Near-Optimal
Scheduling:

Towards a Unified Theory

Ziv Scully or e \W
Carnegie Mellon University

Collaborators

O
£

=
AL

Alan Scheller-Wolf (CMU)

Adam Wierman (Caltech)
Onno Boxma (TU/e)
Jan-Pieter Dorsman (UvVA)
Lucas van Kreveld (UvA)

G

[saac Grosof (CMU)

Queues in Computer Systems

Queues in Computer Systems

kQueueing system: jobs waiting for service

Queues in Computer Systems

kQueueing system: jobs waiting for service

* File servers

« Jobs: file requests
Service: load and send contents

Queues in Computer Systems

kQueueing system: jobs waiting for service

* File servers

Jobs: file requests
Service: load and send contents

 Databases

Jobs: SQL queries
Service: execute and send result

Queues in Computer Systems

kQueueing system: jobs waiting for service

* File servers

Jobs: file requests
Service: load and send contents

 Databases

Jobs: SQL queries
Service: execute and send result

 Network switches

Jobs: packet flows
Service: transmit all packets

Queues in Computer Systems

kQueueing system: jobs waiting for service

* File servers

Jobs: file requests
Service: load and send contents

 Databases

Jobs: SQL queries
Service: execute and send result

 Network switches

Jobs: packet flows
Service: transmit all packets

* Operating systems
Jobs: threads
Service: run on a CPU core

Queues in Computer Systems

kQueueing system: jobs waiting for service

File servers

Jobs: file requests
Service: load and send contents

Databases

Jobs: SQL queries
Service: execute and send result

Network switches

Jobs: packet flows
Service: transmit all packets

Operating systems
Jobs: threads
Service: run on a CPU core

\

Queueing theory: studies
the mathematical essence of
queuelng systems

Queues in Computer Systems

kQueueing system: jobs waiting for service

File servers

Jobs: file requests
Service: load and send contents

Databases

Jobs: SQL queries
Service: execute and send result

Network switches

Jobs: packet flows
Service: transmit all packets

Operating systems
Jobs: threads
Service: run on a CPU core

\

Queueing theory: studies
the mathematical essence of
queuelng systems

/N

jobs service

M/G/1 Queueing Model

M/G/1 Queueing Model

qucuce server

M/G/1 Queueing Model

qucuce server

job

M/G/1 Queueing Model

qucuce server

job
size

M/G/1 Queueing Model

qucuce server

job
size

M/G/1 Queueing Model

qucuce server

job
size

M/G/1 Queueing Model

qucuce server

job
size

M/G/1 Queueing Model

qucuce server

g

job

}remaining size
size
}age

M/G/1 Queueing Model

%1

random
arrivals

}remaining size
size
}age

qucuce server

job

M/G/1 Queueing Model

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random G

arrivals

}remaining size
size
}age

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random G

arrivals

}remaining size
size
}age

Scheduling policy:
g picks which job to serve

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random
arrivals

}remaining size
size
}age

Scheduling policy:
g picks which job to serve

L
]

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random
arrivals

}remaining size
size
}age

Scheduling policy:
g picks which job to serve

L
]

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random
arrivals

}remaining size
size
}age

Scheduling policy:
g picks which job to serve

L
]

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

.
]

random
arrivals

}remaining size
size ’
}age

job

Scheduling policy:
g picks which job to serve

Response Time

Response Time

EENG;

Response Time

=S

= T = response time

Response Time

Response Time

= T = response time

Goal: schedule to minimize mean
response time E[T] and other metrics

How to Schedule?

7l

random ' i
arrivals U

} remaining size
size
} age

How to Schedule?

T

random '
arrivals

L SRPT: always serve job of
remaining size i ,
| @ least remaining size
S1Z.€

o

How to Schedule?

I

%1

random
arrivals

shortest remaining
processing time
()
L SRPT: always serve job of
remaining size N .
@ least remaining size
size

How to Schedule?

I

%1

random
arrivals

shortest remaining
processing time
()
L SRPT: always serve job of
remaining size N .
@ least remaining size
size

How to Schedule?

