
Unfair Scheduling Patterns in NUMA Architectures
Naama Ben-David*

Carnegie Mellon University
nbendavi@cs.cmu.edu

Ziv Scully*

Carnegie Mellon University
zscully@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Abstract—Lock-free algorithms are typically designed and
analyzed with adversarial scheduling in mind. However, on
real hardware, lock-free algorithms perform much better than
the adversarial assumption predicts, suggesting that adversarial
scheduling is unrealistic. In pursuit of more realistic analyses,
recent work has studied lock-free algorithms under gentler
scheduling models. This begs the question: what concurrent
scheduling models are realistic? This issue is complicated by
the intricacies of modern hardware, such as cache coherence
protocols and non-uniform memory access (NUMA).

In this paper, we thoroughly investigate concurrent scheduling
on real hardware. To do so, we introduce Severus, a new
benchmarking tool that allows the user to specify a lock-free
workload in terms of the locations accessed and the cores
participating. Severus measures the performance of the workload
and logs enough information to reconstruct an execution trace.

We demonstrate Severus’s capabilities by uncovering the
scheduling details of two NUMA machines with different microar-
chitectures: one AMD Opteron 6278 machine, and one Intel Xeon
CPU E7-8867 v4 machine. We show that the two architectures
yield very different schedules, but both exhibit unfair executions
that skew toward remote nodes in contended workloads.

I. INTRODUCTION

Creating pragmatic concurrent programs is essential for
making the best use of modern multicore systems. When
considering what constitutes a pragmatic program, designers
often aim for high throughput, but another important feature is
fairness among the cores participating in the algorithm. Fairness
is sometimes a goal in its own right, such as in multicore web
servers and other applications where each individual core’s
responsiveness is important. Even outside of such use cases,
fairness can be important as a prerequisite for performance.
Parallel programs in which work is statically assigned to cores,
as is routine when using POSIX Threads1 or OpenMP2, often
have synchronization barriers, at which point the last core to
complete its work is the performance bottleneck. Such programs
run faster if there is fairness among cores.

A large body of work has focused on designing algorithms
that are lock-free or have other fairness guarantees [1], [2],
[3], [4], [5]. However, lacking an understanding of memory
operation scheduling on modern hardware, lock-free algorithms
are typically designed with an adversarial scheduler in mind,
meaning memory operations can happen in any order consistent
with the memory model. While this guarantees correctness on
any hardware, it leads to overly pessimistic predictions of

*The first two authors contributed equally to the paper.
1https://ieeexplore.ieee.org/document/8277153/
2https://www.openmp.org

Algorithm 1 Generic lock-free algorithm (simplified)

1: loop
2: parallel work()
3: repeat
4: old← read(x)
5: new← atomic modify(old)
6: success← CAS(x, old, new)
7: until success
8: end loop

performance and fairness. This observation has been made
by practitioners and theoreticians alike, and has led to most
lock-free algorithms being evaluated exclusively through exper-
imentation [6], [7], [8], [9], [1]. While experimental analysis of
these algorithms is important, experiments can miss practical
use cases and yield misleading results [10]. Furthermore, holes
in our theoretical understanding can cause practical designs to
be overlooked [11], [12].

A recent line of work aims to relax adversarial scheduling
assumptions to better reflect reality [13], [14], [15], [16], [11],
[17]. It is well-known that if the hardware schedule guarantees
fairness properties, then algorithms can be faster, simpler, and
more powerful [18], [11], [19]. However, it is not clear if such
fairness properties or other assumptions are realistic. Thus, to
understand the performance of lock-free algorithms, we must
study the scheduling of memory operations in hardware.

Let us first consider the kinds of demands that most concur-
rent lock-free algorithms make on the scheduler. Many lock-free
algorithms have the structure shown in Algorithm 1 [14], [16].
All cores run parallel work (line 2), that they do independently,
and then synchronize in an atomic modify section (lines 3–7).
In this section, a core executes a modification of location x
that must not be interrupted by any other core’s modification
of x. Thus, the ordering, or schedule, of reads and CASes
of x has a large impact on the fairness and performance of the
algorithm. Intuitively, a good schedule has:

• Long-term fairness: we want each core to perform the
same number of read and successful CAS instructions
over any sufficiently long period of time.

• Short-term focus: for performance, whenever a core reads
x, we want it to execute its following CAS without other
cores performing any read or CAS instructions in between.

Having outlined what a good memory operation schedule
looks like, we ask: what do memory operation schedules look



like on modern hardware? Do practical schedules have the
fairness and focus properties we want for lock-free algorithms?

Unfortunately, this is a difficult question to answer be-
cause the complexity of modern memory hierarchies makes
scheduling patterns difficult to predict. Design decisions in
aspects such as the cache coherence protocol and non-uniform
memory access (NUMA) can have a drastic impact on the
schedule. However, exactly how different designs correspond
to scheduling patterns is unclear, especially when multiple
features interact with one another.

For example, it is well known that the latency of a local-
node cache hit is much lower than that of a remote-node
cache hit [20]. This encourages the design of NUMA-aware
algorithms [21], [22], [5], [23] that minimize remote-node
memory accesses. However, recent work on arbitration policies
in the processor-interconnect [24] shows that when most but not
all memory accesses are local—which is exactly the situation
for many NUMA-aware algorithms—hardware can unfairly
bias the schedule towards remote nodes. Thus we see that a
NUMA architecture can yield unexpected schedules.

A. Our Contributions

In this paper, we provide a way to test the schedules
produced by today’s machines and find patterns that can be
important for fairness and performance. To do so, we introduce
a benchmarking tool, called Severus, that allows the user to
specify a workload, and tracks the execution trace produced. We
show how to use Severus to understand the scheduling patterns
of two modern NUMA machines, and provide a plotting library
that helps visualize the results in an intuitive way.

Severus allows the user to play with several parameters of
the execution, including which threads participate in a run,
what locations are accessed, how much local work each thread
does, and how long each thread waits between two consecutive
operations. With this flexibility, Severus can simulate the
workloads that are most relevant to the user’s application.

In this paper, we describe Severus and use it to demonstrate
the following takeaways:

• Operation schedules are not fair by default.
• Uniform random scheduling assumptions do not accurately

reflect real schedules.
• The amount of local work a thread does in a lock-free

algorithm, particularly the length of the atomic modify
section, has a large but hard-to-predict impact on the
algorithm’s performance.

• The details of these effects are different on each platform,
but these details can be revealed by tools such as Severus.

We believe that these new findings can guide both the design
of new pragmatic concurrent algorithms on existing machines
and the development of new memory architectures that enable
faster and more fair concurrent executions.

