Recent Progress in

Queueing and Scheduling Theory (for a TCS Audience)

Ziv Scully

Harvard & MIT → Cornell

zivscully@cornell.edu
https://ziv.codes

Collaborators

Isaac Grosof *CMU*

Alan Scheller-Wolf *CMU*

Mor Harchol-Balter *CMU*

Michael Mitzenmacher Harvard

Contention
Queueing
Delay

Contention

healthcare

supply chains

Contention

healthcare

Queueing
Delay

supply chains

Contention

healthcare

Queueing
Delay

supply chains

Contention

call centers

healthcare

supply chains

Contention

call centers

healthcare

Queueing

Delay

transportation

supply chains

Contention

call centers

healthcare

Queueing

transportation

databases

supply chains

Contention

call centers

healthcare

Queueing

transportation

databases

networks

supply chains

Contention

call centers

healthcare

Queueing

transportation

databases

Delay

networks

operating systems

supply chains

Contention

call centers

healthcare

Queueing

transportation

databases

computer architecture

Delay

networks

operating systems

supply chains

Contention

call centers

healthcare

Queueing

transportation

supercomputing

databases

computer architecture

Delay

networks

operating systems

supply chains

Contention

call centers

healthcare

Queueing

transportation

supercomputing

databases

computer architecture

Delay

networks

operating systems

How to reduce delays?

supply chains

Contention

call centers

healthcare

Queueing

transportation

supercomputing

databases

computer architecture

Delay

networks

operating systems

How to reduce delays?

Scheduling

scheduling can reduce delay

Bad news:

limited understanding of scheduling

scheduling can reduce delay

Bad news:

limited understanding of scheduling

evaluation

scheduling can reduce delay

Bad news:

limited understanding of scheduling

design)

4

scheduling can reduce delay

Bad news:

limited understanding of scheduling

evaluation

We need:

- Worst-case modeling
- Complex algorithms

- Worst-case modeling
- Complex algorithms

- Worst-case modeling
- Complex algorithms

- Stochastic modeling
- Simple algorithms

rigorous theory of scheduling

CS Theory

- Worst-case modeling
- Complex algorithms

- Stochastic modeling
- Simple algorithms

rigorous theory of scheduling

CS Theory

- Worst-case modeling
- Complex algorithms

- Stochastic modeling
- Simple algorithms

rigorous theory of scheduling

CS Theory

- Worst-case modeling
- Complex algorithms

- Stochastic modeling
- Simple algorithms

rigorous theory of scheduling

CS Theory

- Worst-case modeling
- Complex algorithms

- Stochastic modeling
- Simple algorithms

rigorous theory of scheduling

CS Theory

- Worst-case modeling
- Complex algorithms

Queueing Theory

- Stochastic modeling
- Simple algorithms

Best to learn from both

rigorous theory of scheduling

CS Theory

- Worst-case modeling
- Complex algorithms

Queueing Theory

- Stochastic modeling
- Simple algorithms

Best to learn from both

scheduling with

multiple servers

scheduling with

multiple servers

scheduling with

noisy predictions

scheduling with

multiple servers

TCS

Queueing

scheduling with

noisy predictions

TCS

Queueing

Today's talk

scheduling with

multiple servers

TCS

Queueing

scheduling with

noisy predictions

TCS

Queueing

Powered by new tools in queueing theory

Today's talk

scheduling with

multiple servers

TCS

Queueing

scheduling with

noisy predictions

TCS

Queueing

Powered by new tools in queueing theory

online arrivals

queue T = T T = Tqueue T = T

online arrivals

queue T = T T = Tqueue T = T

online arrivals $\begin{array}{c}
\text{queue} \\
\text{server}
\end{array}$ T = response time

online arrivals

queue T = T T = Tqueue T = T

online arrivals

queue T = response time

online arrivals $\begin{array}{c}
\text{queue} \\
\text{server}
\end{array}$ T = response time

online arrivals

queue T = T T = Tqueue T = T

Question: schedule to minimize $\mathbf{E}[T]$?

online arrivals queue server = response time **SRPT**

shortest remaining processing time

Question: schedule to minimize $\mathbf{E}[T]$?

