Recent Progress in

Queueing and

Scheduling Theory
(for a TCS Audience)

Ziv Scully Q
Harvard & MIT — Cornell

zivscully@cornell.edu R
https://ziv.codes

mailto:zivscully@cornell.edu
https://ziv.codes

Collaborators

N

Isaac Grosof Mor Harchol-Balter
CMU CMU

Alan Scheller—Wolf Michael Mitzemacher
CMU Harvard

Contention

g

Queueling

<&

Delay

Contention

healthcare @

Queueling

<&

Delay

supply chains Contention

healthcare @

Queueing

<&

Delay

your local supermarket

supply chains Contention

healthcare @

Queueling

<&

Delay

your local supermarket

supply chains COntention call centers

healthcare @

Queueling

<&

Delay

your local supermarket

supply chains COntention call centers

healthcare @ transportation

Queueling

<&

Delay

your local supermarket

supply chains COntention call centers

healthcare @ transportation

Queueling

§ l databases

Delay

your local supermarket

supply chains COntention call centers

healthcare @ transportation

Queueling

§ l databases

D el ay networks

your local supermarket

supply chains COntention call centers

healthcare @ transportation

Queueling

§ l databases

D el ay networks

operating systems

your local supermarket

supply chains COntention call centers

healthcare @ transportation

Queueling
@ databases
computer architecture D el ay networks

operating systems

your local supermarket

supply chains COntention call centers

healthcare @ transportation

Queueing
supercomputing S l databases
computer architecture Del ay networks

operating systems

your local supermarket

supply chains COntention call centers

healthcare @ transportation

Queueing
supercomputing S l databases
computer architecture Del ay networks

operating systems

How to reduce delays?

your local supermarket

supply chains Contention call centers

healthcare @ transportation

Queueing
supercomputing s l databases
computer architecture Del ay networks

operating systems

@ How to reduce delays?
Y Scheduling

Good news:
scheduling can reduce delay

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

aévaluatiorD

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ aévaluatiorD

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ aévaluatiorD

We need:
rigorous theory of scheduling

We need:
rigorous theory of scheduling

We need:
rigorous theory of scheduling

We need:
1 rigorous theory of scheduling

A

CS Theory

We need:
1 rigorous theory of scheduling

A

CS Theory

* Worst-case modeling
* Complex algorithms

We need:
1 rigorous theory of scheduling

YWy

CS Theory Queueing Theory

* Worst-case modeling
* Complex algorithms

We need:
1 rigorous theory of scheduling

YWy

CS Theory Queueing Theory

* Worst-case modeling - Stochastic modeling
* Complex algorithms - Simple algorithms

We need:
1 rigorous theory of scheduling

YWy

CS Theory Queueing Theory
* Worst-case modeling - Stochastic modeling

* Complex algorithms - Simple algorithms

We need:
1 rigorous theory of scheduling

YWy

CS Theory Queueing Theory
&
* Worst-case modeling : Stochastlc modeling

* Complex algorithms - Simple algorithms

We need:
1 rigorous theory of scheduling

YWy

CS Theory Queueing Theory
A
* Worst-case modeling : Stochastlc modeling
* Complex algorithms - Simple algorithms

We need:
1 rigorous theory of scheduling

YWy

CS Theory Queueing Theory
A
* Worst-case modeling : Stochastlc modeling
* Complex algorithms - Simple algorithms

We need:
1 rigorous theory of scheduling

YWy

CS Theory Queueing Theory
A
* Worst-case modeling : Stochastlc modeling
* Complex algorithms - Simple algorithms

Q) Best to learn from both

We need:
1 rigorous theory of scheduling

YWy

CS Theory Queueing Theory
A
* Worst-case modeling : Stochastlc modeling
* Complex algorithms - Simple algorithms

A

Q) Best to learn from both

Today’s talk

Today’s talk

scheduling with
multiple servers

Today’s talk

scheduling with scheduling with
multiple servers noisy predictions

Today’s talk

scheduling with scheduling with
multiple servers noisy predictions

VAR VAR

TCS Queueing TCS Queueing

Today’s talk

scheduling with scheduling with
multiple servers noisy predictions
TCS Queueing TCS Queueing

Powered by new tools
in queueing theory

Today’s talk

scheduling with scheduling with
multiple servers noisy predictions
TCS Queueing TCS Queueing

Powered by new tools
in queueing theory

possible
crossover

What is scheduling?

|0

What is scheduling?