We reach the above takeaways by studying the memory
operation scheduling patterns of two NUMA machines: an
AMD Opteron 6278 and an Intel Xeon CPU E7-8867 v4.
These two machines exhibit different architectural designs:
the Intel has four equidistant nodes and uses a hierarchical
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Fig. 1: NUMA architecture with 4 NUMA nodes.

cache coherence protocol, whereas the AMD is arranged in
eight nodes, with two different distances between them, and
employs a flat cache coherence mechanism. We show how
these design choices translate to differences in schedules. While
the scheduling patterns remain mostly round-robin on AMD
regardless of the cores participating in a run, on Intel, the
schedule changes drastically depending on whether cores from
more than one node are running. Interestingly, both machines
show higher throughput for cores that access remote contended
memory. We characterize workloads in which this phenomenon
is prominent, and show how this unfairness changes as certain
parameters of the program are varied.

II. BACKGROUND AND MACHINE DETAILS

A. NUMA Architectures

NUMA architectures are everywhere in modern machines.
Cores are organized into groups called nodes, and each node
has cache as well as main memory (see Figure 1). Within a
node, cores may have one or two levels of private cache, and
a shared last level cache. Each core can often be split into two
logical threads, called hyperthreads. All cores can access all
shared caches and memory, through an interconnect network
between the nodes. However, accesses to cache and memory
in a core’s own node (local acceses) are faster than accesses
to the cache or memory of a different node (remote accesses).

B. Lock-Free Algorithms and Scheduling

Lock-free algorithms guarantee that progress is made in the
algorithm regardless of the number of threads participating or
their relative speeds. The correctness of lock-free algorithms
is typically proved under an adversarial model, whereby
a powerful adversary determines the schedule of atomic
operations on each location, thus controlling who succeeds and
who fails at any time. The adversarial model produces robust
algorithms, but lacks predictive capabilities for performance.
Usually, the best performance guarantees that can be proven
under an adversarial scheduler are embarrassingly pessimistic.

Thus, recent work in lock-free algorithms proposes different
scheduling models, with the goal of being able to analytically



TABLE I: Machine details.

SPECS INTEL AMD

CPU family Xeon E7-8800 Operton 6200
Sockets 4 4
Nodes 4 8
Cores 72 32

Hyperthreading 2-way 2-way
Frequency 1200-3300 MHz 2400 MHz
L1i Cache 32k 16k
L1d Cache 32k 64k
L2 Cache 256k 2048K
L3 Cache 46080K 6144K

Coherence protocol MESIF MOESI

N0 N1 N2 N3 N4 N5 N6 N7

N0 0 1 1 2 1 2 1 2
N1 1 0 2 1 1 2 2 1
N2 1 2 0 1 1 1 1 1
N3 2 1 1 0 1 1 2 2
N4 1 1 1 1 0 1 1 2
N5 2 2 1 1 1 0 2 1
N6 1 2 1 2 1 2 0 1
N7 2 1 1 2 2 1 1 0

N1

N0 N4 N3

N5N2N6

N7

Fig. 2: AMD node layout and distance matrix.

predict performance. Common alternative models include that
the scheduler picks the next thread uniformly at random
[14], [17], or with some predetermined distribution [13].
The goal of our work is to test whether such assumptions
are reasonable, and to understand what factors of modern
architectures most affect the operation scheduling, and which
most affect performance.

C. Machines Used

We test our benchmark on two different NUMA architectures;
an Intel Xeon CPU E7-8867 v4 machine with 4 nodes and
72 cores with Quick Path Interconnect technology, and an
AMD Opteron 6278 machine with 8 nodes and 32 cores,
using HyperTransport. Throughout this paper, we refer to
these machines as simply Intel and AMD respectively. Both
machines have a per-core L1 and L2 cache (shared among a
pair of hyperthreads), and a shared L3 cache on each node.
The details of the two machines are shown in Table I. The
Intel machine’s interconnect layout is fully connected, and
therefore all nodes are at the same distance from one another.
However, this is not the case for the AMD machine, in which
there are two different distances among the nodes. The AMD
node layout and distance matrix is shown in Figure 2.

Both machines have an atomic compare-and-swap (CAS)
instruction and an atomic fetch-and-increment (F&I) or fetch-
and-add (F&A, also called xadd) instruction. A CAS instruction
takes in a memory word, an old value old, and a new value
new, and changes the word’s value to new if the previous value
was old. In this case, it returns true, and is said to succeed.
Otherwise, the CAS does not change the memory word. It
returns false and we say that it fails. The F&I instruction takes

in a memory word and increments its value. It always returns
the value of the word immediately before the increment. Both
the CAS and the F&I instructions fully sequentialize accesses.

III. THE BENCHMARK

Severus provides many settings to simulate the behavior of a
large range of applications. For clarity, we begin by describing
one simple setting, and then show ways to extend it.

At its core, Severus simply has all threads contend on
updating a single memory location, either with a read-modify-
CAS loop, or with an F&A. We measure throughput; how
many changes to the memory location were made. To retain
information about the execution, we also have a logging option,
in which we have each thread record the values it observed
on the shared location every time the thread accesses it. For
the F&A case, simply recording these numbers allows us to
reconstruct the order in which threads incremented the shared
variable. For a CAS-based benchmark, we can control what
values the threads write into the shared variable. To allow
reconstruction of the execution order, we have each thread
CAS in its own id and a timestamp. In this way, when threads
record the values they observed, they are in effect recording
which thread was the last one to modify the variable with
a successful CAS. From this information, we obtain a total
order of successful CASes, and a partial order on the reads
and unsuccessful CAS attempts.

Severus provides parameters to modify the basic benchmark
to reflect different workloads, including the following settings.

• The number of shared variables contended on.
• Which node each shared variable is allocated on.
• Which threads participate.
• For each thread, which shared variables it should access.
• Length of execution.
• Whether or not the threads should log execution informa-

tion. Turning this option off helps optimize space usage.
• For CAS-based tests, delays can be injected between a

read operation and the following CAS attempt of that
thread. This simulates the time it takes in real programs
to calculate the new value to be written.

• Delay can be injected between two consecutive modifi-
cations of the shared variable by the same thread. This
simulates programs in which threads have other work.

• Delay can also be injected between a failed CAS attempt
and the thread’s next read operation. This allows simula-
tion of backoff protocols.

A. Implementation Details

When evaluating the schedule of a concurrent application,
one must be very careful not to perturb the execution. Many
common instructions used for logging performance, including
accesses to timers, cycle counters, or memory allocated earlier
in the program, can greatly affect the concurrent execution,
leading to useless measurements. Thus, we take care in ensuring
that our logging mechanism minimizes such accesses.



1) NUMA memory and thread allocation: We use the
Linux NUMA policy library libnuma to allocate memory on a
specified node (both for contended locations and memory used
for logging), and to specify the threads used. We pin threads
to cores.

