Optimal Multiserver Scheduling with Unknown Job Sizes in Heavy Traffic

Ziv Scully Computer Science Department Carnegie Mellon University zscully@cs.cmu.edu Isaac Grosof Computer Science Department Carnegie Mellon University igrosof@cs.cmu.edu Mor Harchol-Balter Computer Science Department Carnegie Mellon University harchol@cs.cmu.edu

ABSTRACT

We consider scheduling to minimize mean response time of the M/G/k queue with unknown job sizes. In the singleserver k = 1 case, the optimal policy is the *Gittins* policy, but it is not known whether Gittins or any other policy is optimal in the multiserver case. Exactly analyzing the M/G/kunder any scheduling policy is intractable, and Gittins is a particularly complicated policy that is hard to analyze even in the single-server case.

In this work we introduce monotonic Gittins (M-Gittins), a new variation of the Gittins policy, and show that it minimizes mean response time in the heavy-traffic M/G/k for a wide class of finite-variance job size distributions. We also show that the monotonic shortest expected remaining processing time (M-SERPT) policy, which is simpler than M-Gittins, is a 2-approximation for mean response time in the heavy traffic M/G/k under similar conditions. These results constitute the most general optimality results to date for the M/G/k with unknown job sizes.

1. INTRODUCTION

Scheduling to minimize mean response time¹ of the M/G/kqueue is an important problem in queueing theory. The singleserver k = 1 case has been well studied. If the scheduler has access to each job's exact size, the *shortest remaining processing time* (SRPT) policy is easily shown to be optimal. If the scheduler does not know job sizes, which is very often the case in practical systems, then a more complex policy called the *Gittins* policy is known to be optimal [1, 2]. The Gittins policy tailors its priority scheme to the job size distribution, and it takes a simple form in certain special cases. For example, for distributions with *decreasing hazard rate* (DHR), Gittins becomes the *foreground-background* (FB) policy, so FB is optimal in the M/G/1 for DHR job size distributions [1].

In contrast to the M/G/1, the M/G/k with $k \ge 2$ has resisted exact analysis, even for very simple scheduling policies. As such, much less is known about minimizing mean response time in the M/G/k, with the only nontrivial results holding under heavy traffic (Section 2). For known job sizes, recent work by Grosof et al. [3] shows that a multiserver analogue of SRPT is optimal in the heavy-traffic M/G/k. For unknown job sizes, Grosof et al. [3] address only the case of DHR job size distributions, showing that a multiserver analogue of FB is optimal in the heavy-traffic M/G/k.² But in general, optimal scheduling is an open problem for unknown job sizes, even in heavy traffic. We therefore ask: What scheduling policy minimizes mean response time in the heavy-traffic M/G/k with unknown job sizes and general job size distribution?

This is a very difficult question. In order to answer it, we draw upon several recent lines of work in scheduling theory.

- As part of their heavy-traffic optimality proofs, Grosof et al. [3] use a tagged job method to bound M/G/k response time under each of SRPT and FB relative to M/G/1 response time under the same policy.
- Lin et al. [6] and Kamphorst and Zwart [5] characterize the heavy-traffic scaling of M/G/1 mean response time under SRPT and FB, respectively.
- Scully et al. [8] show that the monotonic shortest expected remaining processing time (M-SERPT) policy, which is simpler than Gittins, has M/G/1 mean response time within a constant factor of that of Gittins.

While these prior results do not answer the question on their own, together they suggest a plan of attack for proving optimality in the heavy-traffic M/G/k.

When searching for a policy to minimize mean response time, a natural candidate is a multiserver analogue of Gittins. As a first step, one might hope to use the tagged job method of Grosof et al. [3] to bound M/G/k response time under Gittins relative to M/G/1 response time. Unfortunately, the tagged job method does not apply to multiserver Gittins: it relies on both stochastic and worst-case properties of the scheduling policy, and Gittins has poor worst-case properties.

