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Takeaways:
* Which job? Not SERPT!
* Which ? “Most informative” first

A“Most informative” is context-dependent!
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Single-Job Profit

Game with a job and potential reward

Run job as long as we like, get reward
if we complete it

_ \L Pay for time spent running job

Goal: maximize profit,

n E[ reward recieved — time spent ]
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V[r](J) = profit 1 (25%)
9O (75%)

D,

R(J) = fair reward

4 Q r = reward
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Fair Reward in Scheduling

Theorem: optimal to serve G(J)=——=
job of minimum fair reward A RUJ)
] Gittins index
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e
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Theorem (Autopiloting Law): any fully parallel
job with Pareto tasks of same a has an autopilot

* serves task that is longest in expectation
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