2) Logging: All information logged during the execution is
local. We allocate a lot of space per thread for logging, and
ensure that for each thread, this log space is in the memory of
the NUMA node on which that thread is pinned. No two threads
access the same log. This helps eliminate coherence cache
misses that are not directly caused by the tested access pattern.
Before beginning the real execution, we have each thread access
its preallocated log, to avoid compulsory cache misses when
it first accesses the log during its execution. Severus always
records the total number of operations executed by each thread,
and the total number of successful CASes per thread. This
simply involves incrementing two counters, and thus never
causes cache misses.

If the logging option is enabled, each thread also records
which values it observed on the shared location when it accessed
it. This logging takes much more space, since this information
cannot be aggregated into one counter, and thus we keep a
word per operation executed by each thread. Logging can also
perturb the execution; more (uncontended) writing is done, and
cache misses occur every once in while, when the size of the
log written exceeds the cache size. However, since the memory
of the log is accessed consecutively, prefetching helps mitigate
the effect of log-caused cache misses. With this local method
of logging, we process the results after the execution ends, and
reconstruct the global trace from the per-process ones.

3) Compiler Options: To eliminate as much overhead as
possible during the execution, many of the settings of a run
are determined at compile time. This includes machine details,
like the number of nodes and cores, and the ids of the cores
on each node. The type of execution (CAS, F&A, etc.) and
logging are also determined at compile time.

4) Delay: We implement atomic delay and parallel delay by
iteratively incrementing a local volatile counter. The amount
of delay given as a parameter for an execution translates to the
number of iterations that are run. In the rest of the paper, we
use ‘iterations’ as the unit of delay used in experiments. This
is done to avoid mechanisms of waiting that are too coarse
grained or can perturb the execution. Therefore, given the same
delay parameter, the actual amount of time that a thread waits
depends on the system on which the benchmark is run (in
particular, depending on the core frequency). A single unit
of delay corresponds to approximately 2.2 nanoseconds on
Intel and 3.5 nanoseconds on AMD (both averaged over 10
runs). We note that measuring delay in terms of iterations of
local cache accesses is reasonable for simulating algorithm
workloads, since it reflects the reality that different algorithms
take different amounts of time on different machines.

B. Experiments Shown

All tests shown in this paper can be broadly split into two
categories.

• Sequence Experiments. In these experiments, we take a
subset of the threads (possibly all of them), and have them
repeatedly increment a single location using atomic fetch-
and-increment (F&I). We call the contended location the
counter. All threads record the return value of their fetch-
and-add after each operation, using the logging option.
This allows us to recreate the order in which threads
incremented the counter.

• Competition Experiments. These experiments are similar
to the sequence experiments, but differ mainly in the
operation used. A subset of the threads repeatedly read
a location, locally modify its value, and then compare-
and-swap (CAS) their new value into the same location.
We call the contended location the target. In competition
experiments, we sometimes vary other parameters, like
the local modification time (which we call atomic delay),
and the time threads wait between a successful CAS and
that thread’s next operation (parallel delay).

The competition experiments cause different scheduling
patterns than the sequence ones; the read operations mean
that the cache line enters the shared coherence state in
addition to the modified state. Furthermore, compare-and-
swaps fail if another thread has changed the value. This
means that to successfully modify the location, a thread must
execute two operations in a row, possibly changing its cache
line’s coherence state in between. The schedules produced
by sequence experiments are more regular, and thus easier to
analyze to obtain a high level understanding of the scheduler.

Therefore, to learn about each machine’s scheduling patterns,
we use sequence experiments, with the logging option turned
on (Section IV). We show how the lessons we learn from these
experiments generalize to other workloads by running competi-
tion experiments (which better reflect real-world applications),
without logging, and comparing the results to the predictions
made based on our learned scheduling model (Section V). We
also provide a script that runs the experiments described in
this paper and produces the relevant plots.

IV. INFERRING SCHEDULING MODELS

In this section, we show experiments that help determine
scheduling models for the AMD and Intel machines. All the
experiments in this section are sequence experiments (see
Section III). To review, in a sequence experiment, multiple
cores atomically fetch-and-increment (F&I) a single memory
location called the counter. This yields a full execution trace,
namely a sequence of all the F&I operations executed by all
threads, which we analyze in several ways to determine a
scheduling model. Across different experiments, we vary the
number of threads participating, the placement of the threads,
and the NUMA node on which the counter is allocated.

A sequence experiment is a hardware stress test meant
to reveal details about how it schedules memory operations.
It is not meant to model a realistic lock-free algorithm. In
particular, throughput measurements of sequence experiments
should be not be interpreted as a proxy for performance of a
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Fig. 3: Counter on Node 0

Fig. 4: AMD throughput of F&I operations with all nodes participating.
Counter allocated on Node 0.

lock-free algorithm. (In contrast, the competition experiments
in Section V are intended to model lock-free algorithms.)

A. AMD Scheduling Model

1) AMD Throughput Measurements: We begin with a basic
question: when all cores participate in a sequence experiment,
do they achieve the same throughput? As we will see, the
answer to this question is counterintuitive and will guide our
more detailed analysis of the machine’s scheduling model.

To answer this, we run a sequence experiment with the
counter on Node 0 and simply count the number of F&I
operations executed by each core. For each node, Figure 3
shows the distribution of throughputs among cores of that
node.3 We see that most cores within any given node have
similar throughput, but different nodes have very different
throughputs. We observe that the throughput is unfair:

• Node 0, which is where the counter is allocated, has the
lowest throughput;

• Node 1, Node 2, Node 4, and Node 6 have intermediate
throughput; and

• Node 3, Node 5, and Node 7 have the highest throughput.

What distinguishes Node 3, Node 5, and Node 7 from the
other nodes? The answer lies in Figure 2: they are the farthest
from the counter on Node 0. That is, a core’s throughput tends
to increase with its distance from the counter. Repeating the
experiment with the counter on each node confirms this.

So far, we have seen that with all cores from all nodes
participating, cores on nodes farther from the counter have a
throughput advantage. We now ask: does this trend still hold
when nodes participate one at a time? To answer this question,
we run experiments with the counter on Node 0 with cores on
just a single node participating. Figure 5 shows the distribution
of results for each of Node 0 (distance 0), Node 4 (distance 1),
and Node 7 (distance 2) participating. Unlike the previous plots,
each distribution in the plot represents a separate configuration

3Throughout this section, all throughput distribution plots show the
aggregate throughput distribution of 10 separate 10-second runs.
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Fig. 5: AMD throughput of F&I operations with one node participating
at a time. Counter allocated on Node 0. Node participating is either
Node 0 (distance 0 from counter), Node 4 (distance 1), or Node 7
(distance 2).

in which only that node is participating. The overall throughput
is higher in these configurations because of reduced contention.

Remarkably, Figure 5 shows that even with only a single
node participating, throughput still increases with distance from
the counter. Results for other nodes at distances 1 and 2 are
similar to those for Node 4 and Node 7, respectively. Similar
results hold when cores from any subset of nodes participate.