online arrivals t servers T = response time

SRPT-1 (single-server): serves job of least remaining size

Multiserver scheduling

SRPT-1 (single-server): serves job of least remaining size

SRPT-k (multiserver): serves k jobs of least remaining size

TCS [Leonardi & Raz, 2007]: not great, but best possible

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

$$\frac{\mathbf{E}[T_{\text{SRPT-}k}]}{\mathbf{E}[T_{\text{OPT-}k}]} \le O\left(\min\left\{\log\frac{\# \text{ jobs}}{k}, \log\frac{\max \text{ size}}{\min \text{ size}}\right\}\right)$$

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

$$\frac{\mathbf{E}[T_{\text{SRPT-}k}]}{\mathbf{E}[T_{\text{OPT-}k}]} \le O\left(\min\left\{l_{k}^{\# \text{ jobs}}, \log\frac{\max \text{ size}}{\min \text{ size}}\right\}\right)$$

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

$$\frac{\mathbf{E}[T_{\text{SRPT-}k}]}{\mathbf{E}[T_{\text{OPT-}k}]} \le O\left(\min\left\{1, \frac{\text{\# jobs}}{k}, \log\frac{\max \text{ size}}{\min \text{ size}}\right\}\right)$$

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

$$\frac{\mathbf{E}[T_{\text{SRPT-}k}]}{\mathbf{E}[T_{\text{OPT-}k}]} \le O\left(\min\left\{1, \frac{\text{\# jobs}}{k}, \log\frac{\max \text{ size}}{\min \text{ size}}\right\}\right)$$

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

$$\frac{\mathbf{E}[T_{\text{SRPT-}k}]}{\mathbf{E}[T_{\text{OPT-}k}]} \leq O\left(\min\left\{l_{k}^{\# \text{ jobs}}, \log \frac{\max \text{ size}}{\min \text{ size}}\right\}\right)$$

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

$$\frac{\mathbf{E}[T_{\text{SRPT-}k}]}{\mathbf{E}[T_{\text{OPT-}k}]} \leq O\left(\min\left\{l_{k}^{\# \text{ jobs}}, \log \frac{\max \text{ size}}{\min \text{ size}}\right\}\right)$$

with matching lower bound

Queueing: decades-old open problem!

[Schrage & Miller, 1966]

"tagged job"

"tagged job"

random system state

[Schrage & Miller, 1966]

Key quantity:

W(r) = r-work" = work relevant to job of rank r

[Schrage & Miller, 1966]

Key quantity:

W(r) = r-work" = work relevant to job of rank r

Key quantity:

W(r) ="r-work" = work relevant to job of rank r

server is "choke point"

server is "choke point"

rank ordering absolute

server is "choke point"

rank ordering absolute

observed *r*-work determines *T*

server is "choke point"

rank ordering absolute

observed *r*-work determines *T*

Multiserver system

no single "choke point"

server is "choke point"

rank ordering absolute

observed *r*-work determines *T*

Multiserver system

no single "choke point"

server is "choke point"

rank ordering absolute

observed *r*-work determines *T*

Multiserver system

no single "choke point"

rank ordering not absolute

observed *r*-work not enough!

How do we get number of jobs from *r*-work?

How do we analyze *r*-work?

Defining r-work

W(r) = work relevant to rank r

W(r) = work relevant to rank r

 $w_x(r) = r$ -work of single job of rem. size x

W(r) = work relevant to rank r

 $w_x(r) = r$ -work of single job of rem. size x

W(r) = work relevant to rank r

 $w_x(r) = r$ -work of single job of rem. size x

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of single job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of single job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

- W(r) = work relevant to rank r= total r-work of all jobs
- $w_{\mathbf{x}}(r) = r$ -work of single job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of $\mathbf{j}\mathbf{o}\mathbf{b}$ of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

Theorem:

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

SRPT-k

SRPT-1

Lemma:

$$\mathbf{E}[N_{\mathbf{k}}] = \mathbf{E}[N_{\mathbf{1}}] + \int_0^\infty \frac{\mathbf{E}[W_{\mathbf{k}}(r)] - \mathbf{E}[W_{\mathbf{1}}(r)]}{r^2} dr$$