I

shortest remaining
processing time
()
L SRPT: always serve job of
remaining size N .
@ least remaining size
size

%1

random
arrivals

How to Schedule?

random
arrivals

shortest remaining
processing time

[}

L SRPT: always serve job of

remaining size N .
@ least remaining size
size
}age ﬁ SRPT minimizes E[T]

Unknown Job Sizes

Unknown Job Sizes

~doLJoLloodoL L.
Qi

size unknown 8@

C La_l {_l_l_LJ-L-

Unknown Job Sizes

~doLJoLloodoL L.
Qi

size unknown 8@

C L.l {_l_l_LJ-L-

} age known Qf

Unknown Job Sizes

%1

distribution
S known

4

~doLJoLloodoL L.
Qi

size unknown 8@

C L.l {_l_l_LJ-L-

} age known Qf

Unknown Job Sizes

%1

distribution
S known

4

~doLJoLloodoL L.
Qi

o
[
] |

size unknown S@
@} age known J

Unknown Job Sizes

Sy
-
‘~‘.\-_-L-J-.-L-_l-_-.l-.-\.-.:
L.
LI L.L.

Tl
o

distribution
S known

Qf | % Gittins: assign each job a
= @ based on age and S

size unknowngg E : (lower is better)
} age known J

Unknown Job Sizes

Y Y T
L_L

' 0
—
' !

distribution ! ‘

S known
Qf | % Gittins: assign each job a
= @ based on age and S

size unknown 83 - (lower is better)
} age known J

Unknown Job Sizes

Y Y T
L_L

' 0
1
! |

| 15
distribution ‘ , ! ‘
S known
Qf | % Gittins: assign each job a
= @ based on age and S
size unknowngg - (lower is better)

age known o o
} Qf R Gittins minimizes E[T]

SRPT and Gittins
minimize E| T}

SRPT and Gittins
minimize E| T}

sizes unknown,
partially known, known
(subsumes SRPT), ...

SRPT and Gittins
minimize E| T}

sizes unknown,
partially known, known

(subsumes SRPT), ...

SRPT and Gittins
minimize E| T}

Why not use Gittins?

Gittins Assumption Computer System Reality

N SR

Gittins Assumption Computer System Reality

—

Single server

Gittins Assumption Computer System Reality

Single server Multiple servers

Gittins Assumption Computer System Reality

Single server Multiple servers

Complicated implementation
not a problem

Gittins Assumption Computer System Reality

Single server Multiple servers

Complicated implementation Simple implementation
not a problem preferred

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Computer System Reality

Multiple servers

Simple implementation
preferred

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Easy

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Easy

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

Hard

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Easy

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

Hard
... and in this talk!

I work on inventing

new queueing-theoretic tools
for solving

practical scheduling problems

10

Overview

Goals

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

Overview

New Tools

Goals

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

o

Overview

New Tools

SOAP

analyzes a huge variety
of scheduling heuristics

Goals

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

o

Overview

New Tools

SOAP

analyzes a huge variety
of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Goals

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

o

Overview

New Tools Goals

S O AP Multiple servers

Simple implementation

analyzes a huge variety preferred

of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

Overview

New Tools Goals

SOAP

° analyzes a huge variety
of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

11

«» SOAP
Schedule Ordered by Age-based Priority

o SOAP
Schedule Ordered by Age-based Priority

SOAP policies:

broad class of scheduling policies

12

o SOAP
Schedule Ordered by Age-based Priority

SOAP policies:

broad class of scheduling policies

SOAP analysis:

analyze response time of any SOAP policy

12

rank

N

SOAP Policies

SOAP policy: any scheduling policy where
_ ajob’s rank is a function of its age

13

rank

4

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better

13

rank

4

age
priority, lower is better

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

service so far

13

rank

4

age
priority, lower is better

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

service so far

Foreground-Background (FB)

rank
T

>dge

13

SOAP Policies
SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better

Foreground-Background (FB)

rank
T

lower is
better

>dge

13

SOAP Policies
SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better

Foreground-Background (FB)

l‘a%l k serves job of least age

lower is
better

>dge

SOAP Policies

SOAP policy: any scheduling policy where
_ ajob’s rank is a function of its age

ag
priority, lower is better and other “static” info

Foreground-Background (FB)

l‘a%l k serves job of least age

rank

lower is
better

>dge

13

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better and other “static” info

