How to Schedule Near-Optimally

under

Real-World Constraints

Ziv Scully or e \W
Carnegie Mellon University

Collaborators

O
£

=
AL

Alan Scheller-Wolf (CMU)

Adam Wierman (Caltech)
Onno Boxma (TU/e)
Jan-Pieter Dorsman (UvVA)
Lucas van Kreveld (UvA)

G

[saac Grosof (CMU)

Queues in Computer Systems

Queues in Computer Systems

kQueueing system: jobs waiting for service

Queues in Computer Systems

kQueueing system: jobs waiting for service

* File servers

« Jobs: file requests
Service: load and send contents

Queues in Computer Systems

kQueueing system: jobs waiting for service

* File servers

Jobs: file requests
Service: load and send contents

 Databases

Jobs: SQL queries
Service: execute and send result

Queues in Computer Systems

kQueueing system: jobs waiting for service

* File servers

Jobs: file requests
Service: load and send contents

 Databases

Jobs: SQL queries
Service: execute and send result

 Network switches

Jobs: packet flows
Service: transmit all packets

Queues in Computer Systems

kQueueing system: jobs waiting for service

* File servers

Jobs: file requests
Service: load and send contents

 Databases

Jobs: SQL queries
Service: execute and send result

 Network switches

Jobs: packet flows
Service: transmit all packets

* Operating systems
Jobs: threads
Service: run on a CPU core

Queues in Computer Systems

kQueueing system: jobs waiting for service

File servers

Jobs: file requests
Service: load and send contents

Databases

Jobs: SQL queries
Service: execute and send result

Network switches

Jobs: packet flows
Service: transmit all packets

Operating systems
Jobs: threads
Service: run on a CPU core

\

Queueing theory: studies
the mathematical essence of
queuelng systems

Queues in Computer Systems

kQueueing system: jobs waiting for service

File servers

Jobs: file requests
Service: load and send contents

Databases

Jobs: SQL queries
Service: execute and send result

Network switches

Jobs: packet flows
Service: transmit all packets

Operating systems
Jobs: threads
Service: run on a CPU core

\

Queueing theory: studies
the mathematical essence of
queuelng systems

/N

jobs service

M/G/1 Queueing Model

M/G/1 Queueing Model

qucuce server

M/G/1 Queueing Model

qucuce server

job

M/G/1 Queueing Model

qucuce server

job
size

M/G/1 Queueing Model

qucuce server

job
size

M/G/1 Queueing Model

qucuce server

job
size

M/G/1 Queueing Model

qucuce server

job
size

M/G/1 Queueing Model

qucuce server

g

job

}remaining size
size
}age

M/G/1 Queueing Model

%1

random
arrivals

}remaining size
size
}age

qucuce server

job

M/G/1 Queueing Model

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random G

arrivals

}remaining size
size
}age

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random G

arrivals

}remaining size
size
}age

Scheduling policy:
g picks which job to serve

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random
arrivals

}remaining size
size
}age

Scheduling policy:
g picks which job to serve

L
]

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random
arrivals

}remaining size
size
}age

Scheduling policy:
g picks which job to serve

L
]

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

random
arrivals

}remaining size
size
}age

Scheduling policy:
g picks which job to serve

L
]

job

M/G/1 Queueing Model

S = size distribution queue server

A = arrival rate |

.
]

random
arrivals

}remaining size
size ’
}age

job

Scheduling policy:
g picks which job to serve

Response Time

Response Time

EENG;

Response Time

=S

= T = response time

Response Time

Response Time

= T = response time

Goal: schedule to minimize mean
response time E[T] and other metrics

How to Schedule?

7l

random ' i
arrivals U

} remaining size
size
} age

How to Schedule?

T

random '
arrivals

L SRPT: always serve job of
remaining size i ,
| @ least remaining size
S1Z.€

o

How to Schedule?

I

%1

random
arrivals

shortest remaining
processing time
()
L SRPT: always serve job of
remaining size N .
@ least remaining size
size

How to Schedule?

