Near-Optimal Scheduling:

Towards a Unified Theory

Ziv Scully
Carnegie Mellon University

Collaborators

Mor Harchol-Balter (CMU)

Isaac Grosof (CMU)

Alan Scheller-Wolf (CMU)

Adam Wierman (Caltech)
Onno Boxma (TU/e)
Jan-Pieter Dorsman (UvA)
Lucas van Kreveld (UvA)

-Queueing system: jobs waiting for service

Queueing system: jobs waiting for service

File servers

- *Jobs*: file requests
- Service: load and send contents

Queueing system: jobs waiting for service

File servers

- *Jobs*: file requests
- Service: load and send contents

Databases

- *Jobs*: SQL queries
- Service: execute and send result

Queueing system: jobs waiting for service

File servers

- *Jobs:* file requests
- Service: load and send contents

Databases

- *Jobs:* SQL queries
- Service: execute and send result

Network switches

- *Jobs*: packet flows
- Service: transmit all packets

Queueing system: jobs waiting for service

File servers

- *Jobs:* file requests
- Service: load and send contents

Databases

- *Jobs:* SQL queries
- Service: execute and send result

Network switches

- *Jobs*: packet flows
- Service: transmit all packets

Operating systems

- Jobs: threads
- Service: run on a CPU core

Queueing system: jobs waiting for service

File servers

- *Jobs:* file requests
- Service: load and send contents

Databases

- *Jobs:* SQL queries
- Service: execute and send result

Network switches

- Jobs: packet flows
- Service: transmit all packets

Operating systems

- Jobs: threads
- Service: run on a CPU core

Queueing theory: studies the mathematical essence of queueing systems

Queueing system: jobs waiting for service

File servers

- *Jobs:* file requests
- Service: load and send contents

Databases

- *Jobs:* SQL queries
- Service: execute and send result

Network switches

- *Jobs*: packet flows
- Service: transmit all packets

Operating systems

- Jobs: threads
- Service: run on a CPU core

Queueing theory: studies the mathematical essence of queueing systems

Goal: schedule to minimize *mean* $response\ time\ \mathbf{E}[T]$ and other metrics

SRPT: always serve job of least remaining size

How to Schedule?

SRPT and Gittins minimize $\mathbf{E}[T]$

known job sizes

SRPT and Gittins minimize $\mathbf{E}[T]$

known job sizes

sizes unknown, partially known, known (subsumes SRPT), ...

SRPT and Gittins minimize $\mathbf{E}[T]$

known job sizes

sizes unknown, partially known, known (subsumes SRPT), ...

SRPT and Gittins minimize $\mathbf{E}[T]$

Why not use Gittins?

Gittins Assumption	Computer System Reality

Gittins Assumption Single server

Computer System Reality

Gittins Assumption Computer System Reality Single server Multiple servers

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Computer System Reality

Single server

Buigue beiver

Complicated implementation not a problem

Multiple servers

Simple implementation preferred

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Simple implementation preferred

Preemption *unrestricted* with *no cost*

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Simple implementation preferred

Preemption *unrestricted* with *no cost*

Preemption restricted and/or costly

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Simple implementation preferred

Preemption *unrestricted* with *no cost*

Preemption restricted and/or costly

Arbitrarily many priority levels

Limited number of priority levels

Goal is minimizing mean response time

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Simple implementation preferred

Preemption *unrestricted* with *no cost*

Preemption restricted and/or costly

Arbitrarily many priority levels

Limited number of priority levels

Goal is minimizing mean response time

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Goal is minimizing mean response time

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Goal is minimizing mean response time

Easy

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Goal is minimizing mean response time

Easy

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Want to optimize other response time metrics

Hard

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Goal is minimizing mean response time

Easy

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Want to optimize other response time metrics

Hard ... and in this talk!

new queueing-theoretic tools for solving practical scheduling problems

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

Tpro

r-Work

> provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

> provides a new, deeper understanding of Gittins

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

SOAP policies:

broad class of scheduling policies

SOAP policies:

broad class of scheduling policies

SOAP analysis:

analyze response time of any SOAP policy

SOAP policy: any scheduling policy where a job's rank is a function of its age

Foreground-Background (FB)

Foreground-Background (FB)

Given any rank function...

Given any rank function...

... **SOAP** analyzes its response time

Given any rank function.. (exact formula!)
... SOAP analyzes its response time

Given any rank function.. (exact formula!)
... SOAP analyzes its response time

[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2018]

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

SRPT with three priority levels:

- Small: [0, 2), rank = 1
- Medium: [2, 7), rank = 2
- Large: $[7, \infty)$, rank = 3

- How many levels do we need?
- How do we choose size cutoffs?
- Can we do better than LPL-SRPT?

