

age

job

Scheduling policy:
picks which job to serve

M/G/1 Queue

S = size distribution

A = arrival rate
p=AE[S] <1

random
arrivals

job

[[
. }remammg S12€ Scheduling policy:
size < } . 16 |
age @ picks which job to serve

L

M/G/1 Queue

S = size distribution

A = arrival rate
p=AE[S] <1

random
arrivals

job

[[
. }remammg S12€ Scheduling policy:
size < } . 16 |
age @ picks which job to serve

L

M/G/1 Queue

S = size distribution

A = arrival rate
p=AE[S] <1

random
arrivals

job

[[
. }remammg S12€ Scheduling policy:
size < } . 16 |
age @ picks which job to serve

L

M/G/1 Queue

S = size distribution

A = arrival rate
p=AE[S] <1

random
arrivals

job

[[
. }remammg S12€ Scheduling policy:
size < } . 16 |
age @ picks which job to serve

L

Response Time

EEERG;

Response Time

EENG;

Response Time

AN

= T = response time

Response Time

Response Time

= T = response time

Goal: schedule to minimize metrics
like mean response time E[T]

How to Schedule?

- remaining size
size {

G,

- age

How to Schedule?

SRPT: always serve job of
@ least remaining size

- remaining size
size {
> age

G,

How to Schedule?

shortest remaining
processing time

SRPT: always serve job of
@ least remaining size

- remaining size

size {

G,

- age

How to Schedule?

shortest remaining
processing time

SRPT: always serve job of
@ least remaining size

4\

- remaining size
size {

G,

> age
2 sage

How to Schedule?

Q shortest remaining
processing time
SRPT: always serve job of

@ least remaining size

1, \—
éower 1S bett@

- remaining size

J

size {

- age

o

sage

How to Schedule?

Q shortest remaining
processing time
SRPT: always serve job of

@ least remaining size

1, \—
éower 1S bett@

- remaining size

J

size { size 4

- age

o

sage

How to Schedule?

Q shortest remaining
processing time
SRPT: always serve job of
@ least remaining size
size 9} — .
éower is bett@

size 4

- remaining size

J

size {

- age

o

sage

How to Schedule?
Q -

SRPT: always serve job of
@ least remaining size

ize 91 -)
P12 éower 1S bett@

size 4

- remaining size

J

size {

- age

size 2

o

sage

O

How to Schedule?

=S

shortest remaining
processing time

size {

G

2

J

- remaining size

- age

size 9’

size 4

size 2

minimizes E|[T]
[Schrage, 1968]

N

SRPT: always serve job of
least remaining size

aower 1S betteD

sage

Unknown Job Sizes

- remaining size
size {

G,

- age

Unknown Job Sizes

ey
>
V

ST

size?{§ :

A
|
-
unknown
L

Unknown Job Sizes

ey
>
V

ST

size?{i :

|
|
-
-
unknown L age

- known

Unknown Job Sizes

-
":J-.-L-J-.-J.-_l-_-.l-.-\.-.;.-.
C:] d_L_L

distribution
S known

size?{i :

|
|
-
-
unknown L age

- known

Unknown Job Sizes

]
-
‘Qlilzillilllllf
.
Ll

Tl
o

Q%ob size

distribution Gittins: computes job’s
S known @ .
i using age and S

L.

am
L J
.

size ? {

unknown

age
known

Unknown Job Sizes

7

Q%ob size

R Y T Y 1O Y O T I

-L-L.

-

Tl

-y

istribution : . L,
distributio Gittins: computes job’s
S known @

L.

size ? {

unknown

am
- J
Y

age
known

4\

using age and S

éower 1S bett@

sage

Unknown Job Sizes

7

Q%ob size

R Y T Y 1O Y O T I

-L-L.