I

%1

random
arrivals

shortest remaining
processing time
()
L SRPT: always serve job of
remaining size N .
@ least remaining size
size

How to Schedule?

I

shortest remaining
processing time
()
L SRPT: always serve job of
remaining size N .
@ least remaining size
size

%1

random
arrivals

How to Schedule?

random
arrivals

shortest remaining
processing time

[}

L SRPT: always serve job of

remaining size N .
@ least remaining size
size
}age ﬁ SRPT minimizes E[T]

Unknown Job Sizes

Unknown Job Sizes

~doLJoLloodoL L.
Qi

size unknown 8@

C La_l {_l_l_LJ-L-

Unknown Job Sizes

~doLJoLloodoL L.
Qi

size unknown 8@

C L.l {_l_l_LJ-L-

} age known Qf

Unknown Job Sizes

%1

distribution
S known

4

~doLJoLloodoL L.
Qi

size unknown 8@

C L.l {_l_l_LJ-L-

} age known Qf

Unknown Job Sizes

%1

distribution
S known

4

~doLJoLloodoL L.
Qi

o
[
] |

size unknown S@
@} age known J

Unknown Job Sizes

Sy
-
‘~‘.\-_-L-J-.-L-_l-_-.l-.-\.-.:
L.
LI L.L.

Tl
o

distribution
S known

Qf | % Gittins: assign each job a
= @ based on age and S

size unknowngg E : (lower is better)
} age known J

Unknown Job Sizes

Y Y T
L_L

' 0
—
' !

distribution ! ‘

S known
Qf | % Gittins: assign each job a
= @ based on age and S

size unknown 83 - (lower is better)
} age known J

Unknown Job Sizes

Y Y T
L_L

' 0
1
! |

| 15
distribution ‘ , ! ‘
S known
Qf | % Gittins: assign each job a
= @ based on age and S
size unknowngg - (lower is better)

age known o o
} Qf R Gittins minimizes E[T]

SRPT and Gittins
minimize E| T}

SRPT and Gittins
minimize E| T}

sizes unknown,
partially known, known
(subsumes SRPT), ...

SRPT and Gittins
minimize E| T}

sizes unknown,
partially known, known

(subsumes SRPT), ...

SRPT and Gittins
minimize E| T}

Why not use Gittins?

Gittins Assumption Computer System Reality

N SR

Gittins Assumption Computer System Reality

—

Single server

Gittins Assumption Computer System Reality

Single server Multiple servers

Gittins Assumption Computer System Reality

Single server Multiple servers

Complicated implementation
not a problem

Gittins Assumption Computer System Reality

Single server Multiple servers

Complicated implementation Simple implementation
not a problem preferred

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Computer System Reality

Multiple servers

Simple implementation
preferred

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Easy

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

Gittins Assumption

Single server

Complicated implementation
not a problem

Preemption unrestricted
with no cost

Arbitrarily many
priority levels

Goal is minimizing
mean response time

Easy

Computer System Reality

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

Hard!

I work on inventing

new queueing-theoretic tools
for solving

practical scheduling problems

10

Overview

Goals

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

Overview

New Tools

Goals

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

o

Overview

New Tools

SOAP

analyzes a huge variety
of scheduling heuristics

Goals

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

o

Overview

New Tools

SOAP

analyzes a huge variety
of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Goals

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

o

Overview

New Tools Goals

S O AP Multiple servers

Simple implementation

analyzes a huge variety preferred

of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

Overview

New Tools Goals

SOAP

° analyzes a huge variety
of scheduling heuristics

r-Work

provides a new, deeper
understanding of Gittins

Multiple servers

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

Want to optimize other
response time metrics

11

Overview

New Tools Goals

SOAP

° analyzes a huge variety
of scheduling heuristics

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

11

,,

Overview

PERFORMANCE 2018,
SIGMETRICS 2019,

New Tools SIGMETRICS 2021

SOAP

analyzes a huge variety
of scheduling heuristics

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

SIGMETRICS 2020,
SIGMETRICS 2021

11

Overview

New Tools Goals

SOAP

° analyzes a huge variety
of scheduling heuristics

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

11

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

11

«» SOAP
Schedule Ordered by Age-based Priority

o SOAP
Schedule Ordered by Age-based Priority

SOAP policies:

broad class of scheduling policies

12

o SOAP
Schedule Ordered by Age-based Priority

SOAP policies:

broad class of scheduling policies

SOAP analysis:

analyze response time of any SOAP policy

12

rank

N

SOAP Policies

SOAP policy: any scheduling policy where
_ ajob’s rank is a function of its age

13

rank

4

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better

13

rank

4

age
priority, lower is better

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

service so far

13

rank

4

age
priority, lower is better

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

service so far

Foreground-Background (FB)

rank
T

>dge

13

SOAP Policies
SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better

Foreground-Background (FB)

rank
T

lower is
better

>dge

13

SOAP Policies
SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better

Foreground-Background (FB)

l‘a%l k serves job of least age

lower is
better

>dge

rank

4

age
priority, lower is better

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

service so far

13

rank

SOAP Policies

SOAP policy: any scheduling policy where
_ ajob’s rank is a function of its age

ag
priority, lower is better and other “static” info

13

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better and other “static” info

Preemptive Priority

rank

rank
N

normal

urgent

lower is
better

> age

SOAP Policies

SOAP policy: any scheduling policy where
a job’s rank is a function of its age

age
priority, lower is better and other “static” info

rank

Preemptive Priority
rqpk
normal
break
ties FCFS
Urgent [
lower is

> age
better

SOAP Policies

SOAP policy: any scheduling policy where
_ ajob’s rank is a function of its age

and other “static” info

rank

ag

priority, lower is better

Preemptive Priority SRPT
rank rank
| large

normal
ties FCFS /medium

Urgent [

. small&

lower is > age

> age

better

13

SOAP Analysis

Given any rank function...

S

14

SOAP Analysis

Given any rank function...

... SOAP analyzes its response time

\

0

=

i)

14

SOAP Analysis

Given any rank function.. @);act formul@

... SOAP analyzes its response time

\

0

=

i)

14

SOAP Analysis

Given any rank function.. @);act formul@

... SOAP analyzes its response time

HEG;

[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2018]
14

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

15

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Limited number
of priority levels

15

Limited Priority Levels

lower is
better

age

lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

age

16

lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

age

16

lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

2 remaining

age

16

lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

7 remaining

2 remaining

age

16

Limited Priority Levels

rank SRPT with three priority levels:
* Small: [0, 2), rank =1

* Medium: [2, 7), rank = 2

- Large: [7, o), rank = 3

\/

O—f)

7 remaining

lower is
better

\V/

O o
2 remaining

age

16

Limited Priority Levels

rank SRPT with three priority levels:
* Small: [0, 2), rank =1

* Medium: [2, 7), rank = 2

- Large: [7, o), rank = 3

lower is

better 7 remaining

\V/

O o
2 remaining

age

16

LPL-SRPT Questions

LPL-SRPT Questions

> age

- How many levels do we need?

17

LPL-SRPT Questions

> age

- How many levels do we need?

 How do we choose size cutoffs?

17

LPL-SRPT Questions

> age

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

17

How Many Levels?

- =
— =
L :
> =
<,
—]
>
-
S
>
O
LT -

18

- =
S
7
Q.
ye— 3
QD =
=
=]
V =
(S
)
M)
0 s,
. D)
-} A@\
[l 9
Q
= &
%
2y 75, 5
O s
=
) 5,
T,

QS
o

E[T)/E[Tgror]
6f
S
4
3
2
1

18

How Many Levels?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tg\RPT] E[T]/E[Tg%PT]
6l _S S

High variance: 5-ish levels suffice

18

How Many Levels?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[T%RPT] E[H/E[T§KPT]
6 :_ o’ [

High variance: 5-ish levels suffice
Low variance: 2-ish levels suffice

18

How to Choose Cutoffs?