Preemptive Priority

rank

rank
N

normal

urgent

lower is
better

> age

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better and other “static” info

rank

Preemptive Priority
rqpk
normal
break
ties FCFS
Urgent [
lower is

> age
better

SOAP Policies

SOAP policy: any scheduling policy where
_ ajob’s rank is a function of its age

and other “static” info

rank

ag

priority, lower is better

Preemptive Priority SRPT
rank rank
| large

normal
ties FCFS /medium

Urgent [

. small&

lower is > age

> age

better

13

SOAP Analysis

Given any rank function...

S

14

SOAP Analysis

Given any rank function...

... SOAP analyzes its response time

\

0

=

i)

14

SOAP Analysis

Given any rank function.. @);act formul@

... SOAP analyzes its response time

\

0

=

i)

14

SOAP Analysis

Given any rank function.. @);act formul@

... SOAP analyzes its response time

HEG;

[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2018]
14

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

15

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Limited number
of priority levels

15

Limited Priority Levels

lower is
better

age

lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

age

16

lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

age

16

lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

2 remaining

age

16

lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

7 remaining

2 remaining

age

16

Limited Priority Levels

rank SRPT with three priority levels:
* Small: [0, 2), rank =1

* Medium: [2, 7), rank = 2

- Large: [7, o), rank = 3

\/

O—f)

7 remaining

lower is
better

\V/

O o
2 remaining

age

16

Limited Priority Levels

rank SRPT with three priority levels:
* Small: [0, 2), rank =1

* Medium: [2, 7), rank = 2

- Large: [7, o), rank = 3

lower is

better 7 remaining

\V/

O o
2 remaining

age

16

LPL-SRPT Questions

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

17

LPL-SRPT Questions

Bounded Pareto,
@niform: 2-ish Weibull: 5-ish

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

17

LPL-SRPT Questions

Bounded Pareto,
@niform: 2-ish Weibull: 5-ish

Load-balancing
heuristic suffices

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

17

LPL-SRPT Questions

Bounded Pareto,
@niform: 2-ish Weibull: 5-ish

Load-balancing

+ How many levels do we need?\, leuristic suffices

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

Yes! LPL-PSJF
often better

17

LPL-SRPT Questions

Bounded Pareto,
Weibull: 5-ish

@mform: 2-1sh Load-balancing

heuristic suffices

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

Yes! LPL-PSJF
often better

[Scully & Harchol-Balter, in preparation]

17

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Limited number
of priority levels

18

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

4

Limited number
of priority levels

18

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Preemption restricted
and/or costly

18

Preemption Checkpoints

rank

lower is
better

age

lower is
better

Preemption Checkpoints

rank
Can only preempt only at checkpoint ages

age

19

Preemption Checkpoints

Can only preempt only at checkpoint ages

lower is
better

m age

19

Preemption Checkpoints

rank

Can only preempt only at checkpoint ages
@

:

1) \ \¢

age

19

Checkpoint Frequency?

Suppose each checkpoint incurs an overhead

What is the optimal gap A between checkpoints?

20

Checkpoint Frequency?

Suppose each checkpoint incurs an overhead

What is the optimal gap A between checkpoints?
- large A: less overhead

20

Checkpoint Frequency?

Suppose each checkpoint incurs an overhead

What is the optimal gap A between checkpoints?
- large A: less overhead
- small A: better scheduling

20

Checkpoint Frequency?

Suppose each checkpoint incurs an overhead

What is the optimal gap A between checkpoints?
- large A: less overhead
- small A: better scheduling

E[T]
A

20

Checkpoint Frequency?