-

Tl

-y

istribution : . L,
distributio Gittins: computes job’s
S known @

L.

size ? {

unknown

am
- J
Y

age
known

4\

using age and S

éower 1S bett@

sage

Unknown Job Sizes

e
Y job size

distribution Gittins: computes job’s
S known @ .
a using age and S

1, \—
aower 1S betteD

minimizes E[T]
[Sevceik, 1971]

[Olivier, 1972]
[Gittins, 1989]

R Y T Y 1O Y O T I

)

L.

am
- J
Y

size ? {

unknown

age
known sage

Gittins Optimality Results

Size info:

unknown

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general [Olivier, 1972]

Service:
preemptive [Gittins, 1989]

Gittins Optimality Results

Size info:
unknown

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general [Olivier, 1972]
Service:

preemptive [Gittins, 1989]
Job weights:

equal, class-based

Job types:

all same, multiple classes

Gittins Optimality Results

Size info:
unknown

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general [Olivier, 1972]
Service:

preemptive [Gittins, 1989]
Job weights:

equal, class-based

Job types:

all same, multiple classes

Gittins Optimality Results

Size info:
unknown, known

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general [Olivier, 1972]
Service:

preemptive [Gittins, 1989]
Job weights:

equal, class-based

Job types:

all same, multiple classes

Gittins Optimality Results

Size info:
unknown, known

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general [Olivier, 1972]
Service:

preemptive [Gittins, 1989]
Job weights:

equal, class-based, size-based

Job types:

all same, multiple classes

Gittins Optimality Results
@y rul%

Size info: CSRPT
unknown, known “\[Schrage, 1968]

[Cox and Smith, 1961]

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general [Olivier, 1972]
Service:

preemptive [Gittins, 1989]
Job weights:

equal, class-based, size-based

Job types:

all same, multiple classes

Gittins Optimality Results
@y rul%

Size info: CSRPT
unknown, known “\[Schrage, 1968]

[Cox and Smith, 1961]

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general [Olivier, 1972]
Service:

preemptive [Gittins, 1989]
Job weights:

equal, class-based, size-based

Job types:

all same, multiple classes

Gittins Optimality Results
@y rul%

Size info: CSRPT
unknown, known “\[Schrage, 1968]

[Cox and Smith, 1961]

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general, exponential [Olivier, 1972]
Service:

preemptive [Gittins, 1989]
Job weights:

equal, class-based, size-based

Job types:

all same, multiple classes

Gittins Optimality Results
@y rul%

Size info: CSRPT
unknown, known “\[Schrage, 1968]

[Cox and Smith, 1961]

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general, exponential [Olivier, 1972]
Service:

preemptive, nonpreemptive [Gittins, 1989]
Job weights:

equal, class-based, size-based

Job types:

all same, multiple classes

Gittins Optimality Results

@y rul%
Size iIlfO: CSRPT [Cox and Smith, 1961]

unknown, known [Schrage, 1968]

1 1StTi i Sevcik, 1971
Size distribution: [Seveik, 1971]

general, exponential (Olivier 1972]
Service: [Klimov, 1975)
preemptive, nonpreemptive [Gittins, 1989]
Job WeightSZ [Lai and Ying, 1988]

equal, class-based, size-based

Job types:

all same, multiple classes, multistage

Gittins Optimality Results

@y rul%
Size iIlfOI CSRPT [Cox and Smith, 1961]

unknown, known [Schrage, 1968]

1 1StTi i Sevcik, 1971
Size distribution: [Seveik, 1971]

general, exponential (Olivier. 1972)
Service: [Klimov, 1975)
preemptive, nonpreemptive [Gittins, 1989]
Job WeightS: [Lai and Ying, 1988]

equal, class-based, size-based

Job types:

all same, multiple classes, multistage

Gittins Optimality Results

@y rul%
Size iIlfOI CSRPT [Cox and Smith, 1961]

unknown, known [Schrage, 1968]

1 1StTi i Sevcik, 1971
Size distribution: [Seveik, 1971]

general, exponential (Olivier 1972]
Service: [Klimov, 1975]
preemptive, nonpreemptive (Gittins, 1989]
Job Weights: [Lai and Ying, 1988]

equal, class-based, size-based

Job types:

all same, multiple classes, multistage

Gittins Optimality Results
@y rul%

Size info: CSRPT
unknown, known “\[Schrage, 1968]

