How to Schedule Near-Optimally under

Real-World Constraints

Ziv Scully
Carnegie Mellon University

Collaborators

Mor Harchol-Balter (CMU)

Isaac Grosof (CMU)

Alan Scheller-Wolf (CMU)

Adam Wierman (Caltech)
Onno Boxma (TU/e)
Jan-Pieter Dorsman (UvA)
Lucas van Kreveld (UvA)

-Queueing system: jobs waiting for service

Queueing system: jobs waiting for service

File servers

- *Jobs*: file requests
- Service: load and send contents

Queueing system: jobs waiting for service

File servers

- *Jobs*: file requests
- Service: load and send contents

Databases

- *Jobs*: SQL queries
- Service: execute and send result

Queueing system: jobs waiting for service

File servers

- *Jobs:* file requests
- Service: load and send contents

Databases

- *Jobs:* SQL queries
- Service: execute and send result

Network switches

- *Jobs*: packet flows
- Service: transmit all packets

Queueing system: jobs waiting for service

File servers

- *Jobs:* file requests
- Service: load and send contents

Databases

- *Jobs:* SQL queries
- Service: execute and send result

Network switches

- *Jobs*: packet flows
- Service: transmit all packets

Operating systems

- Jobs: threads
- Service: run on a CPU core

Queueing system: jobs waiting for service

File servers

- *Jobs:* file requests
- Service: load and send contents

Databases

- *Jobs:* SQL queries
- Service: execute and send result

Network switches

- Jobs: packet flows
- Service: transmit all packets

Operating systems

- Jobs: threads
- Service: run on a CPU core

Queueing theory: studies the mathematical essence of queueing systems

Queueing system: jobs waiting for service

File servers

- *Jobs:* file requests
- Service: load and send contents

Databases

- *Jobs:* SQL queries
- Service: execute and send result

Network switches

- *Jobs*: packet flows
- Service: transmit all packets

Operating systems

- Jobs: threads
- Service: run on a CPU core

Queueing theory: studies the mathematical essence of queueing systems

Goal: schedule to minimize *mean* $response\ time\ \mathbf{E}[T]$ and other metrics

SRPT: always serve job of least remaining size

How to Schedule?

SRPT and Gittins minimize $\mathbf{E}[T]$

known job sizes

SRPT and Gittins minimize $\mathbf{E}[T]$

known job sizes

sizes unknown, partially known, known (subsumes SRPT), ...

SRPT and Gittins minimize $\mathbf{E}[T]$

known job sizes

sizes unknown, partially known, known (subsumes SRPT), ...

SRPT and Gittins minimize $\mathbf{E}[T]$

Why not use Gittins?

Gittins Assumption	Computer System Reality

Gittins Assumption Single server

Computer System Reality

Gittins Assumption Computer System Reality Single server Multiple servers

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Computer System Reality

Single server

Buigue beiver

Complicated implementation not a problem

Multiple servers

Simple implementation preferred

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Simple implementation preferred

Preemption *unrestricted* with *no cost*

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Simple implementation preferred

Preemption *unrestricted* with *no cost*

Preemption restricted and/or costly

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Multiple servers

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Simple implementation preferred

Preemption *unrestricted* with *no cost*

Preemption restricted and/or costly

Arbitrarily many priority levels

Limited number of priority levels

Goal is minimizing mean response time

Computer System Reality

Single server

Multiple servers

Complicated implementation not a problem

Simple implementation preferred

Preemption *unrestricted* with *no cost*

Preemption restricted and/or costly

Arbitrarily many priority levels

Limited number of priority levels

Goal is minimizing mean response time

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Goal is minimizing mean response time

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Goal is minimizing mean response time

Easy

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

Computer System Reality

Single server

Complicated implementation not a problem

Preemption *unrestricted* with *no cost*

Arbitrarily many priority levels

Goal is minimizing mean response time

Easy

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

Want to optimize other response time metrics

Hard!

new queueing-theoretic tools for solving practical scheduling problems

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

> provides a new, deeper understanding of Gittins

Goals

Multiple servers

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

> provides a new, deeper understanding of Gittins

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

> provides a new, deeper understanding of Gittins

Overview

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Overview

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

SOAP policies:

broad class of scheduling policies

SOAP policies:

broad class of scheduling policies

SOAP analysis:

analyze response time of any SOAP policy

SOAP policy: any scheduling policy where a job's rank is a function of its age

Foreground-Background (FB)

Foreground-Background (FB)

Given any rank function...