How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

19

How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

balance load arriving
to each size bucket

19

How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

balance load arriving
to each size bucket

numerical optimization

19

How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tsrpr] E[T]/ EgSRPT]

6'b' (o,f\") [™

S &
S
% % P B R B I RPN % G e
L &L &L g L &L L g &L g L g
$ ¢ ¢ ¢ ¢ ¢ N
v e Ka © © N v g5 ™ & © N

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

balance load arriving
to each size bucket

numerical optimization

19

How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tsrpr] E[T]/ EgSRPT]

6'b' (o,f\") [™

&
S
3 5 8
N’ N 0 N
o © Y » ~
~ N N NI S & ~ > 5’0 NAIRS N’.@ R
B me o o 0 ls me m-
o o) o) = S B B o o) o) o) o) - o
oy oy o oy oy oy oy oy o oy oy oy
S A g A A g A A A A A g
¢ ¢ ¢ ¢ ¢ ¥ ¢ ¢ ¢ ¢ ¢ ¥
v o " A © I\ v o " A © I\

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

balance load arriving
to each size bucket

numerical optimization

Load-balancing heuristic is pretty good

19

Can We Improve LPL-SRPT?

Can We Improve LPL-SRPT?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8
I \%I I \C?I I \%I I \%I I \C?I I \?I I \%I I \C/ol I \%I I \%I I \C?I I \?I
& & & & & & & & & & & &
& N 2 N N & & N2 2 N N &
Vv 3o w & © \ v 3o w & © A

B LPL-SRPT, heuristic cutoffs [LPL-PSJF, heuristic cutoffs
] LPL-SRPT, optimal cutoffs [LPL-PSJF, optimal cutoffs

20

Can We Improve LPL-SRPT?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8
I \%I I \C/ol I \%I I \%I I \C?I I \%I I \%I I \C/ol I \%I I \%I I \C?I I \%I
& & & & & & & & & & & &
& N 2 N N & & N 2 N N &
Vv 3o w & © \ v 3o w & © A

B LPL-SRPT, heuristic cutoffs [LPL-PSJF, heuristic cutoffs
] LPL-SRPT, optimal cutoffs [LPL-PSJF, optimal cutoffs

LPL-PSJF: uses original size
instead of remaining size

20

Can We Improve LPL-SRPT?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tsrpr] E[T]/ EOETSRPT]

[™

6_' 09

DN

I LPL-SRPT, heuristic cutoffs [LPL-PSJF, heuristic cutoffs
] LPL-SRPT, optimal cutoffs [LPL-PSJF, optimal cutoffs

LPL-PSJF: uses original size
instead of remaining size

20

Can We Improve LPL-SRPT?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tsrpr] E[T]/ EOCETSRPT]

[™

6_' 09

DN

I LPL-SRPT, heuristic cutoffs [LPL-PSJF, heuristic cutoffs
] LPL-SRPT, optimal cutoffs [LPL-PSJF, optimal cutoffs

LPL-PSJF: uses original size
instead of remaining size

LPL-PSJF beats LPL-SRPT!

20

LPL-SRPT Questions

> age

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

21

LPL-SRPT Questions

age

G—Iigh var: 5—i54Q gi)w var: 2—ile
- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

21

LPL-SRPT Questions

age

Hi :5-ish) (L P 2-1
Clgh var: > IQ gi)w rr IS}D Balancing load is
+ How many levels do we need?\, 2 800d heuristic

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

21

LPL-SRPT Questions

age

G—Iigh var: 5—is@ gow var: 2—ile

Balancing load is
+ How many levels do we need?", 2 800d heuristic

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

Yes! LPL-PSJF
often better

21

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Limited number
of priority levels

22

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

4

Limited number
of priority levels

22

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Preemption restricted
and/or costly

22

Scheduling Packet Flows

Job is sequence of packets

]