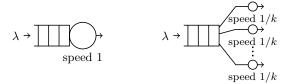
One of our key ideas is to introduce a new variant of Gittins, called *monotonic Gittins* (M-Gittins), that has better worst-case properties than Gittins while maintaining similar stochastic properties. This allows us to generalize the tagged job method [3] to M-Gittins.

Our M/G/k analysis of M-Gittins reduces the question of whether M-Gittins is optimal in the heavy-traffic M/G/kto analyzing the heavy-traffic scaling of M-Gittins's M/G/1 mean response time. However, there are no heavy-traffic scaling results for the M/G/1 under policies other than SRPT [6], FB [5], and a small number of other simple policies. To remedy this, we derive heavy-traffic scaling results for M-Gittins in the M/G/1. It turns out that analyzing M-Gittins directly is very difficult. Fortunately, Scully et al. [8] introduced a simpler cousin of M-Gittins, namely M-SERPT. We analyze M-SERPT in heavy traffic as a key stepping stone in our

¹A job's *response time*, also called *sojourn time* or *latency*, is the amount of time between its arrival and its completion.

²Both the SRPT and FB optimality results of Grosof et al. [3] hold under technical conditions similar to finite variance.

SINGLE-SERVER SYSTEM



k-Server System

Figure 2.1: Single-Server and k-Server Systems

analysis of M-Gittins.

Our paper [4] makes the following contributions:

- We introduce M-Gittins and prove that it minimizes mean response time in the heavy-traffic M/G/k for a large class of finite-variance job size distributions.
- We also prove that the simple and practical M-SERPT policy is a 2-approximation for mean response time in the heavy-traffic M/G/k under similar conditions.
- We characterize the heavy-traffic scaling of mean response time in the M/G/1 under Gittins, M-Gittins, and M-SERPT.

We now state our main results using the notation of Section 2.

Theorem 1.1. If X in $OR(-\infty, -2)$, $MDA(\Lambda) \cap QDHR$, or Bounded, then $\lim_{\rho \to 1} \mathbf{E}[T^{M-\operatorname{Gittins}-k}]/\mathbf{E}[T^{\operatorname{Gittins}-1}] = 1$, in which case M-Gittins-k minimizes mean response time in the heavy-traffic M/G/k.

Theorem 1.2. If X in $OR(-\infty, -2)$, $MDA(\Lambda) \cap (QDHR \cup QIMRL)$, or Bounded, then $\lim_{\rho \to 1} \mathbf{E}[T^{M-Gittins-k}]/\mathbf{E}[T^{Gittins-1}] \leq 2$, in which case M-SERPT-k is a 2-approximation for mean response time in the heavy-traffic M/G/k.

Theorem 1.3. Let π -1 be one of Gittins-1, M-Gittins-1, or M-SERPT-1. In the $\rho \to 1$ limit, if $X \in OR(-2, -1)$, then $\mathbf{E}[T^{\pi-1}] = \Theta(-\log(1-\rho))$; and if X is in $OR(-\infty, -2)$, MDA(Λ), or ENBUE, then

$$\mathbf{E}[T^{\pi\text{-}1}] = \Theta\bigg(\frac{1}{(1-\rho)\cdot r^{\text{M-SERPT}}(\overline{F}_e^{-1}(1-\rho))}\bigg),$$

where \overline{F}_{e}^{-1} is the inverse of the tail of the excess of X, namely $\overline{F}_{e}(x) = \int_{x}^{\infty} \mathbf{P}\{X > t\} dt/\mathbf{E}[X].$

2. NOTATION AND TERMINOLOGY

We consider an M/G/k queue with arrival rate λ and job size distribution X. Each of the k servers has speed 1/k, so regardless of the number of servers, the total service rate is 1 and the system load is $\rho = \lambda \mathbf{E}[X]$. This allows us to easily compare the M/G/k to an M/G/1, as shown in Figure 2.1 We assume a preempt-resume model with no preemption overhead, so a single-server M/G/1 system can simulate any M/G/k policy by time-sharing between k jobs.