Given any rank function...

... **SOAP** analyzes its response time

Given any rank function.. (exact formula!)
... SOAP analyzes its response time

Given any rank function.. (exact formula!)
... SOAP analyzes its response time

[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2018]

Overview

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Overview

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

SRPT with three priority levels:

- Small: [0, 2), rank = 1
- Medium: [2, 7), rank = 2
- Large: $[7, \infty)$, rank = 3

How many levels do we need?

- How many levels do we need?
- How do we choose size cutoffs?

- How many levels do we need?
- How do we choose size cutoffs?
- Can we do better than LPL-SRPT?

How Many Levels?

How Many Levels?

BOUNDED PARETO, $\rho = 0.8$

Weibull, $\rho = 0.8$

How Many Levels?

Weibull, $\rho = 0.8$

How Many Levels?

High variance: 5-ish levels suffice

How Many Levels?

High variance: 5-ish levels suffice

Low variance: 2-ish levels suffice

Bounded Pareto, $\rho = 0.8$

BOUNDED PARETO, $\rho = 0.8$

BOUNDED PARETO, $\rho = 0.8$

Load-balancing heuristic is pretty good

BOUNDED PARETO, $\rho = 0.8$

Bounded Pareto, $\rho = 0.8$

LPL-PSJF beats LPL-SRPT!

- How many levels do we need?
- How do we choose size cutoffs?
- Can we do better than LPL-SRPT?

- How many levels do we need?
- How do we choose size cutoffs?
- Can we do better than LPL-SRPT?

High var: 5-ish

Low var: 2-ish

• How many levels do we need?

Balancing load is a good heuristic

- How do we choose size cutoffs?
- Can we do better than LPL-SRPT?

High var: 5-ish) (

Low var: 2-ish

Balancing load is

a good heuristic

How many levels do we need?

How do we choose size cutoffs?

Can we do better than LPL-SRPT?

Yes! LPL-PSJF often better

Overview

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

Preemption restricted and/or costly

Limited number of priority levels

Overview

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

Preemption restricted and/or costly

Overview

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

Preemption *restricted* and/or *costly*

Given job size distribution S, load ρ , and overhead γ , what is the optimal packet size δ ?

• large δ : less overhead

Given job size distribution S, load ρ , and overhead γ , what is the optimal packet size δ ?

- large δ : less overhead
- small δ : better scheduling

Given job size distribution S, load ρ , and overhead γ , what is the optimal packet size δ ?

- large δ : less overhead
- small δ : better scheduling

Given job size distribution S, load ρ , and overhead γ , what is the optimal packet size δ ?

- large δ : less overhead
- small δ : better scheduling

Ensuring Stability

BOUNDED PARETO, $\gamma = 0.1 \, \mathrm{E}[S]$, $\rho = 0.8$

Weibull, $\gamma = 0.1 \, \mathrm{E}[S]$, $\rho = 0.8$

Ensuring Stability

BOUNDED PARETO, $\gamma = 0.1 \, \mathrm{E}[S]$, $\rho = 0.8$

Weibull, $\gamma = 0.1 \, \text{E}[S], \rho = 0.8$

Ensuring Stability

BOUNDED PARETO, $\gamma = 0.1 \, \mathrm{E}[S]$, $\rho = 0.8$

Weibull, $\gamma = 0.1 \, \text{E}[S]$, $\rho = 0.8$

$$\begin{array}{c|c} \mathbf{E}[T]/\mathbf{E}[T_{\text{FB}}] \\ \hline \mathbf{3} \\ \mathbf{2} \\ \hline \mathbf{1}_{0} \\ \hline \mathbf{5} \\ \hline \mathbf{10} \\ \hline \mathbf{15} \\ \hline \mathbf{6}/\mathbf{E}[S] \\ \hline \mathbf{minimum safe} \\ \mathbf{packet size} \\ \end{array}$$

$$\delta_{\text{safe}} = \frac{1}{1 - \rho} \gamma \rho$$

Packet Size Heuristic

Packet Size Heuristic

BOUNDED PARETO, $\gamma = 0.1 \, \text{E}[S]$

$$\rho = 0.5$$
 $\rho = 0.8$ $\rho = 0.95$

$$\delta_{\text{heuristic}} = \frac{1}{1 - \rho} \sqrt{\frac{\gamma \mathbf{E}[S]}{\rho}}$$