SECIVEY

|0

What is scheduling?

queue server

|0

Clllll

What is scheduling?

queue

SECIVEY

What is scheduling?

queue server

size {

Clllll

What is scheduling?

queue server

size {

Clllll

What is scheduling?

queue server

size {

Clllll

What is scheduling?

queue server

size {

Clllll

What is scheduling?

queue server

job

}remaining size

size{ - }age

What is scheduling?

online arrivals

e

job

size {

queue

}remaining size

]
)

SECIVEY

What is scheduling?

online arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

What is scheduling?

online arrivals queue server

Queueing model:

C o
-

}remaining size

size { «EH
)

What is scheduling?

online arrivals queue server

Queueing model:
« A = arrival rate (Poisson)

C o
-

remaining size

age

size { «EH
\

L_Y_JL_Y_J

What is scheduling?

online arrivals queue server

Queueing model:
« A = arrival rate (Poisson)
* S = job size distribution

C o
-

remaining size

size { «EH
\

L_Y_JL_Y_J

age

What is scheduling?

online arrivals queue server

Queueing model:
« A = arrival rate (Poisson)
* S = job size distribution
 p =AE[S] =load < 1

C o
-

remaining size

)
Lage

size { «EH
\

What is scheduling?

online arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

What is scheduling?

online arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

What is scheduling?

online arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

What is scheduling?

online arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

What is scheduling?

online arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

Cnlnl‘

size {

job

C\Lnu

What is scheduling?

queue server

’_—Cllll
{C

T = response time

}remaining size

} age

What is scheduling?

online arrivals
Gf@

job

queue server

T = response time

Clllll

.

}remaining size

} age

size {

C\Lnu

What is scheduling?

online arrivals queue server

%~ L1 e[l

T = response time

job

}remaining size

size{ - }age

What is scheduling?

online arrivals queue server

%+ L1 1e[0r,

T = response time

job

}remaining size

size{ - }age

What is scheduling?

online arrivals queue server

%+ L1 1o[0r,

T = response time

job

}remaining size

size{ - }age

What is scheduling?

online arrivals queue server

%}‘i W\,

T = response time

job

}remaining size

size{ - }age

What is scheduling?

online arrivals queue server

%}‘i U\,

T = response time

job

}remaining size

size{ - }age

What is scheduling?

online arrivals queue server

%}‘i U\,

T = response time

job

}remaining size

size{ - }age

What is scheduling?

online arrivals queue server

%}‘i U\,

T = response time

job

}remaining size

sized |] Question: schedule
_ }age

to minimize E|[T]?

What is scheduling?

online arrivals queue server

%}‘i O,

= I'€SPOIISC time

SRPT
iob shortest remammg
r“ processing time
size< «~H }remammg Size Question: schedule
L Q }age to minimize E[T]?

Multiserver scheduling

online arrivals

e

L - N

T = response time

Multiserver scheduling

online arrivals

e

)
P—— O
T = response time

Multiserver scheduling

online arrivals

e

D
e O

T = response time

Multiserver scheduling

online arrivals

@'

%
Nt O
T = response ime

SRPT-1 (single-server): serves job of least remaining size

Multiserver scheduling

online arrivals

e

D
e O

T = response time

SRPT-1 (single-server): serves job of least remaining size

SRPT-k (multiserver): serves k jobs of least remaining size

How good is SRPT-k?

How good is SRPT-k?

TCS [Leonardi & Raz, 2007]: not great, but best possible

How good is SRPT-k?

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

E[Tsrprr]
E[Toprs]

jobs max size })

< O(min{log . log e

with matching lower bound

How good is SRPT-k?

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

E| Tspprr] <0 (min { 1 # jobs oo TEX size })
g
E[Toprr] — ' Kk’ ° min size

with matching lower bound

How good is SRPT-k?

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

E| Tspprr] - O(mm { # jobs log max size
El Toprrl ' k ® Tnin size

with matching lower bound

How good is SRPT-k?

TCS [Leonardi & Raz, 2007]: not great, but best possible

Theorem: competitive ratio of SRPT-k vs. offline OPT-k is

E| Tspprr] - O(mm { # jobs log max size
El Toprrl ' k ® Tnin size

with matching lower bound

How good is SRPT-k?

TCS [Leonardi & Raz, 2007]: not great, but best possible
Theorem: competitive ratio of SRPT-k vs. offline OPT-k is
E| Tspprr] mm { # jobs log max size

El Toprrl ' k ® Tnin size

with matching lower bound

How good is SRPT-k?