Suppose each checkpoint incurs an overhead

What is the optimal gap A between checkpoints?
- large A: less overhead
- small A: better scheduling

E[T]
A

A

20

Checkpoint Frequency?

Suppose each checkpoint incurs an overhead

What is the optimal gap A between checkpoints?
- large A: less overhead
- small A: better scheduling

E[T]
A

[Scully & Harchol-Balter, in preparation]

A

20

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Preemption restricted
and/or costly

21

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

4

Preemption restricted
and/or costly

21

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Simple implementation
preferred

21

lower is
better

. Optimal but Complex

age

22

. Optimal but Complex

Job size distribution:

1 W.D. %

— 1

lower is 5= 6 W.p. 3
better 14 W.D. %

age

. Optimal but Complex

) (@) = inf E[min{S—a, b} |S > a]
 b>a P[S<b|S>a]

Job size distribution:

1 W.D. %

— 1

lower is 5= 6 W.p. 3
better 14 W.D. %

age

22

lower is
better

. Optimal but Complex

) (@) = inf E[min{S—a, b} |S > a]
 b>a P[S<b|S>a]

Job size distribution:

(1 W.P. %
S=<{6 wp. %
1

K14 W.p. §

age

22

Gittins: Optimal but Complex

rank

9
8
lower is
better
3

IGittins(@) = 111;-2

(.

E[min{S—a, b} |

S>al

P[S<b|S>

al

Job size distribution:

S =

r1 W.P. %
6 wp. %

1
&14 W.p. §

age

22

SERPT: Simple Heuristic

lower is
better

Job size distribution:

5=+

r1 W.P. %
6 wp. %

1
\14 W.p. §

age

23

SERPT: Simple Heuristic

shortest expected remaining
processing time

Job size distribution:

r1 W.P. %

S=46 wp. %

lower is 14 wp. =
.D.

better \ >

age

23

SERPT: Simple Heuristic

shortest expected remaining
processing time rSERPT(a) — E[S —da ‘ S > Cl]

Job size distribution:

r1 W.P. %

S=4{6 wp. %

lower is 14 wp. =
.D.

better \ 3

age

23

SERPT: Simple Heuristic

shortest expected remaining
processing time rSERPT(a) — E[S —da ‘ S > Cl]

A N ®© O

lower is
better

Job size distribution:

=

(1 W.P. %
6 wp. %

1
&14 W.p. §

age

23

Can SERPT Replace Gittins?

E[T] Job size distribution:
60 1 W.p. %
50/ S=4{6 wp.}

' 1
30}

| SERPT
207

| - = = Gittins

Can SERPT Replace Gittins?

E[T] Job size distribution:
60 1 W.D. %
50¢ S = { 6 wp. 3

| 1
30}

| SERPT
20

| - = = Gittins

* Gittins is hard to compute
- SERPT has no E[T] guarantee

[wish for a policy with...

» simple definition like SERPT
 provable guarantee on E[T] like

25

@%QM _SERPT

I wish for a policy with..

» simple definition like SERPT
 provable guarantee on E[T] like Gittins

25

Introducing M-SERPT

Introducing M-SERPT

rvi-serpr(@) = max rgprpr(b)
0<b<a

rank

age

26

Introducing M-SERPT
oo

rvi-serpr(@) = max rgprpr(b)
0<b<a

rank

age

26

Introducing M-SERPT
oo

rvi-serpr(@) = max rgprpr(b)
0<b<a

rank

(SERPT

age

26

Introducing M-SERPT
oo

rvi-serpr(@) = max rgprpr(b)
0<b<a

fp M-SERPT

rank

age

26

M-SERPT Performance

Job size distribution:

E[T] 1 W.D. %
60;_ S = { 6 wp. 3
507 14 W.p.%
40t

30} SERPT
20 = = = Gittins

M-SERPT Performance

Job size distribution:

E[T] 1 W.D. %
60;_ S = { 6 wp. 3
50} |14 w.p. 3
40t

30} SERPT
20 = = = Gittins

Theorem:

E[Tviserpr | <t
E[TGittins] B

M-SERPT Performance

Job size distribution:

E[T] 1 W.D. %
60;_ S={6 wp. 3
50} |14 w.p. 3
40t

30} SERPT
20 = = = Gittins

smaller at low load
Theorem: first constant ratio

E[Tviserpr | <t
E[TGittins] B

M-SERPT Performance

Job size distribution:

E[T] 1 W.D. %
60;_ S = { 6 wp. 3
50} |14 W.p.%
40t

30} SERPT
207 - = = Gittins

smaller at low load

Theorem:

first constant ratio

E[Tviserpr | <t
E[TGittins] B

[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2020]

27

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Simple implementation
preferred

28

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

4

Simple implementation
preferred

28

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Want to optimize other
response time metrics

28

Response Time Metrics

: |

1=

®
2

= T = response time

—>C

r—'Clll L1

Response Time Metrics

: |

1=

®
2

= T = response time

Goal: schedule to minimize two metrics

r—'Clll L1
%Cln\(\lll

Response Time Metrics

: |

1=

®
2

= T = response time

Goal: schedule to minimize two metrics

f_'CII\
$CII|IIIII

* mean response time E[T]

Response Time Metrics

: |

1=

®
2

= T = response time

Goal: schedule to minimize two metrics

f_'CII\
$CII|IIIII

* mean response time E[T]
* tail of response time P[T > t]

Response Time Metrics

. |

1=

®
2

= T = response time

Goal: schedule to minimize two metrics

f—'Clll
%CII\IIIII

* mean response time E[T]

+ tail of response time P[T > t] Lt - 00 limit)

Response Time Metrics

: | :

®
2

= T = response time

Goal: schedule to minimize two metrics

1=

f—'Clll
$C||\I

* mean response time E[T]

+ tail of response time P[T > t] Lt - 00 limit)

Setting: heavy-tailed job size distribution S

29

Response Time Metrics

: | :

®
2

= T = response time

Goal: schedule to minimize two metrics

f—'Clnlllllll
$C||\I

* mean response time E[T]

+ tail of response time P[T > t] Lt - 00 limit)

@[‘Sy> t] = @(t‘“D

Setting: heavy-tailed job size distribution S

Scheduling with Heavy Tails

t — 00 limit)

Scheduling with I—IeaV}éyTails

Policy Mean E[T]

Tail P[T > t]

30

t — 00 limit)

Scheduling with I—IeaV}éyTails

Policy Mean E[T] Tail P[T > t]
FCFS bad worst

Scheduling with I—IeaV}éyTails

Policy Mean E[T]
FCFS bad

t — 00 limit)

Tail P[T > t]

WOrSst

@fﬁzz]:é(r}p[b@

30

t — 00 limit)

Scheduling with I—IeaV}éyTails

Policy Mean E[T] Tail P[T > t]

FCES bad worst
SRPT best (but needs sizes) best

30

t — 00 limit)

Scheduling with I—IeaV}éyTails

Policy Mean E[T] Tail P[T > t]
FCFS bad worst
SRPT best (but needs sizes) best

P[T > t]=0©(1)-P[S > @

30

Scheduling with I—IeaV}éyTails

Policy Mean E[T]

t — 00 limit)

Tail P[T > t]

FCES bad worst
SRPT best (but needs sizes) best
FB best

30

t — 00 limit)

Scheduling with HeaV}{yTails

Policy

ECFS
SRPT
FB
Gittins

Mean E[T] Tail P[T > t]
bad worst
best (but needs sizes) best
best
best

M-SERPT 5-approx.

30

t — 00 limit)

Scheduling with HeaV}{yTails

Policy

ECFS
SRPT
FB
Gittins

Mean E[T] Tail P[T > t]
bad worst
best (but needs sizes) best
best
best 2?7

M-SERPT 5-approx. 2?27

30

t — 00 limit)

Scheduling with HeaV}éyTails

Policy Mean E[T] Tail P[T > t]
FCFS bad worst

SRPT best (but needs sizes) best

FB best

Gittins best ?2?7?