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

Preemption *restricted* and/or *costly*

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

Preemption *restricted* and/or *costly*

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

$$r_{\text{Gittins}}(a) = \inf_{b>a} \frac{\mathbf{E}[\min\{S-a,b\} \mid S>a]}{\mathbf{P}[S \leq b \mid S>a]}$$

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

$$r_{\text{Gittins}}(a) = \inf_{b>a} \frac{\mathbf{E}[\min\{S-a,b\} \mid S>a]}{\mathbf{P}[S \leq b \mid S>a]}$$

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

Job size distribution:

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

age

lower is

better

$$r_{\text{SERPT}}(a) = \mathbf{E}[S - a \mid S > a]$$

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

Can SERPT Replace Gittins?

Can SERPT Replace Gittins?

- Gittins is hard to compute
- **SERPT** has no E[T] guarantee

Simplifying Gittins: Practice

Worst-case performance on 100 distributions:

Simplifying Gittins: Practice

Worst-case performance on 100 distributions:

Simplifying Gittins: Practice

Worst-case performance on 100 distributions:

... just use **SERPT**

Simplifying Gittins: Theory

I wish for a policy with...

- simple definition like **SERPT**
- provable guarantee on **E**[T] like **Gittins**

Simplifying Gittins: Theory

$$r_{\mathbf{M-SERPT}}(a) = \max_{0 \le b \le a} r_{\mathbf{SERPT}}(b)$$

Theorem:

$$\frac{\mathbf{E}[T_{\mathbf{M-SERPT}}]}{\mathbf{E}[T_{\mathbf{Gittins}}]} \le 5$$

[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2020]

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

Preemption restricted and/or costly

New Tools

Goals

SOAP

analyzes a huge variety of scheduling heuristics

Simple implementation preferred

Preemption *restricted* and/or *costly*

Limited number of priority levels

• Scheduling jobs that occupy multiple servers (e.g. data centers and other clusters)

- Scheduling jobs that occupy multiple servers (e.g. data centers and other clusters)
- Scheduling with *noisy size estimates* (e.g. transmitting a file of known size over a noisy network)

- Scheduling jobs that occupy multiple servers (e.g. data centers and other clusters)
- Scheduling with *noisy size estimates* (e.g. transmitting a file of known size over a noisy network)
- Scheduling jobs that must be *served in batches* (e.g. GPUs and other pipelined systems)

- Scheduling jobs that occupy multiple servers (e.g. data centers and other clusters)
- Scheduling with *noisy size estimates* (e.g. transmitting a file of known size over a noisy network)
- Scheduling jobs that must be *served in batches* (e.g. GPUs and other pipelined systems)
- Scheduling when complete/incomplete is not binary (e.g. training machine-learning models)

- Scheduling jobs that occupy multiple servers (e.g. data centers and other clusters)
- Scheduling with *noisy size estimates* (e.g. transmitting a file of known size over a noisy network)
- Scheduling jobs that must be *served in batches* (e.g. GPUs and other pipelined systems)
- Scheduling when complete/incomplete is not binary (e.g. training machine-learning models)
- Your problem here!

References

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf.

SOAP: One Clean Analysis of All Age-Based Scheduling Policies.

POMACS, 2018. Presented at SIGMETRICS 2018.

Ziv Scully and Mor Harchol-Balter.

SOAP Bubbles: Robust Scheduling under Adversarial Noise.

Allerton Conference, 2018.

Isaac Grosof, Ziv Scully, and Mor Harchol-Balter.

SRPT for Multiserver Systems.

PEVA, 2018. Presented at PERFORMANCE 2018.

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf.

Simple Near-Optimal Scheduling for the M/G/1.

POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Lucas van Kreveld, Onno J. Boxma, Jan-Pieter Dorsman, and Adam Wierman.

Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes.

POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.

Optimal Multiserver Scheduling with Unknown Job Sizes in Heavy Traffic.

PEVA, 2020. Presented at PERFORMANCE 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.

The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions.

POMACS, 2020. Presented at SIGMETRICS 2021.

Isaac Grosof, Kunhe Yang, Ziv Scully, and Mor Harchol-Balter.

Nudge: Stochastically Improving upon FCFS.

POMACS, 2021. Presented at SIGMETRICS 2021.

New Tools

SOAP

analyzes a huge variety of scheduling heuristics

r-Work

provides a new, deeper understanding of Gittins