TCS [Leonardi & Raz, 2007]: not great, but best possible
Theorem: competitive ratio of SRPT-k vs. offline OPT-k is
E| Tspprr] mm { # jobs log max size

El Toprrl ' k min size

with matching lower bound

Queueing: decades-old open problem!

Queueing analysis of SRPT-1

[Schrage & Miller, 1966]

—

]

10

Queueing analysis of SRPT-1

[Schrage & Miller, 1966]

—

]

oy
G,

“tagged job”

10

Queueing analysis of SRPT-1

[Schrage & Miller, 1966]

Clllll

“tagged job”

—

U

random system state

10

Queueing analysis of SRPT-1

[Schrage & Miller, 1966]

C o]
1

“tagged job” = random system state

remaining size,
lower is better

10

Queueing analysis of SRPT-1

[Schrage & Miller, 1966]

-

L

_

“tagged job” U = rank

remaining size,
lower is better

random system state

10

Queueing analysis of SRPT-1

[Schrage & Miller, 1966]

r<

C

“tagged job” = random system state
remaining size,
lower is better

Key quantity:
W(r) = “r-work” = work relevant to job of r

10

Queueing analysis of SRPT-1

[Schrage & Miller, 1966]

: —
rs
X
“tagged job” = random system state
remaining size,
lower is better /C,O\
Key quantity:

W(r) = “r-work” = work relevant to job of r

10

analysis of SRPT-1

job” =
remaining size,
lower is better

Key quantity:
W(r) = “r-work” = work relevant to job of

10

Single-server system

lInAe

Multiserver system

So00

11

Single-server system

server is “choke point”

Multiserver system

i \ ®

11

Single-server system

0

Multiserver system

So00

server is “choke point”

<4

rank ordering absolute

11

Single-server system

0

Multiserver system

o000

server is “choke point”

<4

rank ordering absolute

&L

observed r-work determines T

11

Single-server system
server is “choke point”

<4

) | O rank ordering absolute

\ observed r-work determines T

Multiserver system
no single “choke point”

o000

11

Single-server system

BIIAS,

Multiserver system

o000

server is “choke point”

<4

rank ordering absolute

&L

observed r-work determines T

no single “choke point”

rank ordering not absolute

11

Single-server system
server is “choke point”

<4

B ordering absolute
56-/“ =

\J\ observed r-work determines T

Multiserver system
no single “choke point”

—

%@\

ordering not absolute

&

observed r-work not enough!

SO0%

11

tagged job

approach @; [%
bd A==

r-work W(r) response time T

12

(single-server only (mostly))

r-work W(r)

@ Q@

. - (n
w.
response time T

12

(single-server only (mostly))
bd @; e [Eﬁ

oYV

r-work W(r) response time T

Little’s law

U

number of jobs N

Cllll

12

(single-server only (mostly))

S\

r-work W(r)

v

number of jobs N

&8

L

U

U

(

3y

response time T

Little’s law

12

(single-server only (mostly))

r-work W(r)

U

number of jobs N

Cllll

Little’s law

any number
of servers

12

(single-server only (mostly))

r-work W(r) response time T

Little’s law

any number
of servers

JU L
number of jobs N

(single-server only (mostly))
b@ @ e [E%

r-work W(r) response time T

Little’s law

any number
of servers

U

number of jobs N

Cllll

12

WINE

Work Integral Number Equality

I- work W(r)

v

number of jobs N

563

\J

13

WINE

Work Integral Number Equality

I- work W(r)

CEP What is r-work?
(.

v

number of jobs N

563

\J

13

WINE

Work Integral Number Equality

ol

-work W(r) number of jobs N

How do we get number

Y@ 2
? What is r-work: = of jobs from r-work?

WINE

Work Integral Number Equality

ol

-work W(r) number of jobs N

How do we get number

is 7- ?
? What s r-work: = of jobs from r-work?

