Optimally Scheduling
Jobs with Multiple Tasks

&
Ziv Scully / \

Guy Blelloch ()
Mor Harchol-Balter O
Alan Scheller-Wolf \ /

Carnegie Mellon University O

Classic: Multiclass M/G/1

o1 o | O |0

Classic: Multiclass M/G/1

Known sizes:

Classic: Multiclass M/G/1

Classic: Multiclass M/G/1

Known sizes: SRPT

Uniform distributions: Time

Classic: Multiclass M/G/1

Known sizes: SRPT

Uniform distributions: SERPT

Shortest
Expected

Remaining
Processing
Time

Classic: Multiclass M/G/1

Known sizes: SRPT
Uniform distributions: SERPT

Pareto distributions:

Shortest
Expected

Remaining
Processing
Time

Classic: Multiclass M/G/1

Highest
Hazard
Rate

Known sizes: SRPT
Uniform distributions: SERPT
Pareto distributions: HHR (not SERPT!)

Classic: Multiclass M/G/1

Highest
Hazard
Rate

Known sizes: SRPT
Uniform distributions: SERPT
Pareto distributions: HHR (not SERPT!)

General distributions:

Classic: Multiclass M/G/1

Known sizes: SRPT
Uniform distributions: SERPT
Pareto distributions: HHR (not SERPT!)

General distributions: Gittins index policy

Today: Multitask Jobs

Today: Multitask Jobs

consist of multiple in a DAG

Today: Multitask Jobs

ﬁ/@ @ CXD

o S|loo

consist of multiple in a DAG

Today: Multitask Jobs

consist of multiple in a DAG

Today: Multitask Jobs

consist of multiple in a DAG

Job not done until all tasks done

Today: Multitask Jobs

consist of multiple in a DAG

Job not done until all tasks done

Goal: minimize mean response time of
* Which job?
* Which ?

task Jobs

Today: Multi

/O

\
Q O
N/
O

O O

0—0—0

O

L/

O?V(\

consist of multiple

in a DAG

Job not done until all tasks done

Goal: minimize mean response time of

* Whic]

1

* Whic]

1

?

?

Serve tasks, not jobs
Preemption allowed
Single processor

No arrivals

Example

O O -

Example

1 (99%)
100 (1%)

O O

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%)

O O -

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%) @ >
O O -

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%) @ >
O O -

Which should we run first?

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%) @ >
O O -

Which should we run first?

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%) @
O O O
Which should we run first?

Which of

should we serve first?

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%) @
O O O
Which should we run first?

Which of

should we serve first?

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%)
O O -,
Which should we run first?
Which of J should we serve first?

What if we increase size of K to 507?

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%)
O O -,
Which should we run first?
Which of J should we serve first?

What if we increase size of K to 507?

Example

1 (99%) 1 (50%)

100 (1%) 10 (50%)
O O -
Takeaways:
* Which job?

 Which ?

Example

1 (99%) 1 (50%)

100 (1%) 10 (50%)
O O -
Takeaways:

 Which ? Not SERPT!
 Which ?

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%)
O O -
Takeaways:

* Which job? Not SERPT!
* Which ? “Most informative” first

Example

1 (99%) 1 (50%)
100 (1%) 10 (50%)
O O -
Takeaways:
* Which job? Not SERPT!
* Which ? “Most informative” first

A“Most informative” is context-dependent!

Prior Work: New Problem:
Single-Task Multitask

H: —O
@@ @‘ O“\/}; SO ?/?G
O | © >

O | O

0—0—0

Prior Work:
Single-Task

.

O

O

e

Gittins index policy optimal

New Problem:

Multitask

O

\O/

O O

0—0—0

Prior Work:
Single-Task

SR

O | O

Gittins index policy optimal

Key property: analyzes
each job independently

New Problem:

Multitask

O

\O/

O O

0—0—0

O O
1

)

Prior Work: New Problem:

Single-Task Multitask
— ~
@@ = @‘ 5 Sloo %) TT G
ol | oo d o |9°
Goal:
Gittins index policy optimal + Which job?
Key property: analyzes » Which ?

each job independently

Prior Work:
Single-Task

SR

O | O

Gittins index policy optimal

Key property: analyzes
each job independently

New Problem:

Multitask
ZO\ T loo
O\O/O O O z %/é@ﬁ
Goal:
* Which job?
 Which ?

Gittins index??

Gittins index

Efficiency function
[Gittins '79]

Fair charge
[Weber ‘92]

GittiHS iIld cX Retirement option

many equivalent definitions [Whittle ‘80]

Restart-in-state
[Katehakis and Veinott ‘87]

N

Efficiency function
[Gittins '79]

Fair charge

. . [Weber ‘92]
GlttlHS lIld cX Retirement option
many equivalent definitions [Whittle ‘80]

Restart-in-state
[Katehakis and Veinott ‘87]

Single-job profit
__(this talk)

Efficiency function
[Gittins '79]

Fair charge
[Weber ‘92]

GittiHS iIld cX Retirement option

many equivalent definitions [Whittle ‘80]

Restart-in-state
[Katehakis and Veinott ‘87]

Single-job profit
__(this talk)

» Natural definition
for multitask jobs

Single-Job Profit

@ Game with a job and potential reward

O

Single-Job Profit

Game with a job and potential reward

Run job as long as we like, get reward
O if we complete it

J
+(5)