We have firmly established that throughput is unfair and is
skewed toward cores that are farther from the counter, even
when the counter’s cache line remains cached on the same
node. This pattern reflects the directory coherence protocol on
AMD, which seems to use the interconnect even when a cache
line remains on one node, likely due to the need to update its
coherence state in the directory. To understand why increased
interconnect use increases throughput, we need a more detailed
analysis of the execution traces.

2) AMD Execution Trace Analysis: We now thoroughly
examine the execution trace of a single sequence experiment.
All cores participate, and the counter is on Node 0. We examine
an execution trace excerpt of 220 operations, taken from the
middle of the experiment to avoid edge effects. For space
reasons, we show results from just one run and focus on three
nodes Node 0 (distance 0 from counter), Node 4 (distance 1),
and Node 7 (distance 2). We have confirmed that the results
shown are robust across several trials and other nodes at
distances 1 and 2 behave similarly.

The result of a sequence experiment is an execution trace,
which is an ordered list of core IDs whose ith entry is the ID
of the core that executed the ith F&I operation on the counter.
We can think of the trace as describing how (modify-mode
access to) the counter’s cache line move from core to core.

To talk about the trace and its implications for throughput,
we use the following vocabulary:

• Core visit: a contiguous interval during which just one
core performs F&I operations.4

4When discussing core visits, we take “core” to specifically mean “physical
core” and group its two threads together.



TABLE II: AMD core visit length distributions.

LENGTH 1 LENGTH 2 LENGTH ≥ 3 MEAN

Cores on Node 0 88% 9% 3% 1.147
Cores on Node 4 93% 4% 3% 1.105
Cores on Node 7 55% 34% 11% 1.585
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(a) Core 0 on Node 0, avg 51.6
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(b) Core 16 on Node 4, avg 29.1

Fig. 6: AMD core visit distance distributions with all nodes partici-
pating. Counter allocated on Node 0. Showing distributions for (a) a
core on Node 0 (distance 0 from counter) and (b) a core on Node 4
(distance 1). Distributions for other distance 0 cores are similar to
(a), and likewise for distances 1 and 2 with (b).

• Core visit length: the number of F&I operations performed
during a given core visit.

• Core visit distance: the number of core visits to other
cores between two visits to a given core.

A core’s throughput is
• directly proportional to its average core visit length and
• inversely proportional to its average core visit distance.
For each of Node 0, Node 4, and Node 7, Table II shows the

distribution of visit lengths for cores on that node. Notably, the
average core visit lengths on Node 7 is roughly 40% higher than
each of Node 0 and Node 4. Recall that in Figure 3, Node 7
has roughly 40% higher throughput than Node 4, which in
turn has higher throughput than Node 0. It thus appears that
average core visit length explains the throughput difference
between Node 4 and Node 7, but explaining the even lower
throughput of Node 0 requires examining core visit distances.

We now turn to core visit distances. Figure 6 shows the CDF
of visit distances aggregated over all cores for Node 0 and
Node 4. Due to space limitations, we omit the plot for Node 7,
but it is almost identical to that of Node 4. Remarkably, nearly
all core visit distances are just below multiples of 31, which
is one less than the number of physical cores on the AMD
machine. This suggests that core visits occur in round-robin
fashion, visiting all 31 other cores between two visits to a given
core, except that cores are occasionally skipped, mainly on
Node 0. Given that average core visit lengths are roughly the
same for Node 0 and Node 4 (see Table II), their throughput
difference is due mainly to the skipping of cores on Node 0.

B. Intel Scheduling Model

1) Intel Throughput Measurements: We begin our analysis
of the Intel machine in the same way we did for AMD. We
want to know whether throughput is fair among different cores,
and in particular, whether the distance patterns we observed
for AMD hold for Intel as well. Recall that the Intel machine
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Fig. 7: Intel throughput of F&I operations with with all nodes
participating. Counter allocated on Node 0.

has only 4 NUMA nodes, with a full interconnect that places
all nodes equidistantly from one another.

Figure 7 shows each node’s throughput distribution for a
sequence experiment with all cores participating with the
counter placed on Node 0. We see that, again, throughput
is unfair, and cores on Node 0 have lower throughput than
cores on the other three nodes. The results are analogous when
the counter is allocated on Node 1, Node 2, or Node 3.

We next test whether cores close to the counter still have
lower throughput when only one node participates at a time. To
answer this question, we run experiments with the counter on
Node 0 with cores on just a single node participating. Figure 8
shows the results for each of Node 0 and Node 3 participating,
Unlike in the experiment with all nodes participating, we see
that Node 0 and Node 3 have similar throughput distributions
when only one node participates at a time. The results for
Node 1 and Node 2 are similar.

We have seen that with all nodes participating, Intel and
AMD both exhibit core throughput increasing with distance
from the counter, but the machines differ when only one node
participates. This can be explained by considering the directory
coherence protocol. Each node on Intel has a shared L3 cache,
and the coherence protocol does not communicate updates to
other nodes so long as the cache line is not in any other node’s
L3 cache. This means single-node runs are virtually unaffected
by where the counter is allocated.

2) Intel Execution Trace Analysis: We now investigate the
Intel execution trace in detail. Figure 9 shows the execution
trace produced from a sequence experiment with the counter
allocated on Node 0. The y-axis shows the different thread
id’s color-coded by node. The x-axis shows “time”, measured
in number of F&I operations. The line shows the counter’s
migration pattern across the caches of the different cores.

To discuss the execution trace, we define the following terms:
• Core visit: a contiguous interval during which just one

core performs F&I operations (see Section IV-A2). The
length of a core visit is the number of F&I operations
performed in it.

• Node visit: a contiguous interval during which cores on
just one node perform F&I operations. The length of a
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Fig. 8: Intel throughput of F&I operations with one node participating
at a time. Counter allocated on Node 0. Node participating is either
Node 0 (distance 0 from counter) or Node 3 (distance 1).
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Fig. 9: Intel execution trace of F&I operations with all nodes
participating. Counter allocated on Node 0. Thread IDs are clustered
by node: 0–35 on Node 0 (yellow), 36–71 on Node 1 (purple), 72–107
on Node 2 (orange), and 108–143 on Node 3 (blue). Even-odd pairs
of threads (0-1, 2-3, etc.) run on the same physical core. Even thread
IDs are shaded darker.

node visit is the number of core visits it contains.
Figure 9 reveals unusual features of its core and node visits.

Round robin node visits: The nodes are visited in a fixed
repeating order throughout Figure 9: 0, 2, 3, 1, . . . . We
have confirmed that this pattern is consistent over the entire
trace, though the order occasionally changes and Node 0 is
occasionally skipped. We omit the detailed statistics for brevity.

