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ABSTRACT
We consider scheduling to minimize mean response time of
the M/G/k queue with unknown job sizes. In the single-
server k = 1 case, the optimal policy is the Gittins policy,
but it is not known whether Gittins or any other policy is
optimal in the multiserver case. Exactly analyzing the M/G/k
under any scheduling policy is intractable, and Gittins is a
particularly complicated policy that is hard to analyze even
in the single-server case.

In this work we introduce monotonic Gittins (M-Gittins),
a new variation of the Gittins policy, and show that it mini-
mizes mean response time in the heavy-traffic M/G/k for a
wide class of finite-variance job size distributions. We also
show that the monotonic shortest expected remaining process-
ing time (M-SERPT) policy, which is simpler than M-Gittins,
is a 2-approximation for mean response time in the heavy
traffic M/G/k under similar conditions. These results con-
stitute the most general optimality results to date for the
M/G/k with unknown job sizes.

1. INTRODUCTION
Scheduling to minimize mean response time1 of the M/G/k

queue is an important problem in queueing theory. The single-
server k = 1 case has been well studied. If the scheduler
has access to each job’s exact size, the shortest remaining
processing time (SRPT) policy is easily shown to be optimal.
If the scheduler does not know job sizes, which is very often
the case in practical systems, then a more complex policy
called the Gittins policy is known to be optimal [1, 2]. The
Gittins policy tailors its priority scheme to the job size
distribution, and it takes a simple form in certain special
cases. For example, for distributions with decreasing hazard
rate (DHR), Gittins becomes the foreground-background (FB)
policy, so FB is optimal in the M/G/1 for DHR job size
distributions [1].

In contrast to the M/G/1, the M/G/k with k ≥ 2 has re-
sisted exact analysis, even for very simple scheduling policies.
As such, much less is known about minimizing mean response
time in the M/G/k , with the only nontrivial results holding
under heavy traffic (Section 2). For known job sizes, recent
work by Grosof et al. [3] shows that a multiserver analogue of
SRPT is optimal in the heavy-traffic M/G/k . For unknown

1A job’s response time, also called sojourn time or latency,
is the amount of time between its arrival and its completion.
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job sizes, Grosof et al. [3] address only the case of DHR job
size distributions, showing that a multiserver analogue of
FB is optimal in the heavy-traffic M/G/k .2 But in general,
optimal scheduling is an open problem for unknown job sizes,
even in heavy traffic. We therefore ask: What scheduling pol-
icy minimizes mean response time in the heavy-traffic M/G/k
with unknown job sizes and general job size distribution?

This is a very difficult question. In order to answer it, we
draw upon several recent lines of work in scheduling theory.
• As part of their heavy-traffic optimality proofs, Grosof

et al. [3] use a tagged job method to bound M/G/k
response time under each of SRPT and FB relative to
M/G/1 response time under the same policy.
• Lin et al. [6] and Kamphorst and Zwart [5] characterize

the heavy-traffic scaling of M/G/1 mean response time
under SRPT and FB, respectively.
• Scully et al. [8] show that the monotonic shortest ex-

pected remaining processing time (M-SERPT) policy,
which is simpler than Gittins, has M/G/1 mean re-
sponse time within a constant factor of that of Gittins.

While these prior results do not answer the question on
their own, together they suggest a plan of attack for proving
optimality in the heavy-traffic M/G/k .

When searching for a policy to minimize mean response
time, a natural candidate is a multiserver analogue of Gittins.
As a first step, one might hope to use the tagged job method
of Grosof et al. [3] to bound M/G/k response time under
Gittins relative to M/G/1 response time. Unfortunately, the
tagged job method does not apply to multiserver Gittins:
it relies on both stochastic and worst-case properties of the
scheduling policy, and Gittins has poor worst-case properties.

One of our key ideas is to introduce a new variant of
Gittins, called monotonic Gittins (M-Gittins), that has better
worst-case properties than Gittins while maintaining similar
stochastic properties. This allows us to generalize the tagged
job method [3] to M-Gittins.

