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[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2018]
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* Gittins is hard to compute
- SERPT has no E[T] guarantee
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[Scully, van Kreveld, Boxma, Dorsman, & Wierman, SIGMETRICS 2020]
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[Scully, Grosof, & Harchol-Balter, SIGMETRICS 2021]

34



Overview

r-Work

provides a new, deeper
understanding of Gittins

Multiple servers

35



Overview

r-Work

provides a new, deeper
understanding of Gittins

Qf Multiple servers

35



o

Overview

New Tools

SOAP

analyzes a huge variety
of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Goals

Qf Multiple servers

Qf Simple implementation
preferred

Qy Preemption restricted
and/or costly

Qf Limited number
of priority levels

Want to optimize other
response time metrics

35



Future Work



Future Work

A
et

SO0

 SOAP for M/G/k

36



Future Work

«
’
S35

 SOAP for M/G/k

* Preemption costs with unrestricted preemption
timing

36



 SOAP for M/G/k

Future Work

* Preemption costs with unrestricted preemption
timing

- Simplifying Gittins for noisy size estimates

Q.-I-J-L_l_l_LJ_L-

36



 SOAP for M/G/k

Future Work

* Preemption costs with unrestricted preemption
timing

- Simplifying Gittins for noisy size estimates

:

Q’.I’.f_]'.f_f_l L

 Your problem here!




References

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wollf.
SOAP: One Clean Analysis of All Age-Based Scheduling Policies.
POMACS, 2018. Presented at SIGMETRICS 2018.

Ziv Scully and Mor Harchol-Balter.
SOAP Bubbles: Robust Scheduling under Adversarial Noise.
Allerton Conference, 2018.

I[saac Grosof, Ziv Scully, and Mor Harchol-Balter.
SRPT for Multiserver Systems.
PEVA, 2018. Presented at PERFORMANCE 2018.

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wollf.
Simple Near-Optimal Scheduling for the M/G/1.
POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Lucas van Kreveld, Onno J. Boxma, Jan-Pieter Dorsman, and Adam Wierman.
Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes.
POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.
Optimal Multiserver Scheduling with Unknown Job Sizes in Heavy Traffic.
PEVA, 2020. Presented at PERFORMANCE 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.
The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions.
POMACS, 2020. To be presented at SIGMETRICS 2021.



Overview

New Tools Goals

SOAP

° analyzes a huge variety
of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

38