Uneven core visit lengths: The first core visit of each node
visit is usually relatively long. Moreover, these long core visits
only occur as the first node visit: almost all other node visits
are very short, having just one or two F&I operations. To
confirm this observation, we show the CDF of the core visit
length distribution for Node 0 (distance 0 from the counter)
and Node 3 (distance 1) in Figure 10. For brevity, we omit
plots for Node 1 and Node 2, which are similar to that for
Node 3. The pattern is very clear for Node 3: about 70% of
core visits are of length 1 or 2, but visits of length greater
than 2 are likely to be at least length 10. The pattern is a
bit less prominent on Node 0, where longer visits only last
around 5 operations. This partially explains the difference in
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(a) Cores on Node 0, avg 2.92
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(b) Cores on Node 3, avg 4.42

Fig. 10: Intel core visit length distributions with all nodes participating.
Counter allocated on Node 0. Showing aggregate distributions for (a)
cores on Node 0 (distance 0 from counter) and (b) cores on Node 4
(distance 1). Distributions for Nodes 1 and 2 are similar to (b).
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(a) Node 0
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(b) Node 3

Fig. 11: Intel node visit length (measured in number of core visits)
distributions with all nodes participating. Counter allocated on Node 0.
Showing distributions for (a) Node 0 (distance 0 from counter) and
(b) Node 4 (distance 1). Distributions for Nodes 1 and 2 are similar
to (b).

throughput observed between Node 0 the other nodes.
Occasional bursts: In Figure 9, most node visits only contain

a few core visits: first a long core visit, followed by 0 to 2 more
core visits. However, every once in a while, a node visit ends
with many short core visits in a row. We call this occurrence
a “burst” of visits. A natural question is: are bursts simply the
result of noise, or they a separate phenomenon? To answer this
question, we plot CDF of the node visit length distribution in
Figure 11, again showing only Node 0 and Node 3 for brevity.
The distributions make clear that there are two distinct types
of node visits: those with 3 or fewer core visits, constituting
about 80% of all node visits; and those with significantly more,
usually at least 8, making up the other 20% of node visits. We
therefore define the following terms:

• Burst: a node visit of length 4 or greater. For example,
Figure 9 shows bursts for each of Nodes 1, 2, and 3.

• Cycle: the time between the end of one burst on a given
node and the end of the next burst on that node.

Interestingly, we find that in most cycles, each core is visited
exactly once. This is shown in Table III. This pattern, which
occurs on all nodes, suggests a possible mechanism for the
bursts: requests for the counter’s cache line build up in a queue
in each node, and each queue occasionally “flushes” if it is
too full for too long.

Finally, recall from Section IV-B1 that single-node execu-
tions produce different throughput distributions than executions
that cross node boundaries. We therefore also examine the



TABLE III: Intel number of times cores are visited per cycle.

0 VISITS 1 VISIT 2 VISITS ≥ 3 VISITS

Cores on Node 1 9% 85% 5% < 1%
Cores on Node 3 10% 85% 5% < 1%
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Fig. 12: Intel core visit distance distributions with only Node 0
participating. Counter allocated on Node 0. Distribution is very close
to Geometric(1/18) (dashed blue line).

trace of a single-node execution with the counter on Node 0
and only cores on Node 0 participating. In contrast to the
multiple-node trace, the single-node trace is close to uniformly
random. To confirm this, we show the CDF of the core visit
distance distribution in Figure 12. The CDF is close to that
of a geometric distribution, which is what the CDF would be
for a truly uniformly random schedule. This means that for
analyzing algorithms for single-node executions on the Intel
machine, a uniformly random scheduling model is appropriate.

V. TAKEAWAYS FOR FAIRNESS AND FOCUS

Recall the desirable properties a schedule should have: in
the long run, we want it to be fair, letting each thread make
the same amount of progress, but in the short term, we want
the schedule to be focused, allowing each thread enough time
to read, locally modify, and then apply its modification on a
cache line before the cache line gets invalidated.

We now go back to our original question: do memory
operation schedules on modern hardware achieve long term
fairness and short term focus? In the previous section, we saw
some indications that the schedules might not be fair: initial
throughput experiments indicated the on both machines, the
node on which memory is allocated is unfairly treated, even in
long runs. We saw that short-term focus might be behind this:
cores on remote nodes get longer visits on average. However,
recall that these experiments were sequence experiments, which
were designed to uncover scheduling patterns but not to
represent the workloads of real lock-free algorithms.

In this section, we thus test whether these initial findings
carry over to more realistic workloads. More specifically, all
the experiments in this section are competition experiments (see
Section III). To review, in a competition experiment, multiple

cores attempt to read from and CAS a new value into a single
memory location called the target. Competition experiments
have two delay parameters.

• Between a read and the following CAS is the atomic delay.
This simulates work in the the atomic modify section of
a lock-free operation (Line 5 of Algorithm 1).

• Between each successful CAS and the following read
is the parallel delay. This simulates the parallel work
of a lock-free algorithm between synchronization blocks
(Line 2 of Algorithm 1).

We simulate different lock-free workloads by varying the atomic
and parallel delays. To highlight the effects of the atomic
delay, the experiments in this section are conducted with a
high parallel delay (set to 256 iterations in all experiments.
See Section III for details on how the delay is implemented).
This means that long streaks of successful read-modify-CAS
operations by one thread without interruption from another
thread are unlikely, even when the atomic delay is small.

All plots in this section show the results over 10 repeti-
tions of 10 second runs. Each plot point shows the median
total throughput of successful CAS instructions over the 10
repetitions, and error bars show the 75th and 25th percentile.

A. Fairness

To test long-term fairness on lock-free workloads, we run a
set of competition experiments in which all cores on all nodes
are participating. We vary the atomic delay to evaluate the
fairness for lock-free algorithms with differently sized atomic
modify sections. We measure the throughput of successful CAS
instructions exhibited by cores on each node, and compare
them to the throughput on other nodes. These tests answer the
following question: when all cores run the same code, how
skewed is their throughput with respect to each other?

1) AMD Fairness: The results for the fairness test on the
AMD machine are shown in Figure 13. It is clear that cores
on distance 2 nodes (represented by Node 7 here) perform
much better when atomic delay is low, outperforming other
nodes by up to 31×, but this drops very quickly.5 By the time
atomic delay reaches 16 iterations (around 56 ns), distance 1
nodes start outperforming distance 2 nodes. However, recall
that the throughput reported in Figure 13 shows successful
CAS instructions. Interestingly, if we consider the number of
attempted CAS instructions, rather than just the successful ones,
the difference is less stark, with distance 2 nodes reaching a
peak at an atomic delay of 5 iterations, at which point they
only outperform distance 1 nodes by a factor of 2.2.6 This
indicates that at low atomic delays, distance 2 nodes succeed
in a much larger fraction of their attempted CAS instructions.