[Cox and Smith, 1961]

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general, exponential [Olivier, 1972]
. [Klimov, 1975]
Service:
preemptive, nonpreemptive [Gittins, 1989]
. [Lai and Ying, 1988]
Job weights: ;
equal, class-based, size-based [Bertsimas, 1995]
[Dacre et al., 1999]
Job types:

all same, multiple classes, multistage [Whittle, 2007]

Gittins Optimality Results
@y rul%

Size info: CSRPT
unknown, known, noisily estimated? “\[Schrage, 1968]

[Cox and Smith, 1961]

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general, exponential [Olivier, 1972]
. [Klimov, 1975]
Service:
preemptive, nonpreemptive [Gittins, 1989]
. [Lai and Ying, 1988]
Job weights: ;
equal, class-based, size-based [Bertsimas, 1995]
[Dacre et al., 1999]
Job types:

all same, multiple classes, multistage [Whittle, 2007]

Gittins Optimality Results
@y rul%

Size info: CSRPT
unknown, known, noisily estimated? “\[Schrage, 1968]

[Cox and Smith, 1961]

1 1StTi i Sevcik, 1971
Size distribution: [Seveik, 1971]

general, exponential [Olivier, 1972]

. Klimov, 1975
Service: (Klimov]

preemptive, nonpreemptive, partly preemptive? [Gittins, 1989]

[Lai and Ying, 1988]

Job weights:

equal, class-based, size-based [Bertsimas, 1995]
[Dacre et al., 1999]

Job types:

all same, multiple classes, multistage [Whittle, 2007]

Gittins Optimality Results
@y rulQ

Size info: CSRPT
unknown, known, noisily estimated? “\[Schrage, 1968]

[Cox and Smith, 1961]

1 1StTi i Sevcik, 1971
Size distribution: [Seveik, 1971]

general, exponential [Olivier, 1972]

. Klimov, 1975
Service: (Klimov]

preemptive, nonpreemptive, partly preemptive? [Gittins, 1989]

[Lai and Ying, 1988]

Job weights:

equal, class-based, size-based, non-constant? [Bertsimas, 1995]
[Dacre et al., 1999]

Job types:

all same, multiple classes, multistage [Whittle, 2007]

Gittins Optimality Results
@y rul%

Size info: CSRPT
unknown, known, noisily estimated? “\[Schrage, 1968]

[Cox and Smith, 1961]

1 1StTi i Sevcik, 1971
Size distribution: [Seveik, 1971]

general, exponential [Olivier, 1972]

. Klimov, 1975
Service: Liditnam L5751

preemptive, nonpreemptive, partly preemptive? [Gittins, 1989]

[Lai and Ying, 1988]

assuming finitely %-based, non-constant? [Bertsimas, 1995]

many classes

[Dacre et al., 1999]

all same, multiple classes, multistage [Whittle, 2007]

Gittins Optimality Results
@y rul%

Size info: CSRPT
unknown, known, noisily estimated? “\[Schrage, 1968]

[Cox and Smith, 1961]

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general, exponential [Olivier, 1972]

[Klimov, 1975]

¢ assuming upper

prnbound on job sizes k, partly preemptive? [Gittins, 1989]

[Lai and Ying, 1988]

assuming finitely %-based, non-constant? [Bertsimas, 1995]

many classes

[Dacre et al., 1999]

all same, multiple classes, multistage [Whittle, 2007]

We unify and generalize
all prior Gittins optimality results

Gittins Optimality Results

Size iIlfO' [Cox and Smith, 1961]

unknown, known, noisily estimated? [Schrage, 1968]

) ° ° ° k 1 1
Size distribution: [Sevcik, 1971]

general, exponential [Olivier, 1972]

. Klimov, 1975
Service: [Klimox:]

preemptive, nonpreemptive, partly preemptive? [Gittins, 1989]

[Lai and Ying, 1988]

Job weights:

equal, class-based, size-based, non-constant? [Bertsimas, 1995]
[Dacre et al., 1999]