- How many levels do we need?
- How do we choose size cutoffs?
- Can we do better than LPL-SRPT?

Load-balancing heuristic suffices

- How many levels do we need?
- How do we choose size cutoffs?
- Can we do better than LPL-SRPT?

Load-balancing heuristic suffices

- How many levels do we need?
- How do we choose size cutoffs?
- Can we do better than LPL-SRPT?

Yes! LPL-PSJF often better

Uniform: 2-ish Bounded Pareto, Weibull: 5-ish

Load-balancing heuristic suffices

- How many levels do we need?
- How do we choose size cutoffs?
- Can we do better than LPL-SRPT?

Yes! LPL-PSJF often better

[Scully & Harchol-Balter, in preparation]

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Preemption Checkpoints

Preemption Checkpoints

Preemption Checkpoints

Preemption Checkpoints

Suppose each checkpoint incurs an overhead What is the optimal gap Δ between checkpoints?

Suppose each checkpoint incurs an overhead What is the optimal gap Δ between checkpoints?

• large Δ : less overhead

Suppose each checkpoint incurs an overhead

- large Δ : less overhead
- small Δ : better scheduling

Suppose each checkpoint incurs an overhead

- large Δ : less overhead
- small Δ : better scheduling

Suppose each checkpoint incurs an overhead

- large Δ : less overhead
- small Δ : better scheduling

Suppose each checkpoint incurs an overhead

- large Δ : less overhead
- small Δ : better scheduling

[Scully & Harchol-Balter, in preparation]

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

$$r_{\text{Gittins}}(a) = \inf_{b>a} \frac{\mathbf{E}[\min\{S-a,b\} \mid S>a]}{\mathbf{P}[S \leq b \mid S>a]}$$

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

$$r_{\text{Gittins}}(a) = \inf_{b>a} \frac{\mathbf{E}[\min\{S-a,b\} \mid S>a]}{\mathbf{P}[S \leq b \mid S>a]}$$

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

lower is

better

$$r_{\text{SERPT}}(a) = \mathbf{E}[S - a \mid S > a]$$

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

Can SERPT Replace Gittins?

Can SERPT Replace Gittins?

- Gittins is hard to compute
- **SERPT** has no E[T] guarantee

I wish for a policy with...

- simple definition like **SERPT**
- provable guarantee on E[T] like Gittins

I wish for a policy with...

- simple definition like **SERPT**
- provable guarantee on **E**[T] like **Gittins**

$$r_{\mathbf{M-SERPT}}(a) = \max_{0 \le b \le a} r_{\mathbf{SERPT}}(b)$$

Theorem:

$$\frac{\mathbf{E}[T_{\mathbf{M-SERPT}}]}{\mathbf{E}[T_{\mathbf{Gittins}}]} \le 5$$

[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2020]

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Goal: schedule to minimize two metrics

Goal: schedule to minimize two metrics

• *mean* response time **E**[*T*]

Goal: schedule to minimize two metrics

- *mean* response time **E**[*T*]
- *tail* of response time P[T > t]

Goal: schedule to minimize two metrics

- *mean* response time **E**[*T*]
- *tail* of response time P[T > t] $t \to \infty$ limit

Goal: schedule to minimize two metrics

- *mean* response time **E**[*T*]
- *tail* of response time P[T > t] $t \to \infty$ limit

Setting: *heavy-tailed* job size distribution *S*

Goal: schedule to minimize two metrics

- *mean* response time E[T]
- *tail* of response time P[T > t]

Setting: *heavy-tailed* job size distribution *S*

Scheduling with Heavy Tails

Policy 3

Mean $\mathbf{E}[T]$

Tail P[T > t]

Policy $\stackrel{\$}{\bowtie}$ Mean $\mathbf{E}[T]$ Tail $\mathbf{P}[T > t]$ FCFS bad worst

Scheduling with Heavy Tails

Policy 🔋	Mean E [T]	Tail $P[T > t]$
FCFS	bad	worst
SRPT	best (but needs sizes)	best

Policy	Mean E [T]	Tail $P[T > t]$
FCFS	bad	worst
SRPT	best (but needs sizes)	best
FB	good	best

Policy

Mean $\mathbf{E}[T]$

Tail P[T > t]

FCFS

bad

worst

SRPT

best (but needs sizes) **best**

FB

good

best

Gittins

best

M-SERPT

5-approx.

Policy 🖟	Mean $\mathbf{E}[T]$	Tail $P[T > t]$
FCFS	bad	worst
SRPT	best (but needs sizes)	best
FB	good	best
Gittins	best	???
M-SERPT	5-approx.	???