The throughput reaches a steady state at around an atomic
delay of 30 iterations (roughly 70 ns), but is still highly unfair.
Notably, distance 1 nodes achieve the highest throughput at the
steady state, outperforming the other two groups by an order
of magnitude. Insight into this phenomenon can be gained by

5This part is truncated in the plot, to make other trends more visible.
6This data is not shown in the plot.
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Fig. 13: AMD throughput of CAS operations for varying atomic delay
with all nodes participating. Target allocated on Node 0. Showing total
throughput of Node 0 (distance 0 from target), Node 4 (distance 1),
and Node 7 (distance 2).

looking at the success ratio, or the fraction of successful CAS
instructions out of the overall number attempted. For distance 1
nodes, the success ratio is around 0.04–0.05, whereas for cores
in the other two node categories, it lies at around 0.005. A failed
CAS is always caused by the success of another thread’s CAS.
In particular, a CAS by thread p will fail if p executed its read
of the target between the read and the CAS of thread whose
CAS was successful. Thus, the numbers indicate that most
threads align their read instructions with each other, causing
repeated failures for the same set of threads. The delays inherent
to the cache coherence protocol on the AMD machine thus
repeatedly favor these ‘mid latency’ (distance 1) threads over
their counterparts that are farther or closer to the memory.

2) Intel Fairness: The fairness test results on the Intel
machine are shown in Figure 14. Only Node 0 and Node 3
are shown, as the other nodes’ curves were almost exactly
the same as Node 3. As could be expected, both Node 0 and
Node 3 drop in throughput as the atomic delay grows, and
eventually both reach approximately the same throughput.

We can see that in general, fairness here is not as skewed
as on AMD; at high throughputs (corresponding to low atomic
delay), Node 3 outperforms Node 0 by a factor of 1.4–1.8.
Both node’s performance degrades quickly, though at somewhat
different speeds. At an atomic delay of 34 iterations (around
75 ns), unfairness is at its worst, with Node 3 outperforming
Node 0 by a factor of 12.5. However, soon after that, starting at
an atomic delay of 52 iterations, the two nodes are consistently
within 10% of each other in terms of their throughput.

3) Fairness Takeaways: We conclude that the fairness of
schedules of a lock-free algorithm is highly dependent on the
algorithm itself, in particular, on the length of its atomic modify
section. This observation is perhaps counterintuitive, especially
for theoreticians in the field; a lot of literature on lock-free
algorithms never accounts for ‘local’ work. However, the exact
length of local operations within the atomic modify section can
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Fig. 14: Intel throughput of CAS operations for varying atomic delay
with all nodes participating. Target allocated on Node 0. Showing total
throughput of Node 0 (distance 0 from target) and Node 3 (distance 1).

have a drastic effect on both fairness and performance. This is
despite the fact that local work operates on the L1 cache and
thus experience much lower latencies than memory instructions
that access new or contended data. We thus recommend making
efforts to minimize work in the atomic modify section when
designing and implementing lock-free algorithms.

Furthermore, we note that despite fairness arbitration efforts
within each node, fairness is not generally achieved among
nodes. This is a similar observation to that made by Song et
al. [24]. However, while they study workloads in which there
is an uneven number of requests from competing nodes, we
show unfairness even when all nodes issue the same number
of requests. In general, to achieve better fairness even with
relatively small atomic modify sections, it can be beneficial to
design architectures to explicitly favor requests from the local
node over those from remote nodes.

B. Focus

Recall the original intuition (Section I) for why focus may
be useful in a hardware schedule. Ideally, to avoid wasted
work, a thread should be able to keep a cache line in its
private cache for long enough to execute both the read and the
CAS instructions of its atomic modify section in a lock-free
algorithm. However, this means that depending on the length of
the atomic modify section of a given algorithm, the cache line
must remain in one core’s cache longer for sufficient focus.

Recall that when inferring the scheduling patterns of each
machine in Section IV, we considered the visit length of a cache
line at each core. That is, we measured how many memory
instructions a single core can execute before the cache line
leaves its private cache. Note that a schedule with better focus
corresponds to a schedule with longer core visits. Thus, more
focus is required from the schedule the longer the atomic delay
is. We say that a hardware schedule has meaningful focus for
a given lock-free algorithm if the entire atomic modify section
of the algorithm fits in a single core visit.
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Fig. 15: AMD throughput of CAS operations for varying atomic delay
with all nodes participating. A target is allocated each node. All cores
accessing a given target are in the same node. In each run, all cores
access targets the same distance away.

We now test how longer core visits observed in Section IV
translate to meaningful focus for lock-free algorithms. Unlike
previous experiments in this paper, we test focus using
experiments with multiple targets. Specifically, we allocate
one target on each node, and each core is assigned one target
to access for the duration of the experiment. This means that
each core is only directly contending with other cores accessing
the same target. However, there may be indirect contention
caused by traffic on the node interconnect. To exhibit a variety
of core visit lengths, we run different types of experiments for
AMD and Intel.

1) AMD Focus: Recall from Section IV-A that nodes that
are 2-hops away from the memory they access have longer
core visits on average. To test how these longer visits translate
to meaningful focus, we conduct competition experiments with
three different settings. In each setting, all cores access a target
that is a fixed distance away. The results of this test are shown
in Figure 15.

For small atomic delays, we observe a significant difference
between the three settings. In particular, both distance 1 and
distance 2 placements exhibit higher throughput than distance 0.
Throughput at distance 1 drops near atomic delay 18. This
indicates that at this point, a thread can no longer fit both its
read and its CAS into the same visit. A similar drop happens
for the distance 2 placement near atomic delay 23. In contrast,
it appears that the distance 0 placement never fits a read and
CAS into the same visit, even with atomic delay 0.

These findings make sense in light of the results of Sec-
tion IV-A. Specifically, as shown in Table II, cores at distance 2
have longer visit lengths than those at distance 1. From the
table initially appears as if distance 0 cores have visit lengths
comparable to distance 1 cores. However, as shown in Figure 6,
cores at distance 0 are frequently skipped in what is otherwise
a mostly round-robin visit sequence. If we view these skips
as “length 0” visits, then cores at distance 1 have visits longer
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Fig. 16: Intel throughput of CAS operations for varying atomic delay
with all nodes participating. A target is allocated each node. Showing
results for four different target assignments. In grouped assignments,
all cores accessing a given target are in the same node. In split
assignments, the set of cores accessing a given target is split evenly
across two nodes.

than those at distance 0, whose visits can be so short that not
even a single atomic instruction finishes executing.

All three thread placements eventually reach a steady
throughput of around 7.2–10.3 million successful CAS op-
erations per second. This happens at an atomic delay of 36
iterations, roughly corresponding to 125 ns on the AMD
machine (see Section III). Distance 1 nodes display the
highest throughput of the three categories in the steady state,
outperforming distance 2 nodes by 20% and the Node 0 by
43%. This is consistent with the results from the fairness tests,
but the difference in performance is smaller here.