Job types:

all same, multiple classes, multistage [Whittle, 2007]

Gittins Optimality Results

Size info: mith, 1961]

unknown, known, noisily estimated? [Schrage, 1968]

- o ° ° k 1 1
Size distribution: [Sevcik, 1971]

general, exponential [Olivier, 1972]

. Klimov, 1975
Service: (Klimov]

preemptive, nonpreemptive, partly preemptive? [Gittins, 1989]

[Lai and Ying, 1988]

Job weights:

equal, class-based, size-based, non-constant? [Bertsimas, 1995]
[Dacre et al., 1999]

Job types:

all same, multiple classes, multistage [Whittle, 2007]

We unify and generalize
all prior Gittins optimality results

We unify and generalize
all prior Gittins optimality results

o Key idea: very general
definition of “job”

10

General Job Model

General Job Model

Q Key idea: a job is a Markov process

11

General Job Model

@ Key idea: a job is a Markov process

_ general state space

11

General Job Model

@ Key idea: a job is a Markov process

_ general state space
2 job’s state encodes all known info

11

General Job Model

@ Key idea: a job is a Markov process

_ general state space
2 job’s state encodes all known info
- state stochastically evolves with service

11

General Job Model

@ Key idea: a job is a Markov process

_ general state space
2 job’s state encodes all known info
- state stochastically evolves with service

» completes upon entering goal state

11

General Job Model

@ Key idea: a job is a Markov process

_ general state space

2 job’s state encodes all known info

- state stochastically evolves with service
» completes upon entering goal state
"1y set of nonpreemptible states

11

General Job Model

@ Key idea: a job is a Markov process

_ general state space

2 job’s state encodes all known info

- state stochastically evolves with service
» completes upon entering goal state
"1y set of nonpreemptible states

every state has a holding cost

11

Job Examples

| general state space

2 job’s state encodes all known info

- state stochastically evolves with service
¥ completes upon entering goal state

12

Job Examples

Known Size
state = remaining size

&

G

X

| general state space
2 job’s state encodes all known info

. state stochastically evolves with service

-
SN

¥ completes upon entering goal state

12

Job Examples

Known Size
state = remaining size

G
" S

| general state space
2 job’s state encodes all known info

. state stochastically evolves with service

e
SN

¥ completes upon entering goal state

12

Job Examples

Known Size
state = remaining size

G

I

W, u

| general state space
2 job’s state encodes all known info

. state stochastically evolves with service

e
SN

¥ completes upon entering goal state

Job Examples

Known Size

state = remaining size

I

P

| general state space

u

Unknown Size
state = age

Q.. A
=

X

2 job’s state encodes all known info

- state stochastically evolves with service

¥ completes upon entering goal state

12

Job Examples

Known Size

state = remaining size

I

P

| general state space

u

Unknown Size
state = age

-
¢, e
= " 4
x< ———d’,
<~

2 job’s state encodes all known info

- state stochastically evolves with service

¥ completes upon entering goal state

12

Job Examples

Known Size

state = remaining size

I

P

| general state space

u

Unknown Size
state = age

2 job’s state encodes all known info

- state stochastically evolves with service

¥ completes upon entering goal state

12

Job Examples

Known Size Unknown Size

state = remaining size state = age
—_————
% = -~ ,/ ///
(= _a’,’
I
u

| general state space

S determines
jump probabilities

2 job’s state encodes all known info

- state stochastically evolves with service

¥ completes upon entering goal state

12

Job Examples

Known Size

state = remaining size

S determines
random initial state

ij general state space

Unknown Size
state = age

S determines
jump probabilities

2 job’s state encodes all known info

(
\

)
(2

-

- state stochastically evolves with service

¥ completes upon entering goal state

12

Theorem: Gittins minimizes
mean in M/G/1

13

Theorem: Gittins minimizes
mean holding cost in M/G/1

arrivals

13

Theorem: Gittins minimizes
mean holding cost in M/G/1

arrivals

13

Theorem: Gittins minimizes
mean holding cost in M/G/1

arrivals

In paper:

13

Theorem: Gittins minimizes
mean holding cost in M/G/1

arrivals

In paper:
 How to define the rank of each state

13

Theorem: Gittins minimizes
mean holding cost in M/G/1

arrivals

In paper:
» How to define the rank of each state
* Review of 10+ prior proofs

13

Theorem: Gittins minimizes
mean holding cost in M/G/1

g

5N \

random L@

. C
arrivals

In paper:

- How to define the rank of each state

* Review of 10+ prior proofs

- New proof that handles general job model

Theorem: Gittins minimizes
mean holding cost in M/G/1

arrivals

In paper:

Today: fe-Pm;fe p define the rank of each state
SRPT’ t1 It :
S P W of 10+ prior proofs

- New proof that handles general job model

13

WINE

Work Integral Number Equality

14

&WINE

Work Integral Number Equality

holding cost

14

WINE

Work Integral Number Equality

o

r-work W(r) holding cost

14

WINE

Work Integral Number Equality

S\

r-work W(r)

?@E

holding cost

Special case:
number of jobs N

14

WINE

Work Integral Number Equality

; or “Nuisance”)

r-work W(r)

?@E

holding cost

Special case:
number of jobs N

14

Defining r-work
gfz)r SRPD

W(r) = work relevant to r

15

Defining r-work

= priority gfz)r SRPD
(lower is better)

W(r) = work relevant to r

15

Defining r-work

= priority
(lower is better)

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

gfz)r SRPD

|

15

Defining r-work

= priority
(lower is better)

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

&)r SRPD

|

15

Defining r-work

= priority
(lower is better)

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

> O

&)r SRPD

|

15

Defining r-work

= priority
(lower is better)

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

> O

&)r SRPD

_{O if r <

15

Defining r-work

= priority
(lower is better)

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

&)r SRPD

_{O if r <

15

Defining r-work

= priority
(lower is better)

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

T

&)r SRPD

_{O if r <

15

Defining r-work

= priority
(lower is better)

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

T

&)r SRPD

:{0

ifr <
if r >

15

Defining r-work

= priority
(lower is better)

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

gfz)r SRPD

:{0

ifr <
if r >

15

Defining r-work

= priority
(lower is better)

W(r) = work relevant to r
= total r-work of all jobs

w.(r) = r-work of single job of rem. size

gfz)r SRPD

:{0

ifr <
if r >

15

From r-work to number of jobs N

From r-work to number of jobs N

(‘ Goal: integral = N |

W(r)

16

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A

0 ifr<

w.(r) = r-work of job of rem. size x = < ,
if r >

16

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)

w.(r) = r-work of job of rem. size

A

= 5

>1/r

0 ifr<

if r >

16

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A
1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

16

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
. ,
> 1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

16

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
>1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r>

16

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
iL‘
1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r >

16

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)

1
]
! 1/r

w.(r) = r-work of job of rem. size

1/r

1/

= <

16

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

16

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

16

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wi (1‘)
| X
1
1
1/r i 1/r
Theorem:

©.@

C

W(r)
5 I”
r uses rank = rem. size

.

WINE N=f
0

16

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

; X
1
! 1/r 1/r

1/x

Theorem: under any policy,

1‘
uses rank = rem. size

16

Optimality of SRPT

Theorem: under any policy,

Optimality of SRPT

Theorem: under any policy,

Why does SRPT minimize E[N] in M/G/1?

17

Optimality of SRPT

Theorem: under any policy,

Why does SRPT minimize E[N] in M/G/1?

Because it minimizges E[W(r)] for all r!

17

Theorem: Gittins minimizes
mean holding cost in M/G/1

g

5N \

random L@

. C
arrivals

In paper:

- How to define the rank of each state

* Review of 10+ prior proofs

- New proof that handles general job model

Theorem: Gittins minimizes
mean holding cost in M/G/1

arrivals

In paper:

+ How to define the rank of each state [)\
(T

* Review of 10+ prior proofs

- New proof that handles general job model

18