Policy	Mean E [T]	Tail $P[T > t]$
FCFS	bad	worst
SRPT	best (but needs sizes)	best
FB	good	best
Gittins	good best	???
M-SERPT	5-approx.	???

Policy	Mean E [T]	Tail $P[T > t]$
FCFS	bad	worst
SRPT	best (but needs sizes)	best
FB	good	best
Gittins	good best	best! best!
M-SERPT	5-approx.	best!

Policy 3	Mean E [T]	Tail $P[T > t]$
FCFS	bad	worst
SRPT	best (but needs sizes)	best
FB	good	best
Gittins	best	best! best!
M-SERPT	5-approx.	best!

New sufficient condition for rank function to be tail-optimal

Policy	Mean E [T]	Tail $P[T > t]$
FCFS	bad	worst
SRPT	best (but needs sizes)	best
FB	good	best
Gittins	best	best!
M-SERPT	5-approx.	best!

New sufficient condition for rank function to be tail-optimal

[Scully, van Kreveld, Boxma, Dorsman, & Wierman, SIGMETRICS 2020]

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

> provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

> provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

k servers, each speed 1/k

Gittins serves *k* jobs of *k* lowest **ranks**

mean response time in M/G/k

mean response time in M/G/1

k servers, each speed 1/k

Gittins serves *k* jobs of *k* lowest **ranks**

mean response time in M/G/k

bound?

mean response time in M/G/1

mean *r*-work in M/G/k

mean *r*-work in M/G/1

mean *r*-work in M/G/k

mean *r*-work in M/G/1

k servers, each Gittins serves *k* jobs speed 1/kof k lowest ranks mean response mean response bound? time in M/G/ktime in M/G/1 new connection! new connection! mean *r*-work mean *r*-work new bound! in M/G/kin M/G/1

r-Work: amount of service a job needs to either

- complete
- or reach Gittins rank $\geq r$

Gittins

r-Work: amount of service a job needs to either

- complete
- or reach Gittins rank $\geq r$

depends on current age a and size s

Gittins

r-Work: amount of service a job needs to either

- complete
- or reach Gittins rank $\geq r$

depends on current age **a** and size s

Gittins

r-Work: amount of service a job needs to either

- complete
- or reach Gittins $rank \ge r$

depends on current age **a** and size s

r-Work: amount of service a job needs to either

- complete
- or reach Gittins $rank \ge r$

depends on current age a and size s

What is *r*-Work?

r-Work: amount of service a job needs to either

- complete
- or reach Gittins rank $\geq r$

depends on current age a and size s

What is *r*-Work?

r-Work: amount of service a job needs to either

- complete
- or reach Gittins rank $\geq r$

depends on current age a and size s

What is *r*-Work?

r-Work: amount of service a job needs to either

- complete
- or reach Gittins $rank \ge r$

depends on current age a and size s

Theorem: under Gittins, if $E[S^{1+\varepsilon}] < \infty$ for some $\varepsilon > 0$,

$$\mathbf{E}[T_k] \le \mathbf{E}[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

[Scully, Grosof, & Harchol-Balter, SIGMETRICS 2021]

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

> provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Want to optimize other response time metrics

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

> provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Want to optimize other response time metrics

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

Want to optimize other response time metrics

• **SOAP** for M/G/k

Preemption costs with unrestricted preemption timing

- Preemption costs with unrestricted preemption timing
- Simplifying Gittins for noisy size estimates

- Preemption costs with unrestricted preemption timing
- Simplifying Gittins for noisy size estimates
- Your problem here!

References

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf.

SOAP: One Clean Analysis of All Age-Based Scheduling Policies.

POMACS, 2018. Presented at SIGMETRICS 2018.

Ziv Scully and Mor Harchol-Balter.

SOAP Bubbles: Robust Scheduling under Adversarial Noise.

Allerton Conference, 2018.

Isaac Grosof, Ziv Scully, and Mor Harchol-Balter.

SRPT for Multiserver Systems.

PEVA, 2018. Presented at PERFORMANCE 2018.

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf.

Simple Near-Optimal Scheduling for the M/G/1.

POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Lucas van Kreveld, Onno J. Boxma, Jan-Pieter Dorsman, and Adam Wierman.

Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes.

POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.

Optimal Multiserver Scheduling with Unknown Job Sizes in Heavy Traffic.

PEVA, 2020. Presented at PERFORMANCE 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.

The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions.

POMACS, 2020. To be presented at SIGMETRICS 2021.

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