2.1 SOAP Policies and Rank Functions

All of the scheduling policies considered in this work are in the class of *SOAP policies* [7], generalized to a multiserver setting. In a single-server setting, a SOAP policy π is specified by a rank function $r^{\pi} : \mathbb{R}_+ \to \mathbb{R}$ mapping a job's *age*, the amount of service it has received so far, to its rank, or priority level. Single-server SOAP policies always serve the job of minimal rank, breaking ties first-come, first-served (FCFS).

A multiserver SOAP policy uses the same rank function as its single-server analogue, but it serves the k jobs of minimal rank, breaking ties FCFS. We write π -k for the k-server version of a policy, so π -1 is the single-server version. We write $T^{\pi-k}$ for the response time distribution under π -k.

We primarily consider four policies: shortest expected remaining processing time (SERPT), monotonic SERPT (M-SERPT), Gittins, and monotonic Gittins (M-Gittins). Each uses the job size distribution to tune its rank function:

$$r^{\text{SERPT}}(a) = \mathbf{E}[X - a \mid X > a],$$

$$r^{\text{M-SERPT}}(a) = \max_{b \in [0,a]} r^{\text{SERPT}}(b),$$

$$r^{\text{Gittins}}(a) = \inf_{b > a} \frac{\mathbf{E}[\min\{X, b\} - a \mid X > a]}{\mathbf{P}\{X \le b \mid X > a\}},$$

$$r^{\text{M-Gittins}}(a) = \max_{b \in [0,a]} r^{\text{Gittins}}(b).$$

2.2 Job Size Distribution Classes

We consider several classes of job size distributions, briefly described below. See our paper [4] for the full definitions.

- For any $\beta > \alpha > 0$, the $OR(-\beta, -\alpha)$ class contains, roughly speaking, distributions with Pareto-like tails asymptotically between $x^{-\beta}$ and $x^{-\alpha}$. For example, all distributions in $OR(-\infty, -2)$ have finite variance.
- The MDA(Λ) class contains, roughly speaking, distributions with lighter-than-Pareto tails, such as exponential, normal, log-normal, Weibull, and Gamma distributions.
- The QDHR and QIMRL classes are relaxations of the wellknown *decreasing hazard rate* (DHR) and *increasing mean residual lifetime* (IMRL) classes. QDHR contains distributions whose hazard rate is roughly decreasing with age, even if it is not perfectly monotonic, and QIMRL contains distributions with roughly increasing expected remaining size.
- The ENBUE class contains distributions whose expected remaining size reaches a global maximum at some age. The Bounded subclass contains distributions with bounded support.

Acknowledgments. This work was supported by NSF-CMMI-1938909, NSF-XPS-1629444, and NSF-CSR-1763701.

References

- S. Aalto, U. Ayesta, and R. Righter. On the Gittins index in the M/G/1 queue. *Queueing Systems*, 63(1):437–458, 2009.
- [2] S. Aalto, U. Ayesta, and R. Righter. Properties of the Gittins index with application to optimal scheduling. *Probability in* the Engineering and Informational Sciences, 25(03):269–288, 2011.
- [3] I. Grosof, Z. Scully, and M. Harchol-Balter. SRPT for multiserver systems. *Performance Evaluation*, 127–128:154–175, 2018.
- [4] I. Grosof, Z. Scully, and M. Harchol-Balter. Optimal multiserver scheduling with unknown job sizes in heavy traffic. *Performance Evaluation*, 2020. To appear.
- [5] B. Kamphorst and B. Zwart. Heavy-traffic analysis of sojourn time under the foreground–background scheduling policy. *Stochastic Systems*, 10(1):1–28, 2020.
- [6] M. Lin, A. Wierman, and B. Zwart. The average response time in a heavy-traffic SRPT queue. In ACM SIGMETRICS Performance Evaluation Review, volume 38, pages 12–14. ACM, 2010.
- [7] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf. Soap: One clean analysis of all age-based scheduling policies. *Proc. ACM Meas. Anal. Comput. Syst.*, 2(1):16:1–16:30, Apr. 2018.
- [8] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf. Simple near-optimal scheduling for the M/G/1. Proc. ACM Meas. Anal. Comput. Syst., 4(1):11:1–11:29, Mar. 2020.