Our M/G/k analysis of M-Gittins reduces the question
of whether M-Gittins is optimal in the heavy-traffic M/G/k
to analyzing the heavy-traffic scaling of M-Gittins’s M/G/1
mean response time. However, there are no heavy-traffic scal-
ing results for the M/G/1 under policies other than SRPT [6],
FB [5], and a small number of other simple policies. To rem-
edy this, we derive heavy-traffic scaling results for M-Gittins
in the M/G/1. It turns out that analyzing M-Gittins directly
is very difficult. Fortunately, Scully et al. [8] introduced a
simpler cousin of M-Gittins, namely M-SERPT. We analyze
M-SERPT in heavy traffic as a key stepping stone in our

2Both the SRPT and FB optimality results of Grosof et al. [3]
hold under technical conditions similar to finite variance.
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Figure 2.1: Single-Server and k-Server Systems

analysis of M-Gittins.
Our paper [4] makes the following contributions:
• We introduce M-Gittins and prove that it minimizes

mean response time in the heavy-traffic M/G/k for a
large class of finite-variance job size distributions.
• We also prove that the simple and practical M-SERPT

policy is a 2-approximation for mean response time in
the heavy-traffic M/G/k under similar conditions.
• We characterize the heavy-traffic scaling of mean re-

sponse time in the M/G/1 under Gittins, M-Gittins,
and M-SERPT.

We now state our main results using the notation of Section 2.

Theorem 1.1. If X in OR(−∞,−2), MDA(Λ) ∩ QDHR, or
Bounded, then limρ→1 E[TM-Gittins-k]/E[TGittins-1] = 1, in
which case M-Gittins-k minimizes mean response time in the
heavy-traffic M/G/k.

Theorem 1.2. If X in OR(−∞,−2), MDA(Λ)∩(QDHR∪QIMRL),
or Bounded, then limρ→1 E[TM-Gittins-k]/E[TGittins-1] ≤ 2, in
which case M-SERPT-k is a 2-approximation for mean re-
sponse time in the heavy-traffic M/G/k.

Theorem 1.3. Let π-1 be one of Gittins-1, M-Gittins-1,
or M-SERPT-1. In the ρ → 1 limit, if X ∈ OR(−2,−1),
then E[Tπ-1] = Θ(− log(1− ρ)); and if X is in OR(−∞,−2),
MDA(Λ), or ENBUE, then

E[Tπ-1] = Θ

(
1

(1− ρ) · rM-SERPT(F−1
e (1− ρ))

)
,

where F−1
e is the inverse of the tail of the excess of X,

namely Fe(x) =
∫∞
x

P{X > t} dt/E[X].

2. NOTATION AND TERMINOLOGY
We consider an M/G/k queue with arrival rate λ and job

size distribution X. Each of the k servers has speed 1/k, so
regardless of the number of servers, the total service rate is 1
and the system load is ρ = λE[X]. This allows us to easily
compare the M/G/k to an M/G/1, as shown in Figure 2.1
We assume a preempt-resume model with no preemption
overhead, so a single-server M/G/1 system can simulate any
M/G/k policy by time-sharing between k jobs.

2.1 SOAP Policies and Rank Functions
All of the scheduling policies considered in this work are

in the class of SOAP policies [7], generalized to a multiserver
setting. In a single-server setting, a SOAP policy π is specified
by a rank function rπ : R+ → R mapping a job’s age, the
amount of service it has received so far, to its rank, or priority
level. Single-server SOAP policies always serve the job of
minimal rank, breaking ties first-come, first-served (FCFS).

A multiserver SOAP policy uses the same rank function as
its single-server analogue, but it serves the k jobs of minimal
rank, breaking ties FCFS. We write π-k for the k-server

version of a policy, so π-1 is the single-server version. We
write Tπ-k for the response time distribution under π-k .

We primarily consider four policies: shortest expected
remaining processing time (SERPT), monotonic SERPT
(M-SERPT), Gittins, and monotonic Gittins (M-Gittins).
Each uses the job size distribution to tune its rank function:

rSERPT(a) = E[X − a | X > a],

rM-SERPT(a) = max
b∈[0,a]

rSERPT(b),

rGittins(a) = inf
b>a

E[min{X, b} − a | X > a]

P{X ≤ b | X > a} ,

rM-Gittins(a) = max
b∈[0,a]

rGittins(b).

2.2 Job Size Distribution Classes
We consider several classes of job size distributions, briefly

described below. See our paper [4] for the full definitions.
• For any β > α > 0, the OR(−β,−α) class contains,

roughly speaking, distributions with Pareto-like tails
asymptotically between x−β and x−α. For example, all
distributions in OR(−∞,−2) have finite variance.
• The MDA(Λ) class contains, roughly speaking, distribu-

tions with lighter-than-Pareto tails, such as exponential,
normal, log-normal, Weibull, and Gamma distributions.
• The QDHR and QIMRL classes are relaxations of the well-

known decreasing hazard rate (DHR) and increasing
mean residual lifetime (IMRL) classes. QDHR contains
distributions whose hazard rate is roughly decreasing
with age, even if it is not perfectly monotonic, and
QIMRL contains distributions with roughly increasing
expected remaining size.
• The ENBUE class contains distributions whose expected

remaining size reaches a global maximum at some
age. The Bounded subclass contains distributions with
bounded support.
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