@ How do we analyze r-work?
o

Defining r-work

W(r) = work relevant to r

14

Defining r-work
gfz)r SRPD

W(r) = work relevant to r

14

Defining r-work
&z)r SRPD

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

14

Defining r-work
&)r SRPD

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

14

Defining r-work
&)r SRPD

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

14

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

&)r SRPD

_{O if r <

14

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

&)r SRPD

_{O if r <

14

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

T

&)r SRPD

_{O if r <

14

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

T

&)r SRPD

:{0

if r <
if r >

14

Defining r-work
gfz)r SRPD

W(r) = work relevant to r

0
wx(r) = r-work of single job of rem. size x = {

if r <
if r>

14

Defining r-work

W(r) = work relevant to r
= total r-work of all jobs

w.(r) = r-work of single job of rem. size

&z)r SRPD

:{0

if r <
if r >

14

From r-work to number of jobs N

From r-work to number of jobs N

(‘ Goal: integral = N |

W(r)

15

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A

0 ifr<

w.(r) = r-work of job of rem. size x = < ,
if r >

15

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)

w.(r) = r-work of job of rem. size

A

= 5

>1/r

0 ifr<

if r >

15

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A
1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

15

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
. ,
> 1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

15

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
>1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r>

15

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
iL‘
1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r >

15

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)

1
]
! 1/r

w.(r) = r-work of job of rem. size

1/r

1/

= <

15

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

15

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

15

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wi (1‘)
| X
1
1
1/r i 1/r
NEW Theorem:

©.@

C

W(r)
5 I”
r uses rank = rem. size

.

WINE N=f
0

15

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

; X
1
! 1/r 1/r

1/x

15

SRPT-k SRPT-1

000

SRPT-k

\

k

servers,
speed 1/k

bor il

SRPT-1

16

SRPT-k

k

servers,
speed 1/k

bor il

16

pr—

SRPT-k

\

k servers,
speed 1/k

E[Tx]

bor il

SRPT-1

|

0

? (13 E[T1]

16

pr—

SRPT-k

|

k servers,
speed 1/k

bor il

E[Tx]

AN
N

E[Wi(r)] :]‘ > E[W1i(r)]

SRPT-1

|

0

? (13 E[T1]

L
NS

16

k servers,
SRPT-k speed 1/k
Nt

16

k servers,
SRPT-k speed 1/k
s

SRPT-1

\

Lemma: r-work
decomposition

> ‘ E[Wi(r)] '

16

SRPT-k

servers,
k

k
speed 1/

> ‘ E[Wi(r)] '
Lemma: r-work
decomposition

16

SRPT-k

servers, @eats OPT;Q
k SRPT-1

k
speed 1/

> ‘ E[Wi(r)] '
Lemma: r-work
decomposition

16

Additive bounds for SRPT-k

Lemma:

E[N,]=E[N;]+ f

0

= E[Wi ()] — E[W; ()] i
r2

17

Additive bounds for SRPT-k

Lemma:

E[N,]=E[N;]+ f

0

= E[Wi ()] — E[W; ()] i
r2

Lemma: in worst case,
Wi.(r) < W,(r) + kr

17

Additive bounds for SRPT-k

Lemma:

E[N,]=E[N;]+ f

0

= E[Wi ()] — E[W; ()] i
r2

Lemma: in worst case,
Wi.(r) < W,(r) + kr

A

TCS

E[N,] < E[N,] + 2k + klog >

min size

17

Additive bounds for SRPT-k

Lemma:

E[N,]=E[N;]+ f

0

= E[Wi ()] — E[W; ()] i
r2

Lemma: in worst case,
Wi.(r) < W,(r) + kr

A Y

TCS NEW. yeueing

' 1
e E[N.| <E[N;]+4(k—1)log

E[N.] < E[N;]+ 2k + klog ——
min size 1—p

17

Additive bounds for SRPT-k

Lemma:

E[N,]=E[N;]+ f

0

= E[Wi ()] — E[W; ()] i
r2

Lemma: in worst case,
Wi.(r) < W,(r) + kr

A Y

TCS NEW. yeueing

' 1
e E[N.| <E[N;]+4(k—1)log

@ominant terré

E[N.] < E[N;]+ 2k + klog

min size

17

Additive bounds for SRPT-k

Lemma:

E[N,]=E[N;]+ f

0

= E[Wi ()] — E[W; ()] i
r2

Lemma: in worst case,

Wk(r) < W1(") + kr uses stronger)

stochastic lemma
; .
TCS NEW. Oueueing

' 1
AR ot E[N.| <E[N;]+4(k—1)log

@ominant terré

E[N.] < E[N;]+ 2k + klog

min size

17

Today’s talk

scheduling with
multiple servers

VAR

TCS Queueing

18

Today’s talk

scheduling with
multiple servers

VAR

TCS Queueing

18

Today’s talk

scheduling with
multiple servers

VAR

TCS S Queueing

18

Today’s talk

scheduling with
multiple servers

VAR

TCS ¥ Queueing

* SRPT-k is good

18

Today’s talk

scheduling with
multiple servers

VAR

TCS ¥ Queueing

» SRPT-k is good
» In general: good to adapt
optimal single-server policy

18

Today’s talk

scheduling with
multiple servers

VAR

TCS ¥ Queueing

» SRPT-k is good
» In general: good to adapt
optimal single-server policy

TCS: RMLF
Queueing: Gittins

18

Today’s talk

scheduling with
multiple servers

VAR

TCS ¥ Queueing

» SRPT-k is good
» In general: good to adapt
optimal single-server policy

TCS: RMLF
Queueing: Gittins

scheduling with
noisy predictions

18

Noisily predicted job sizes

Noisily predicted job sizes

— Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

19

Noisily predicted job sizes

@elox@ gbovej
— Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

19

D5+

L

Noisily predicted job sizes

2/ @elo@ gbovej

— Model: (3, a)-bounded noise
— Z

z/a true sizes = estimated size z € [s, as]

19

D5+

L

Noisily predicted job sizes
@elox@ gbovej

z/p .
— Model: (3, a)-bounded noise
— 2
_ z/a true sizes = estimated size z € [f3s, as]

N/

Queueing: from joint distribution (S, Z)

19

Noisily predicted job sizes
@elo@ gbovej

(o 2/P .
— Model: (3, a)-bounded noise
— Z
] z/a true sizes = estimated size z € [s, as]

N/

Queueing: from joint distribution (S, Z)

Goal: design a policy with “good” E[T] for
. any values of a, f3

* any joint distribution (S, Z)

19

How well can we handle noise?

Definition: distortion is y =

s
p

20

How well can we handle noise?

S : . a
Definition: distortion is y = E

TCS [Azar, Leonardi, & Touitou, 2021 & 2022]:
pretty well, but need a sophisticated policy

E[T7i0740]
e < 0(rlogy)
E[Tsgrpr]

with nearly-matching Q(y) lower bound

20

How well can we handle noise?

S : . a
Definition: distortion is y = E

TCS [Azar, Leonardi, & Touitou, 2021 & 2022]:
pretty well, but need a sophisticated policy

E[T7i0740]
e < 0(rlogy)
E[Tsgrpr]

with nearly-matching Q(y) lower bound

20

How well can we handle noise?

.« s : ot a
Definition: distortion is y = —

p

TCS [Azar, Leonardi, & Touitou, 2021 & 2022]:
pretty well, but need a sophisticated policy

E[TZigZag]

< O(rlogy)
E[Tsrpr]

with nearly-matching Q(y) lower bound

20

How well can we handle noise?

.« s : ot a
Definition: distortion is y = —

p

TCS [Azar, Leonardi, & Touitou, 2021 & 2022]:
pretty well, but need a sophisticated policy

E[TZigZag]

< O(rlogy)
E[Tsrpr]

with nearly-matching Q(y) lower bound

Queueing: can we do better with simpler policy?

20

Scheduling with functions

age a

Scheduling with

functions

=)

e adY

21

Scheduling with

@riorit@

functions

lower is
better

=)

e adY

21

Scheduling with

@riorit@
5,2 (a)

functions

lower is
better

=)

e adY

21

Scheduling with rank functions

(priority? SRPT

rank,(a)=s—a

size s

lower is
better

size s

=)

e adY

21

Scheduling with rank functions

@riori@ Naive

rank,,(a)=2—a

estimate g

lower is
better

=)

e adY

21

[

Policy design space:
functions

2

What'’s the right

s,z(a)

estimate g

function?

age a

23

What’s the right rank function?

Naive

rank,,(a)=2—a

estimate g

age a

23

What’s the right rank function?

Naive

rank,,(a)=2—a

estimate g

negative rank =
nonpreemptible

age a

23

What’s the right rank function?

Not these...

) Naive
rank; ,(a)
\ {@
estimate g

age a

23

What’s the right rank function?

Not these...

Naive

Checkmark

rank; ,(a) = |z —a]

7

A
AN

estimate g

age a

23

What’s the right rank function?

Not these...

Naive

Checkmark

rank; ,(a) = |z —a]

7

A
AN

estimate g

age a

What if § < 5?

23

What’s the right rank function?