23

Scheduling Packet Flows

Job is sequence of packets

23

Scheduling Packet Flows

Job is sequence of packets

Scheduling Packet Flows

Job is sequence of packets

T
/1N
) 00 om

packet size §

Packets as a Rank Function

rank

lower is
better

age

24

Packets as a Rank Function

rank
Can only preempt only at packet boundaries

lower is
better

age

24

Packets as a Function

Can only preempt only at packet boundaries

lower is
better

I ————————————————————— 2 €

0 o) 20 30

24

Packets as a Rank Function

rank

Can only preempt only at packet boundaries
@

:

a) \ \¢

age

24

Scheduling Packet Flows

Job is sequence of packets

T
/1N
) 00 om

packet size §

Scheduling Packet Flows

Job is sequence of packets

packet size §

Scheduling Packet Flows

Job is sequence of packets

overhead y / \l/ \)
e

LV__J

packet size §

25

Best Packet Size?

Given job size distribution S, load p, and overhead v,
what is the optimal packet size 6?

* large 6: less overhead

26

Best Packet Size?

Given job size distribution S, load p, and overhead v,
what is the optimal packet size 6?

* large 6: less overhead
- small 6: better scheduling

26

Best Packet Size?

Given job size distribution S, load p, and overhead v,
what is the optimal packet size 6?

* large 6: less overhead
- small 6: better scheduling

E[T]
A

26

Best Packet Size?

Given job size distribution S, load p, and overhead v,
what is the optimal packet size 6?

* large 6: less overhead
- small 6: better scheduling

E[T]
A

]

26

Ensuring Stability

BOUNDED PARETO, ¥ = 0.1 E[S], p = 0.8 WEIBULL, ¥ = 0.1 E[S], p = 0.8
E[T]/E[Trg] E[T]/E[Trs]

St Sf

4t 41

3| 3t

2t 2

11— G/E[S] 1 GUE[S]
15 15

Ensuring Stability

BOUNDED PARETO, ¥ = 0.1 E[S], p = 0.8 WEIBULL, ¥ = 0.1 E[S], p = 0.8
E[T]/E[Trg] E[T]/E[Trs]

Sf Sf

41 41

3t 3t

2 2t

11— S/E[S] e EEEE——— S/E[S]
0 5 10 15 0 15

minimum safe
packet size

27

Ensuring Stability

BOUNDED PARETO, ¥ = 0.1 E[S], p = 0.8 WEIBULL, ¥ = 0.1 E[S], p = 0.8
E[T]/E[Trg] E[T]/E[Trs]

Sf Sf

4t 4t

31 31

2 2

11— S/E[S] e EEEE——— S/E[S]

0 5 10 15 0 15

minimum safe
packet size

27

Packet Size Heuristic

BOUNDED PARETO, ¥ = 0.1 E[S] WEIBULL, ¥ = 0.1 E[S]
E[T]/E[Trg] E[T]/E[Trs]
5F :] 5t I
_ I _ |
[I [I 1
B Il 4 4'_ |
y! ; : '|
I i |
3 3r |\
! ! \
[[\
2T 27
1 ‘ 0/E[S] 1 ‘ ‘ ‘
0.01 0.10 100 101 2 0.01 0.10 100 101
p=05 _____ p=0.8 ,0=095

'~ 0/E[S]
102

28

Packet Size Heuristic

BOUNDED PARETO, ¥ = 0.1 E[S] WEIBULL, ¥ = 0.1 E[S]

E[T]/E[Trg] E[T]/E[Trs]
5t : St |
I I |
i L |
i - |
4r 4r 1
i L |
I i ||
3r 3r \
[[\
I [\
2T 27
1 ‘ ‘ ‘ O/E[S] 1 ‘ ‘ ‘ - O/E[S]
0.01 0.10 109 10! 2 0.01 0.10 109 10! 102
0=05 ====- 0=0.8 =rreueenns 0 =0.95

1 vE[S]
-p\ P

5heuristic — 1

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Preemption restricted
and/or costly

29

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

4

Preemption restricted
and/or costly

29

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Simple implementation
preferred

29

lower is
better

. Optimal but Complex

age

30

. Optimal but Complex

Job size distribution:

1 W.D. %

— 1

lower is 5= 6 W.p. 3
better 14 W.D. %

age

. Optimal but Complex

) (@) = inf E[min{S—a, b} |S > a]
 b>a P[S<b|S>a]

Job size distribution:

1 W.D. %

— 1

lower is 5= 6 W.p. 3
better 14 W.D. %

age

30

lower is
better

. Optimal but Complex

) (@) = inf E[min{S—a, b} |S > a]
 b>a P[S<b|S>a]

Job size distribution:

(1 W.P. %
S=<{6 wp. %
1

K14 W.p. §

age

30

Gittins: Optimal but Complex

rank

9
8
lower is
better
3

IGittins(@) = 111;-2

(.