There are some other phenomena that we do not yet know
how to explain, such as the drops in throughput for distances 1
and 2 as atomic delay increases from 0 to 5 and the occasional
throughput spikes. It is possible that some of these effects
would be smoothed over by an experiment in which atomic
delay was random rather than deterministic.

2) Intel Focus: Recall from Section IV-B that longer visits
occur on the first core visited in a node, when the cache line
travels between nodes. In particular, these long core visits
happen only when cores of multiple nodes are active, rather
than just one node. To test the effect of longer core visits on
meaningful focus in the Intel machine, we therefore compare
two types of competition experiments: the first is simply using
all threads of one node, and the second uses the same number
of threads, but splits them across two nodes. Just like we did for
AMD, we run the experiments in parallel to create interconnect
traffic. The results of this test are shown in Figure 16.

As expected given our knowledge of Intel’s schedule, it
is clear that for a small atomic delay, splitting the threads
across two nodes produces significantly higher throughput than
having them all on one node. At around an atomic delay of



30 iterations (approximately 66 ns), the runs on a single node
start outperforming the split runs. This can be attributed to
the lowered contention caused by such a high atomic delay.
When contention is low, the dominating factor for performance
becomes the latency of accessing the memory (or the L3 cache,
in this case), which is known to be much lower for local
accesses than for remote accesses.

3) Focus Takeaways: On both machines, we observed that
for experiments with low atomic delay, higher throughput
occurs on schedules that we know exhibit better focus. The
higher focus seems to be meaningful only for an atomic delay of
up to approximately 25-30 iterations, indicating that algorithms
with atomic modify sections of around this length or shorter
can benefit from such schedules.

However, more generally, it is clear that focus in the hardware
schedule is extremely helpful for throughput; it would be
desirable to achieve meaningful focus even for algorithms with
a longer atomic modify section. This observation was made
by Haider et al. [25]. Using simulation results, they showed
that it can be very beneficial to allow each thread to lease a
cache line for a bounded amount of time, and release it either
when that time is up, or when it finishes its atomic modify
section. Our results support those of Haider et al., but on real
architectures rather than simulations. That is, even when all
features of an architecture interact with each other, it can be
beneficial to extend the implicit lease of a cache line that
memory instruction schedules provide a thread.

VI. RELATED WORK

Alistarh et al. [14] ran tests similar to our sequence
experiments to verify the validity of their uniform random
scheduler assumption. They ran the experiments on a single
Fujitsu PRIMERGY RX600 S6 server with four Intel Xeon
E7-4870 (Westmere EX) processors, but they used only one
of its nodes. Our results for this setting are consistent with
theirs; scheduling seems mostly uniformly random on a single
Intel node. Our experiments, however, consider a much greater
scope, noting when this random scheduling pattern falters.

NUMA architectures have been extensively studied. Previous
works have designed benchmarks to understand the latencies
and bandwidth associated with accesses to different levels of
the cache and local versus remote memory on NUMA machines
[20], [26], [27]. However, these papers did not consider the
effect of contended workloads on NUMA access patterns.

A thorough study of synchronization primitives was con-
ducted by David et al. [28]. Some of their tests are similar to
ours. However, their setup is different; in all contention exper-
iments, David et al. inject a large delay between consecutive
operations of one thread. While we use a similar pattern for
our focus and fairness experiments, we also test configurations
that do not inject such delays. Thus, our work uncovers some
performance phenomena that were not found by David et al.

Song et al. [24] show that NUMA architectures can have
highly unfair throughput among the nodes. They also show
that this unfairness does not always favor nodes that access

local memory, displaying this behavior in VMs. However, they
do not study lock-free algorithms or contention.

Performance prediction has been the goal of a lot of work,
not only in the lock-free algorithms community [29], [30],
[31], [32], [33]. Techniques range from simulation, to hand
built models, to regression based models, to profiling tools.
Goodman et al. present one such profiling tool [32]. While this
produces accurate results, sometimes it is impractical to have
the algorithm ready to use for profiling before performance
predictions are made, since performance predictions can help
develop the algorithm. Our work aims to obtain a high level
performance model to guide algorithm design in its earlier
stages. Furthermore, our benchmark can be used on any
machine to gain an understanding of its underlying model.

VII. CONCLUSION

Analytical performance prediction of lock-free algorithms
is a hard problem. One must consider the likely operation
scheduling patterns on the machines on which the algorithm is
run. Previous approaches assumed a random scheduler instead
of an adversarial one, but did not show whether such an
assumption is reflective of real machines.

In this work, we present a thorough study of scheduling
patterns produced on two NUMA architectures, using our
new benchmarking tool, Severus. Our experiments uncover
several phenomena that can greatly affect the schedules of
lock-free algorithms and make models based solely on uniform
randomness seem inaccurate. In particular, we show that thread
placement with respect to a contended memory location can
be crucial, and that surprisingly, remote threads often perform
better under contention than local threads.

On both tested machines, the reason for this rise in through-
put seems to stem from improved focus, or the increased length
of visits of the cache line for cores on remote nodes. This
phenomenon has been largely overlooked in literature that
aims to approximate the operation scheduler, other than a few
exceptions [25]. Additionally, these focus benefits come at
the cost of fairness on modern machines; not all cores on a
machine experience these beneficial longer visits.

We believe that there are several takeaways and further
directions from this paper. Firstly, fairness is not a given. This
knowledge can affect algorithm design, as well as programming
frameworks chosen; in a system with low fairness, a work-
stealing scheduler may be crucial for ensuring a fair allocation
of parallel tasks that leads to high throughput. Secondly, this
paper casts doubt on previous works that assume requests for
a cache line are simply handled in a random order, and shows
that more careful modeling may be necessary. Furthermore,
we’ve shown in our experiments that the length of the atomic
delay (the delay between the read and the following CAS
in a read-modify-CAS loop) has a significant—yet a priori
unpredictable—effect on performance, since different platforms
can behave drastically differently. Finally, we provide a tool
that allows a user to test their platform and understand what
assumptions are reasonable for them, and what factors might
have the greatest effect on their algorithm’s performance.
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APPENDIX

Our tool, Severus uses c++ source code that creates a speci-
fied multithreaded workload and measures various properties
of its schedule, and then processes the output using gnuplot
to create plots that are easy to interpret. It has been tested on
Ubuntu 14.04 and 16.04, and requires the boost and libnuma
libraries to be installed.

Severus is designed to be usable on many different archi-
tectures and workloads. We expect the results of the same
experiments to be different on each machine. Thus, when
evaluating our artifact, one should expect to see that the tool
runs properly, and outputs data that is similar to what we report
in this paper, but potentially showing different numbers and
patterns.