Not these...

Naive

Checkmark

rank; ,(a) = |z —a]

7

A
AN

estimate g

: dge€ d
S1Z€ S g

What if § < 5?

23

What’s the right rank function?

Not these...

Naive

Checkmark

rank; ,(a) = |z —a]

7

A
AN

estimate g —

: dge€ d
S1Z€ S g

What if § < 5?

23

What’s the right rank function?

Not these...

Naive

———=

Checkmark

7

A
AN

new worst rank =
preemption likely

estimate g

age a

size S

What if § < 5?

23

What’s the right rank function?

Not these...

Naive

rank; ,(a)

A
AN

~ Checkmark

estimate g —

age a

23

What’s the right rank function?

Not these...

Naive

Radical

rank; ,(a) = min{|z —al, 2}

A
AN

~ Checkmark

estimate g

age a

23

What’s the right rank function?

Not these...

Naive

Radical

rank; ,(a) = min{|z —al, 2}

A
AN

~ Checkmark

estimate g

age a

23

What’s the right rank function?

Not these...

Naive

Radical

rank; ,(a) = min{|z —al, 2}

A
AN

~ Checkmark

estimate g

age a

23

rank Radical rank SRPT

1 1
S
z\/_
p >age S >age
Theorem: in queueing model,
E| TR.qa;
[Radlcal] < Ca,/B v
E[Tsppr]
where
Coap < 3.9

Cop—1 asa,fp—1

24

ra41\1k Radical ra%1k SRPT

S
z 6
-

>age >age

Theorem: in queueing model,
E[TRadical]

Cap < 3.5
Cop—1 asa,fp—1

24

rank Radical rank SRPT

1 0\
S
z 6
> - S
pe age S age
raf{lk Scale
p4
>age

rank Radical rank SRPT

o~ 2\
PO

rank Scale

Z\
>age

S 24

raglk Radical rank SRPT
| \
\/_ =
>age >age

Q SOAP rank Scale

25\\\\\\\\\\\\s
>age

S 24

rank Radical rank SRPT

o~ 2\
3

Q SOAP rank Scale

Z\
>age

S 24

WINE

-

_JSOAP

Schedule Ordered by Age-based Priority

25

(_JSOAP

Schedule Ordered by Age-based Priority

stochastic arrival
process A, (S, Z)

e

any rank function

[

25

(_JSOAP

Schedule Ordered by Age-based Priority

stochastic arrival
process A, (S, Z)

@ response time
% - q distribution T
any rank function ‘@ {{ < ’“%\[2

IS

25

rank Radical rank SRPT

o~ 2\
3

Q SOAP rank Scale

Z\
>age

S 26

WINE

-

ra41\1k Radical rank SRPT
S

z 6
\/ D
>age >age
rank functions Y
close enough ’

Q SOAP rank Scale WINE

2?\\\\\\\\\\\\L
>age

S 26

</

raglk Radical rank SRPT
S

=
>age >age
rank functions Y
close enough ’

Q SOAP rank Scale WINE

z\
>age

S 26

</

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsea1e(r)] < E[Wegpr(y7)]

27

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsea1e(r)] < E[Wegpr(y7)]

Key steps:

27

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsea1e(r)] < E[Wegpr(y7)]

Key steps:

« SRPT minimizes mean r-work

27

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsea1e(r)] < E[Wegpr(y7)]

Key steps:

« SRPT minimizes mean r-work

27

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsca1e(r)] < E[Wegpr(r7)]

Key steps:
 SRPT minimizes mean r-work

 Scale minimizes mean Scale-flavored r-work

27

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsca1e(r)] < E[Wegpr(r7)]

Re.w

filters using Scale’s
instead of SRPT’s

Key steps:
 SRPT minimizes mean r-work

 Scale minimizes mean Scale-flavored r-work

27

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsca1e(r)] < E[Wegpr(r7)]

Re.w

filters using Scale’s
instead of SRPT’s

Key steps:
- SRPT minimizes mean r-work
 Scale minimizes mean Scale-flavored r-work

- Under any policy,
r-work < Scale-flavored ar-work < %r-work

27

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsca1e(r)] < E[Wegpr(r7)]

Re.w

filters using Scale’s
instead of SRPT’s

Key steps:
- SRPT minimizes mean r-work
 Scale minimizes mean Scale-flavored r-work

- Under any policy,
r-work < Scale-flavored ar-work < %r-work

27

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsca1e(r)] < E[Wegpr(r7)]