Single-Job Profit

Game with a job and potential reward

Run job as long as we like, get reward
O if we complete it

_ \L Pay for time spent running job

Single-Job Profit

Game with a job and potential reward

Run job as long as we like, get reward
if we complete it

_ \L Pay for time spent running job

Goal: maximize profit,

n E[reward recieved — time spent]

Example

1 (25%)
9O (75%)

O

Example

V[r](J) = profit 1 (25%)
9O (75%)

O

r = reward

8

Example

V[r](J) = profit 1 (25%)
9O (75%)

D,

r = reward

8

Example

V[r](J) = profit 1 (25%)
9O (75%)

D,

r = reward

8

Example

V[r](J) = profit 1 (25%)
9O (75%)

D,

4 Q r = reward

8

Example

V[r](J) = profit 1 (25%)
9O (75%)

D,

4 Q r = reward

8

Example

V[r](J) = profit 1 (25%)
9O (75%)

D,

R(J) = fair reward

4 Q r = reward

8

Fair Reward in Scheduling

Fair Reward in Scheduling

Theorem: optimal to serve
job of minimum fair reward

Fair Reward in Scheduling

I B N)

Theorem: optimal to serve
job of minimum fair reward

Fair Reward in Scheduling

L Ly s

Theorem: optimal to serve
job of minimum fair reward

Fair Reward in Scheduling

L)y s

Theorem: optimal to serve
job of minimum fair reward

Fair Reward in Scheduling

Theorem: optimal to serve G(J)=——=
job of minimum fair reward A RUJ)
] Gittins index

Generalizing to Multitask

Generalizing to Multitask

Single-job profit easily generalizes

10

Generalizing to Multitask

10

Generalizing to Multitask

Generalizing to Multitask

10

Generalizing to Multitask

10

Generalizing to Multitask

—(D) i i/ » Hard to compute profit

N A * Fair reward policy not always
optimal

10

Generalizing to Multitask

this talk

R() AObstacles "
—(D) i i/ * Hard to compute profit

N A * Fair reward policy not always
optimal

10

N

Splitting Big Jobs

‘\O/

w

Splitting Big Jobs

‘\O/

Splitting Big Jobs

ﬁ O
=
O O—>
- _—

®
S~ L0

phases

Splitting Big Jobs

/> Jq o Vir](J,)
1 =

O\ /CD—> L O O Virlis)
O

S~ L O VAU

phases

11

Splitting Big Jobs

/> J, O VirlJ;)
W R

O\/CD—>J20 O VI[rlJ,) —> V[rl()

O
g J; O VIrl(Js) /

phases

11

Composition Law

.
f > X

sequential
composition

Composition Law

] J; K
J
_____>
> sequential DQ
K) composition

Theorem (Composition Law):
VIir](J; K) =V[V[r](K)]J)

12

Proof Idea

Theorem (Composition Law):
VIr](J;K) =V[V[r](x)](J)

13

Proof Idea

Theorem (Composition Law):
VIr](J;K) =V[V[r](x)](J)

X

13

Proof Idea

Theorem (Composition Law):
VIr](J;K) =V[V[r](x)](J)

J

M !

13

Proof Idea

Theorem (Composition Law):
VIr](J;K) =V[V[r](x)](J)

M |
J J

Proof Idea

Theorem (Composition Law):
VIr](J;K) =V[V[r](x)](J)

X

2
12

|
| J

Applying Composition

/> Jq O VIr](J,)
1 =

O\ /CD — L, 0 O Virl(s,)
O

S~ L O VAU

phases

14

Applying Composition

_—> 10 VI L Easy
1 =

O\ /CD — L, 0 O Virl(s,)
O

S~ O VI ! Easy

phases

14

Applying Composition

_—> 10 VI L Easy
1 =

O\ /O—> L O VI[rlU,) A, Which
O

S Js O VIrl(Js) \“/Easy!

phases

?

14

Autopiloting Law

Autopiloting Law

B ©©°<

Autopiloting Law

I OSSO O
autopilot

Autopiloting Law

e
autopilot

Theorem (Autopiloting Law): any fully parallel
job with Pareto tasks of same a has an autopilot

15

Autopiloting Law

e
autopilot

Theorem (Autopiloting Law): any fully parallel
job with Pareto tasks of same a has an autopilot

* serves task that is longest in expectation

15

Summary

Summary

Goal: multitask scheduling

T loo
110

0!

/

O O O

o
0

O

Summary

Goal: multitask scheduling

T loo
110

Q
o)
N

«

O O

0

O

Approach° single-job profit

-.¢ i

Summary

Goal: multitask scheduling Obstacle: computation

T loo
110

Q
o)
N

«

O O

0

O

Approach° single-job profit

O

-.¢ g

16

Summary

Goal: multitask scheduling Obstacle: computation
2 ool & |98 @ Solutions: composition law
Q O ol D . .
d S |99 autopllotmg law

o , X g&l@
Approach° single-job profit a D
O R())
—‘ \L L

16

Summary

Goal: multitask scheduling Obstacle: computation
2 ool & |98 @ Solutions: composition law
Q O ol D . .
d S |99 autopllotmg law

o | x| @@
Approach° single-job protfit a S
O R(J)
“‘ i L@ Obstacle: proving optimality

16

Summary

Goal: multitask scheduling Obstacle: computation
70\0 ool & |98 @ Solutions: composition law
= - T . o
d S |99 autopllotmg law

o | x| @@
Approach° single-job protfit a S
O R(J)
“‘ i L@ Obstacle: proving optimality

Solution: autopiloting law

16