Lemma:

$$\mathbf{E}[N_{\mathbf{k}}] = \mathbf{E}[N_{\mathbf{1}}] + \int_{0}^{\infty} \frac{\mathbf{E}[W_{\mathbf{k}}(r)] - \mathbf{E}[W_{\mathbf{1}}(r)]}{r^{2}} dr$$

Lemma: in worst case,

$$W_{k}(r) \leq W_{1}(r) + kr$$

Lemma:

$$\mathbf{E}[N_{\mathbf{k}}] = \mathbf{E}[N_{\mathbf{1}}] + \int_{0}^{\infty} \frac{\mathbf{E}[W_{\mathbf{k}}(r)] - \mathbf{E}[W_{\mathbf{1}}(r)]}{r^{2}} dr$$

Lemma: in worst case,

$$W_{k}(r) \leq W_{1}(r) + kr$$

TCS

$$\mathbf{E}[N_k] \le \mathbf{E}[N_1] + 2k + k \log \frac{\max \text{ size}}{\min \text{ size}}$$

Lemma:

$$\mathbf{E}[N_{\mathbf{k}}] = \mathbf{E}[N_{\mathbf{1}}] + \int_{0}^{\infty} \frac{\mathbf{E}[W_{\mathbf{k}}(r)] - \mathbf{E}[W_{\mathbf{1}}(r)]}{r^{2}} dr$$

Lemma: in worst case,

$$W_{k}(r) \leq W_{1}(r) + kr$$

TCS

$$\mathbf{E}[N_k] \le \mathbf{E}[N_1] + 2k + k \log \frac{\max \text{ size}}{\min \text{ size}}$$

Additive bounds for SRPT-k

Lemma:

$$\mathbf{E}[N_{\mathbf{k}}] = \mathbf{E}[N_{\mathbf{1}}] + \int_{0}^{\infty} \frac{\mathbf{E}[W_{\mathbf{k}}(r)] - \mathbf{E}[W_{\mathbf{1}}(r)]}{r^{2}} dr$$

Lemma: in worst case,

$$W_{\mathbf{k}}(\mathbf{r}) \leq W_{1}(\mathbf{r}) + \mathbf{kr}$$

TCS

$$\mathbf{E}[N_k] \le \mathbf{E}[N_1] + 2k + k \log \frac{\max \text{ size}}{\min \text{ size}}$$

Queueing
$$E[N_k] \le E[N_1] + 4(k-1)\log \frac{1}{1-\rho}$$
dominant term

Additive bounds for SRPT-k

Lemma:

$$\mathbf{E}[N_{\mathbf{k}}] = \mathbf{E}[N_{\mathbf{1}}] + \int_{0}^{\infty} \frac{\mathbf{E}[W_{\mathbf{k}}(r)] - \mathbf{E}[W_{\mathbf{1}}(r)]}{r^{2}} dr$$

Lemma: in worst case,

$$\mathbf{E}[N_k] \le \mathbf{E}[N_1] + 2k + k \log \frac{\max \text{ size}}{\min \text{ size}}$$

Queueing
$$E[N_k] \le E[N_1] + 4(k-1)\log \frac{1}{1-\rho}$$
dominant term

scheduling with

multiple servers

Queueing

scheduling with

multiple servers

TCS

Queueing

scheduling with

multiple servers

scheduling with

multiple servers

• SRPT-k is good

scheduling with

multiple servers

- SRPT-*k* is good
- In general: good to adapt optimal single-server policy

scheduling with

multiple servers

- SRPT-*k* is good
- In general: good to adapt optimal single-server policy

TCS: RMLF

Queueing: Gittins

scheduling with

multiple servers

- SRPT-k is good
- In general: good to adapt optimal single-server policy

TCS: RMLF

Queueing: Gittins

scheduling with

noisy predictions

Model: (β, α) -bounded noise

true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Model: (β, α) -bounded noise

true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Model: (β, α) -bounded noise z/ z/α true size $s \Rightarrow$ estimated true size $s \Rightarrow \text{estimated}$ size $z \in [\beta s, \alpha s]$