M-SERPT 5-approx. 2?27 }

30

t — 00 limit)

Scheduling with HeaV}éyTails

Policy Mean E[T] Tail P[T > t]
FCFS bad worst

SRPT best (but needs sizes) best

FB best

Gittins best best!

M-SERPT 5-approx. best!} °

30

t — 00 limit)

Scheduling with HeaV}{yTails

Policy

ECFS
SRPT

FB
Gittins
M-SERPT

W

Mean E[T] Tail P[T > t]
bad worst
best (but needs sizes) best
best
best best!} /
S5-approx. best! | [l)
N

= >

New sufficient condition for function to be tail-optimal

30

t — 00 limit)

Scheduling with HeaV}{yTails

Policy Mean E[T] Tail P[T > t]
FCFS bad worst
SRPT best (but needs sizes) best
FB best
Gittins best best! /
M-SERPT 5-approx. best! | 2L)
N
hY;
L \-/
>
New sufficient condition for function to be tail-optimal

[Scully, van Kreveld, Boxma, Dorsman, & Wierman, SIGMETRICS 2020]

30

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Want to optimize other
response time metrics

31

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Want to optimize other
response time metrics

31

Overview

r-Work

provides a new, deeper
understanding of Gittins

31

Overview

r-Work

provides a new, deeper
understanding of Gittins

Multiple servers

31

Gittins in the M/G/k

\ HEG;

mean response ____ [mean response
time in M/G/k bound?> time in M/G/1

e

Gittins in the M/G/k

k servers, each
\ HRe;

mean response ____ [mean response
time in M/G/k bound?> time in M/G/1

e

Gittins in the M/G/k

k servers, each
speed 1/k

\

e

Imean resporIlsc

Gittins serves k jobs

of k lowest

\

9

time in M/G/k bound? time in M/G/1

Imean resSporIsc

32

Gittins in the M/G/k

k servers, each
speed 1/k

Gittins serves k jobs
of k lowest

HEe;

Imean resSporIsc

e

Imean resporIlsc

time in M/G/k bound? time in M/G/1

mean r-work mean r-work
in M/G/k in M/G/1

Gittins in the M/G/k

k servers, each
speed 1/k

Gittins serves k jobs
of k lowest

Imean resporIlsc mean

time in M/G/k bound? time i

mean r-work mean r-work
in M/G/k in M/G/1

32

Gittins in the M/G/k

k servers, each
speed 1/k

Gittins serves k jobs
of k lowest

Imean resporIlsc mean

time in M/G/k bound? time i

mean r-work mean r-work
in M/G/k new bound! in M/G/1

Gittins in the M/G/k

k servers, each
speed 1/k

\

Imean resporIlsc

Gittins serves k jobs
of k lowest

HEe;

Imean resSporIsc

e

time in M/G/k bound? time in M/G/1

new connection! new connection!

mean r-work mean r-work
in M/G/k new bound! in M/G/1

What is r-Work?

r-Work: amount of service a job needs to either
- complete
* or reach Gittins rank = r

Gittins

rank
'\

N\

> age

33

What is r-Work?

r-Work: amount of service a job needs to either

- complete
depends on current

age a and size s

* or reach Gittins rank = r

Gittins

rank
'\

> age

33

What is r-Work?

r-Work: amount of service a job needs to either

- complete
depends on current

age a and size s

* or reach Gittins rank = r

Gittins

33

What is r-Work?

r-Work: amount of service a job needs to either

- complete
depends on current

age a and size s

* or reach Gittins rank = r

Gittins

D

'\ r-Wor

(\/U
rye — - =T
] T > dZ8€
a S

ra
/

33

What is r-Work?

r-Work: amount of service a job needs to either

- complete
depends on current

age a and size s

* or reach Gittins rank > r

Gittins

ra
/

'\ r-Wor
—
rye —

33

What is r-Work?

r-Work: amount of service a job needs to either

- complete
depends on current

age a and size s

Gittins
ra~ r-Wor@ Ak @WOI‘@

* or reach Gittins rank > r

N

33

What is r-Work?