~ E[W(r)]
Key steps: @] = JO o a

« SRPT minimizes mean r-work
 Scale minimizes mean Scale-flavored r-work e

- Under any policy,
r-work < Scale-flavored ar-work < %r-work

27

Comparing r-work

Lemma:
E[Wsppr(r)] < E[Wsca1e(r)] < E[Wegpr(r7)]

<&

E[Nsrpr] < E[Nscate] < YE[Nggor]

~ E[W(r)]
Key steps: @] = JO o a

 SRPT minimizes mean r-work
O

 Scale minimizes mean Scale-flavored r-work

- Under any policy,
r-work < Scale-flavored ar-work < %r-work

27

raglk Radical rank SRPT
S

=
>age >age
rank functions Y
close enough ’

Q SOAP rank Scale WINE

z\
>age

S 28

</

ra41\1k Radical l‘af{lk SRPT
S

z 6
> - >
2 age S age
rank functions Y Yr-work amounts
close enough g !{ close enough

A _JSOAP S QWINE

z\
>age

S 28

</

Today’s talk

scheduling with
noisy predictions

VAR

TCS & A Queueing

29

Today’s talk

scheduling with
noisy predictions

VAR

TCS & A Queueing

« TCS: need to be careful

29

Today’s talk

scheduling with
noisy predictions

VAR

TCS & A Queueing

* TCS: need to be careful
* Queueing: simple rank-
based policy suffices

29

Today’s talk

scheduling with
multiple servers

VAR

TCS ¥ Queueing

» SRPT-k is good
» In general: good to adapt
optimal single-server policy

scheduling with
noisy predictions

VAR

TCS & A Queueing

« TCS: need to be careful
* Queueing: simple rank-

based policy suffices

29

Today’s talk

scheduling with scheduling with
multiple servers noisy predictions
TCS ¢ Queueing TCS A A Queueing
» SRPT-k is good * TCS: need to be careful
» In general: good to adapt * Queueing: simple rank-
optimal single-server policy based policy suffices

New tools:

29

Today’s talk

scheduling with scheduling with
multiple servers noisy predictions
TCS ¢ Queueing TCS A A Queueing
» SRPT-k is good * TCS: need to be careful
» In general: good to adapt * Queueing: simple rank-
optimal single-server policy based policy suffices

New tools: WINE and SOAP

29

Today’s talk

scheduling with scheduling with
multiple servers noisy predictions
TCS ¢ Queueing TCS A A Queueing
» SRPT-k is good * TCS: need to be careful
» In general: good to adapt * Queueing: simple rank-
optimal single-server policy based policy suffices

potential
TCS use?
New tools: WINE and SOAP

29

Today’s talk

scheduling with scheduling with
multiple servers noisy predictions
TCS ¢ Queueing TCS A A Queueing
» SRPT-k is good * TCS: need to be careful
» In general: good to adapt * Queueing: simple rank-
optimal single-server policy based policy suffices

potential detailed system
TCS use? modeling?

New tools: WINE and SOAP

29

O
00
O/\

L

References

Scully, Harchol-Balter, and Scheller-Wolf (2018). “SOAP: One Clean Analysis of All Age-Based
Scheduling Policies.” Proc. ACM Meas. Anal. Comput. Syst. (SIGMETRICS 2018).

* Introduces functions and the general SOAP analysis
 Finalist: 2019 INFORMS APS Best Student Paper Prize

Grosof, Scully, and Harchol-Balter (2018). “SRPT for Multiserver Systems.” Perform. Eval.
(PERFORMANCE 2018).

» First queueing analysis of SRPT-k

 Uses tagged job method plus worst-case r-work decomposition

- Winner: PERFORMANCE 2018 Best Student Paper Award

Scully, Grosof, and Harchol-Balter (2020). “The Gittins Policy is Nearly Optimal in the M/G/k
under Extremely General Conditions.” Proc. ACM Meas. Anal. Comput. Syst. (SIGMETRICS 2021).
* First queueing analysis of -k

* Introduces WINE

* Winner: 2022 INFORMS George Nicholson Student Paper Competition

Scully, Grosof, and Mitzenmacher (2022). “Uniform Bounds for Scheduling with Job Size
Estimates.” 13th Innovations in Theoretical Computer Science Conference (ITCS 2022).

» First queueing competitive ratios for noisy predictions

 Uses both SOAP and WINE

30