Queueing: from joint distribution (S, Z)

Goal: design a policy with "good" E[T] for

- any values of α , β
- any joint distribution (S, Z)

Definition: distortion is
$$\gamma = \frac{\alpha}{\beta}$$

Definition: distortion is
$$\gamma = \frac{\alpha}{\beta}$$

TCS [Azar, Leonardi, & Touitou, 2021 & 2022]: pretty well, but need a sophisticated policy

$$\frac{\mathbf{E}[T_{\text{ZigZag}}]}{\mathbf{E}[T_{\text{SRPT}}]} \leq O(\gamma \log \gamma)$$

with nearly-matching $\Omega(\gamma)$ lower bound

Definition: distortion is
$$\gamma = \frac{\alpha}{\beta}$$

TCS [Azar, Leonardi, & Touitou, 2021 & 2022]: pretty well, but need a sophisticated policy

$$\frac{\mathbf{E}[T_{\text{ZigZag}}]}{\mathbf{E}[T_{\text{SRPT}}]} \leq O(\gamma \log \gamma)$$

with nearly-matching $\Omega(\gamma)$ lower bound

Definition: distortion is
$$\gamma = \frac{\alpha}{\beta}$$

TCS [Azar, Leonardi, & Touitou, 2021 & 2022]: pretty well, but need a sophisticated policy

$$\frac{\mathbf{E}[T_{\text{ZigZag}}]}{\mathbf{E}[T_{\text{SRPT}}]} \leq O(\gamma \log \gamma)$$

with nearly-matching $\Omega(\gamma)$ lower bound

Definition: distortion is
$$\gamma = \frac{\alpha}{\beta}$$

TCS [Azar, Leonardi, & Touitou, 2021 & 2022]: pretty well, but need a sophisticated policy

$$\frac{\mathbf{E}[T_{\text{ZigZag}}]}{\mathbf{E}[T_{\text{SRPT}}]} \leq O(\gamma \log \gamma)$$

with nearly-matching $\Omega(\gamma)$ lower bound

Queueing: can we do better with simpler policy?

Policy design space:

rank functions

Theorem: in queueing model,

$$\frac{\mathbf{E}[T_{\text{Radical}}]}{\mathbf{E}[T_{\text{SRPT}}]} \le C_{\alpha,\beta} \cdot \boldsymbol{\gamma}$$

where

$$C_{\alpha,\beta} \le 3.5$$

 $C_{\alpha,\beta} \to 1$ as $\alpha, \beta \to 1$

Theorem: in queueing model,

$$\frac{\mathbf{E}[T_{\text{Radical}}]}{\mathbf{E}[T_{\text{SRPT}}]} \le C_{\alpha,\beta} \cdot \boldsymbol{\gamma}$$

where

$$C_{\alpha,\beta} \le 3.5$$

 $C_{\alpha,\beta} \to 1$ as $\alpha, \beta \to 1$

Schedule Ordered by Age-based Priority

Schedule Ordered by Age-based Priority

stochastic arrival process λ , (S, \mathbf{Z})

any rank function

Schedule Ordered by Age-based Priority

stochastic arrival process λ , (S, Z)

any rank function

Lemma:

$$E[W_{SRPT}(r)] \le E[W_{Scale}(r)] \le E[W_{SRPT}(\gamma r)]$$

Lemma:

$$E[W_{SRPT}(r)] \le E[W_{Scale}(r)] \le E[W_{SRPT}(\gamma r)]$$

Lemma:

$$E[W_{SRPT}(r)] \le E[W_{Scale}(r)] \le E[W_{SRPT}(\gamma r)]$$

Key steps:

• **SRPT** minimizes mean *r*-work

Lemma:
$$E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\gamma r)]$$

Key steps:

• **SRPT** minimizes mean *r*-work

Lemma:
$$E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\gamma r)]$$

- **SRPT** minimizes mean *r*-work
- Scale minimizes mean Scale-flavored r-work

$$E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\gamma r)]$$

- **SRPT** minimizes mean *r*-work
- Scale minimizes mean Scale-flavored r-work

Lemma:

E[
$$W_{\text{SRPT}}(r)$$
] \leq E[$W_{\text{Scale}}(r)$] \leq E[$W_{\text{SRPT}}(r)$]

- **SRPT** minimizes mean *r*-work
- Scale minimizes mean Scale-flavored r-work
- Under any policy, r-work \leq Scale-flavored αr -work $\leq \frac{\alpha}{\beta} r$ -work

Lemma: $E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\gamma r)]$

- **SRPT** minimizes mean *r*-work
- Scale minimizes mean Scale-flavored r-work
- Under any policy, r-work \leq Scale-flavored αr -work $\leq \frac{\alpha}{\beta} r$ -work

Lemma:

$$E[W_{SRPT}(r)] \le E[W_{Scale}(r)] \le E[W_{SRPT}(\gamma r)]$$

- $\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} dr$
- **SRPT** minimizes mean *r*-work
- Scale minimizes mean Scale-flavored r-work
- Under any policy,

r-work ≤ Scale-flavored
$$\alpha r$$
-work ≤ $\frac{\alpha}{\beta} r$ -work

Lemma:

$$E[W_{SRPT}(r)] \le E[W_{Scale}(r)] \le E[W_{SRPT}(\gamma r)]$$

$$E[N_{SRPT}] \le E[N_{Scale}] \le \gamma E[N_{SRPT}]$$

Key steps:

- $\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(r)]}{r^2} \, \mathrm{d}r$
- **SRPT** minimizes mean *r*-work
- Scale minimizes mean Scale-flavored r-work
- Under any policy,

r-work ≤ Scale-flavored αr -work ≤ $\frac{\alpha}{\beta} r$ -work

scheduling with

scheduling with

noisy predictions

• TCS: need to be careful

scheduling with

- TCS: need to be careful
- Queueing: simple rankbased policy suffices

scheduling with

multiple servers

- SRPT-*k* is good
- In general: good to adapt optimal single-server policy

scheduling with

- TCS: need to be careful
- Queueing: simple rankbased policy suffices

scheduling with

multiple servers

- SRPT-*k* is good
- In general: good to adapt optimal single-server policy

scheduling with

- TCS: need to be careful
- Queueing: simple rankbased policy suffices

scheduling with

multiple servers

- SRPT-*k* is good
- In general: good to adapt optimal single-server policy

scheduling with

- TCS: need to be careful
- Queueing: simple rankbased policy suffices

scheduling with

multiple servers

- SRPT-*k* is good
- In general: good to adapt optimal single-server policy

scheduling with

- TCS: need to be careful
- Queueing: simple rankbased policy suffices

scheduling with

multiple servers

- SRPT-*k* is good
- In general: good to adapt optimal single-server policy

scheduling with

- TCS: need to be careful
- Queueing: simple rankbased policy suffices

References

Scully, Harchol-Balter, and Scheller-Wolf (2018). "SOAP: One Clean Analysis of All Age-Based Scheduling Policies." *Proc. ACM Meas. Anal. Comput. Syst.* (SIGMETRICS 2018).

- Introduces rank functions and the general SOAP analysis
- Finalist: 2019 INFORMS APS Best Student Paper Prize

Grosof, Scully, and Harchol-Balter (2018). "SRPT for Multiserver Systems." *Perform. Eval.* (PERFORMANCE 2018).

- First queueing analysis of SRPT-k
- Uses tagged job method plus worst-case r-work decomposition
- Winner: PERFORMANCE 2018 Best Student Paper Award

Scully, Grosof, and Harchol-Balter (2020). "The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions." *Proc. ACM Meas. Anal. Comput. Syst.* (SIGMETRICS 2021).

- First queueing analysis of Gittins-k
- Introduces WINE
- Winner: 2022 INFORMS George Nicholson Student Paper Competition

Scully, Grosof, and Mitzenmacher (2022). "Uniform Bounds for Scheduling with Job Size Estimates." *13th Innovations in Theoretical Computer Science Conference* (ITCS 2022).

- First queueing competitive ratios for noisy predictions
- Uses both SOAP and WINE