E[min{S—a, b} |

S>al

P[S<b|S>

al

Job size distribution:

S =

r1 W.P. %
6 wp. %

1
&14 W.p. §

age

30

SERPT: Simple Heuristic

lower is
better

Job size distribution:

5=+

r1 W.P. %
6 wp. %

1
\14 W.p. §

age

31

SERPT: Simple Heuristic

shortest expected remaining
processing time

Job size distribution:

r1 W.P. %

S=46 wp. %

lower is 14 wp. =
.D.

better \ >

age

31

SERPT: Simple Heuristic

shortest expected remaining
processing time rSERPT(a) — E[S —da ‘ S > Cl]

Job size distribution:

r1 W.P. %

S=4{6 wp. %

lower is 14 wp. =
.D.

better \ 3

age

31

SERPT: Simple Heuristic

shortest expected remaining
processing time rSERPT(a) — E[S —da ‘ S > Cl]

A N ®© O

lower is
better

Job size distribution:

=

(1 W.P. %
6 wp. %

1
&14 W.p. §

age

31

Can SERPT Replace Gittins?

E[T] Job size distribution:
60 1 W.p. %
50/ S=4{6 wp.}

' 1
30}

| SERPT
207

| - = = Gittins

Can SERPT Replace Gittins?

E[T] Job size distribution:
60 1 W.D. %
50¢ S = { 6 wp. 3

| 1
30}

| SERPT
20

| - = = Gittins

* Gittins is hard to compute
- SERPT has no E[T] guarantee

Simplifying . Practice
Worst-case performance on 100 distributions:

P[S = s]
0.04

0.03 (\

0.02 i

NAVAN
0.00— — S

33

Simplifying Gittins: Practice

Worst-case performance on 100 distributions:

WORST-CASE S1ZE-OBLIVIOUS, p = 0.95

E[T]/E[Tgittins]
P[S — S] 6.542

0.04 [6F
0.03}A S5t

| 4t
aozi :

: 3F
0.01F N

\/\ o : 1.072
0.00 — ! L ————— S 1

' SERPT |

Simplifying Gittins: Practice

Worst-case performance on 100 distributions:

WORST-CASE S1ZE-OBLIVIOUS, p = 0.95

E[T]/E[Tgittins]
P[S = s] ;
0.04 6F
0.03 A S5t
: 4
0.021 :
: 3F
0.01} m ol
0.00 S 1 | SERPT |

... Just use SERPT

Simplifying : Theory

N

A

[wish for a policy with...

 simple definition like SERPT
 provable guarantee on E[T] like

34

Simplifying Gittins: Theory

‘ng\/[_SERPT

I wish for a policy with..

 simple definition like SERPT
‘ « provable guarantee on E[T] like Gittins

34

Introducing M-SERPT

Introducing M-SERPT

rvi-serpr(@) = max rgprpr(b)
0<b<a

rank

age

35

Introducing M-SERPT
oo

rvi-serpr(@) = max rgprpr(b)
0<b<a

rank

age

35

Introducing M-SERPT
oo

rvi-serpr(@) = max rgprpr(b)
0<b<a

rank

(SERPT

age

35

Introducing M-SERPT
oo

rvi-serpr(@) = max rgprpr(b)
0<b<a

fp M-SERPT

rank

age

35

M-SERPT Performance

Job size distribution:

E[T] 1 W.D. %
60;_ S = { 6 wp. 3
507 14 W.p.%
40t

30} SERPT
20 = = = Gittins

M-SERPT Performance

Job size distribution:

E[T] 1 W.D. %
60;_ S = { 6 wp. 3
50} |14 w.p. 3
40t

30} SERPT
20 = = = Gittins

Theorem:

E[Tviserpr | <t
E[TGittins] B

M-SERPT Performance

Job size distribution:

E[T] 1 W.D. %
60;_ S={6 wp. 3
50} |14 w.p. 3
40t

30} SERPT
20 = = = Gittins

smaller at low load
Theorem: first constant ratio

E[Tviserpr | <t
E[TGittins] B

M-SERPT Performance

Job size distribution:

E[T] 1 W.D. %
60;_ S = { 6 wp. 3
50} |14 W.p.%
40t

30} SERPT
207 - = = Gittins

smaller at low load

Theorem:

first constant ratio

E[Tviserpr | <t
E[TGittins] B

[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2020]

36

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Simple implementation
preferred

37

Overview

SOAP

analyzes a huge variety
of scheduling heuristics

4

Simple implementation
preferred

37

Overview

New Tools Goals

03 : Simple implementation
° analyzes a huge variety preferred

of scheduling heuristics Qf

Preemption restricted
and/or costly

Qf Limited number
of priority levels

37

Future Directions

38

Future Directions

 Scheduling jobs that occupy multiple servers
(e.g. data centers and other clusters)

38

Future Directions

 Scheduling jobs that occupy multiple servers
(e.g. data centers and other clusters)

 Scheduling with noisy size estimates
(e.g. transmitting a file of known size over a noisy network)

38

Future Directions

 Scheduling jobs that occupy multiple servers
(e.g. data centers and other clusters)

 Scheduling with noisy size estimates
(e.g. transmitting a file of known size over a noisy network)

* Scheduling jobs that must be served in batches
(e.g. GPUs and other pipelined systems)

38

Future Directions

Scheduling jobs that occupy multiple servers
(e.g. data centers and other clusters)

Scheduling with noisy size estimates
(e.g. transmitting a file of known size over a noisy network)

Scheduling jobs that must be served in batches
(e.g. GPUs and other pipelined systems)

Scheduling when complete/incomplete is not binary
(e.g. training machine-learning models)

38

Future Directions

Scheduling jobs that occupy multiple servers
(e.g. data centers and other clusters)

Scheduling with noisy size estimates
(e.g. transmitting a file of known size over a noisy network)

Scheduling jobs that must be served in batches
(e.g. GPUs and other pipelined systems)

Scheduling when complete/incomplete is not binary
(e.g. training machine-learning models)

Your problem here!

38

References

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf.
SOAP: One Clean Analysis of All Age-Based Scheduling Policies.
POMACS, 2018. Presented at SIGMETRICS 2018.

Ziv Scully and Mor Harchol-Balter.
SOAP Bubbles: Robust Scheduling under Adversarial Noise.
Allerton Conference, 2018.

Isaac Grosof, Ziv Scully, and Mor Harchol-Balter.
SRPT for Multiserver Systems.
PEVA, 2018. Presented at PERFORMANCE 2018.

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf.
Simple Near-Optimal Scheduling for the M/G/1.
POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Lucas van Kreveld, Onno J. Boxma, Jan-Pieter Dorsman, and Adam Wierman.

Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes.

POMACS, 2020. Presented at SIGMETRICS 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.
Optimal Multiserver Scheduling with Unknown Job Sizes in Heavy Traffic.
PEVA, 2020. Presented at PERFORMANCE 2020.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter.

The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions.

POMACS, 2020. Presented at SIGMETRICS 2021.

Isaac Grosof, Kunhe Yang, Ziv Scully, and Mor Harchol-Balter.
Nudge: Stochastically Improving upon FCFS.
POMACS, 2021. Presented at SIGMETRICS 2021.

39

Overview

New Tools Goals

SOAP

° analyzes a huge variety
of scheduling heuristics

Simple implementation
preferred

Preemption restricted
and/or costly

Limited number
of priority levels

40