We tested Severus on two different architectures: (1) an
Intel Xeon CPU E7-8867 v4 machine with 4 nodes and 72
cores, each with two-way hyperthreading, and (2) an AMD
Opteron 6278 machine with 8 nodes and 32 cores, each with
two-way hyperthreading. If the reviewer has access to one
or both of these machines, the data gathered by running our
experiments should be very similar to what we report in this
paper. Severus can run on different NUMA machines that use
Ubuntu, but will produce different results. A machine that
runs Severus must have atoimc compare-and-swap (CAS) and
atomic fetch-and-add (F&A, also called xadd).

A. Artifact check-list (meta-information)

• Compilation: g++ verion 5+ (Tested on 5.3.0 and 6.4.0)
• Run-time environment: The tool was tested on Linux

Ubuntu versions 14.04 and 16.04. Software dependencies
are on boost and libnuma libraries. Root access is needed
to install these dependencies if not already present, but is
not needed for the tool itself.

• Hardware: We recommend Intel Xeon E7-886 or AMD
Operton 6278 to verify results reported in this paper.
Similar machines should work, and yield comparable
results in some experiments, while possibly revealing
new patterns for other experiments. The machine must
have atomic CAS and F&A instructions and a NUMA
architecture.

• Run-time state: For most accurate results, this program
should run alone on the machine (no network or cache
contention).

• Execution: The program should execute solo. It runs for
approximately 10 mins to complete the experiments in
paper.sh.

• Metrics: Number of memory accesses per thread/node,
some other related measurements.

• Output: Data files are outout in .txt format, and then
plots are created in .pdf files. Plots highlight important
properties of the execution, including the execution trace,
and how many memory accesses were executed by each
thread, by access type (read, write, etc).

• How much disk space required (approximately)? Less
than 100M

• How much time is needed to prepare workflow (ap-
proximately)? Less than 5 mins

• How much time is needed to complete experiments
(approximately)? Less than 10 mins

• Publicly available? Yes, on Github: https://github.com/
cmuparlay/severus

• Code licenses (if publicly available)? Apache License
2.0

• Archived (provide DOI)? Yes, on Zenodo: https://doi.
org/10.5281/zenodo.3360044 [34]

B. Description

1) How delivered: Available on GitHub: https://github.com/
cmuparlay/severus.

2) Hardware dependencies: We recommend Intel Xeon E7-
886 or AMD Operton 6278 to verify results reported in this
paper. Similar machines should work, and yield comparable
results in some experiments, while possibly revealing new
patterns for other experiments. The machine must have atomic
CAS and F&A7, and a NUMA architecture.

3) Software dependencies: For compiling and running the
source code:

• GCC. Available as gcc from most package managers.
• Boost: Program options. Available as libnuma-dev

from most package managers, or download from
https://www.boost.org/doc/libs/1 66 0/more/getting
started/unix-variants.html.

• libnuma. Available as libnuma-dev from most pack-
age managers.

• gnuplot. Only required for producing plots. Available as
gnuplot from most package managers, or download
from https://sourceforge.net/projects/gnuplot/files/gnuplot/
5.2.7/.

C. Installation

a) Downloading the code.: Clone or download the repos-
itory from GitHub at https://github.com/cmuparlay/severus. All
the artifact code is contained in a single directory, and all the
scripts are intended to be run from that directory.

b) Installing dependencies.: Follow the instructions in
Section B3 to download and install the software dependencies
if they are not already installed on your machine.

D. Experiment workflow

The easiest way to use the tool is to run ./paper.sh.
This works on any machine and reproduces the experiments
that were run and presented in this paper. The script has four
modes:

• ./paper.sh easy replicates the experiments from
Sections IV and V-A on any machine.

• ./paper.sh amd replicates the experiments on the
AMD machine in Sections IV-A, V-A1, and V-B1. This
mode requires exactly 8 NUMA nodes.

7The benchmarks use F&A instructions but only ever add 1, so the code
could be easily adapted to a machine with only an atomic fetch-and-increment
(F&I) instruction.

https://github.com/cmuparlay/severus
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• ./paper.sh intel replicates the experiments in Sec-
tions IV-B, V-A2, and V-B2. This mode requires exactly
4 NUMA nodes.

• ./paper.sh mapping MAP replicates the experi-
ments from Sections IV and V-A and adapts the experi-
ments from Section V-B on any machine. See below for
the details of the argument MAP.

By default, all results are output to ./output/ and its
subdirectories. The output directory can be overriden with
a command line argument. Run ./paper.sh --help for
full details.

The ./paper.sh mapping MAP option, with help from
the user in the form of the argument MAP, recreates a version of
the focus experiments from Section V-B. MAP is list that maps
each node to the node it will access during the experiment.
For example, on a 4-node system, ./paper.sh mapping
1 2 3 0 has Node 0 access Node 1, Node 1 access Node 2,
etc. The intention is that the list is a permutation such that no
node is accesses itself, but other configurations may also be
interesting.

A lower-level interface is the go.sh script, which runs
single experiments. (The paper.sh script is mostly a series of
calls to go.sh.) Run ./go.sh --help for a short manual
on how to use it. The script produces a text file with the output
data from the execution it ran, and by default creates plots in
pdf format using gnuplot. Furthermore, a short summary of
the execution, including the total number of successful and
unsuccessful accesses to memory, is output to the commandline.
If for any reason the plots are not desired, they can be disabled
with the --no-plot option.

Both paper.sh and go.sh avoid rerunning experiments,
which can be lengthy, if output files already exist. To force
rerunning an experiment, delete its output file. (Deleting only )

E. Evaluation and expected result
It is difficult to compare the results across different machines.

In general, it is not the exact throughput reported, but the
scheduling patterns observed that are the main take-away that
should be considered. Overall, when running on a new machine,
the desired result is the ability to understand the scheduling
patterns produced. The code should compile, run, and produce
informative plots.

Some patterns should remain fairly constant across machines.
We expect that in the sequence experiments, for example, the
node on which the memory is allocated (node 0 as default)
should perform worse than others on most NUMA machines.

If running experiments on Intel Xeon E7-886 or AMD
Operton 6278, the scheduling patterns produced should be
similar to the ones reported in this paper, for all experiments.

On any machine, it is important to ensure that this program
is the only one running on the machine when gathering data,
since the schedule is easily skewed by other things happening
in the system.

F. Experiment customization
Severus is parametrized, and allows the user to control the

threads participating, node(s) on which memory is allocated,

and the amount of delay threads should wait between memory
accesses. For details, run ./go --help.

G. Notes

In this paper we produced the plots using a Mathematica
library. However, Mathematica is proprietary, so not all users
have access to it. Furthermore, our Mathematica library is
currently not configurable to handle machines other than the
Intel and AMD machines used in this paper. In the interest
of open access and portability, our artifact uses gnuplot to
generate versions of nearly all of the figures in this paper.
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