r-Work: amount of service a job needs to either

- complete
depends on current

age a and size s

* or reach Gittins rank = r

33

What is r-Work?

r-Work: amount of service a job needs to either

- complete
depends on current

age a and size s

* or reach Gittins rank = r

rank
" (r-Work = 0)

| = > age

Gittins in the M/G/k

!
mEE: 10

mean response _ _ Inean response
time in M/G/k bound?> time in M/G/1

new connection! new connection!

mean r-work mean r-work
in M/G/k newbound! in M/G/1

34

Gittins in the M/G/k

!
mEE: 10

mean response _ _ Inean response
time in M/G/k bound?> time in M/G/1

new connection! new connection!

mean r-work mean r-work
in M/G/k newbound! in M/G/1

Theorem: under Gittins, if E[S*¢] < oo for some & > 0,
J

E[T] <E[T;]+(k—1)- O(log 1 ip)

34

Gittins in the M/G/k

!
mEE: 10

mean response _ _ Inean response
time in M/G/k bound?> time in M/G/1

new connection! new connection!

mean r-work mean r-work
in M/G/k newbound! in M/G/1

a)(log 1) if E[S%(logS)"T] < o0) .
1—p ttins, if E[S'*¢] < co for some ¢ > 0,

E[T] <E[T;]+(k—1)- O(log 1 ip)

34

Gittins in the M/G/k

!
mEE: 10

mean response _ _ Inean response
time in M/G/k bound?> time in M/G/1

new connection! new connection!

mean r-work mean r-work
in M/G/k newbound! in M/G/1

a)(log !) if E[S*(logS)T] < co) .
1—p ttins, if E[S'*¢] < co for some ¢ > 0,

E[T] <E[T;]+(k—1)- O(log 1 ip)

[Scully, Grosof, & Harchol-Balter, SIGMETRICS 2021]

34

Overview

r-Work

provides a new, deeper
understanding of Gittins

Multiple servers

35

Overview

r-Work

provides a new, deeper
understanding of Gittins

Qf Multiple servers

35

o

Overview

New Tools

SOAP

analyzes a huge variety
of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Goals

Qf Multiple servers

Qf Simple implementation
preferred

Qy Preemption restricted
and/or costly

Qf Limited number
of priority levels

Want to optimize other
response time metrics

35

Future Work

Future Work

A
et

SO0

 SOAP for M/G/k

36

Future Work

«
’
S35

 SOAP for M/G/k

* Preemption costs with unrestricted preemption
timing

36

 SOAP for M/G/k

Future Work

* Preemption costs with unrestricted preemption
timing

- Simplifying Gittins for noisy size estimates

Q.-I-J-L_l_l_LJ_L-

36

 SOAP for M/G/k

Future Work

* Preemption costs with unrestricted preemption
timing

- Simplifying Gittins for noisy size estimates

:

Q’.I’.f_]'.f_f_l L

 Your problem here!

References

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wollf.
SOAP: One Clean Analysis of All Age-Based Scheduling Policies.
POMACS, 2018. Presented at SIGMETRICS 2018.

Ziv Scully and Mor Harchol-Balter.
SOAP Bubbles: Robust Scheduling under Adversarial Noise.
Allerton Conference, 2018.

I[saac Grosof, Ziv Scully, and Mor Harchol-Balter.
SRPT for Multiserver Systems.
PEVA, 2018. Presented at PERFORMANCE 2018.

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wollf.
Simple Near-Optimal Scheduling for the M/G/1.
POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Lucas van Kreveld, Onno J. Boxma, Jan-Pieter Dorsman, and Adam Wierman.
Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes.
POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.
Optimal Multiserver Scheduling with Unknown Job Sizes in Heavy Traffic.
PEVA, 2020. Presented at PERFORMANCE 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.
The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions.
POMACS, 2020. To be presented at SIGMETRICS 2021.

Overview

New Tools Goals

SOAP

° analyzes a huge variety
of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

38

