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Why not use Gittins?
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14



Overview

SOAP

analyzes a huge variety
of scheduling heuristics

15



Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Limited number
of priority levels

15



Limited Priority Levels

lower is
better

age



lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

age

16



lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

age

16



lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

2 remaining

age

16



lower is
better

Limited Priority Levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

7 remaining

2 remaining

age

16



Limited Priority Levels

rank SRPT with three priority levels:
* Small: [0, 2), rank =1

* Medium: [2, 7), rank = 2

- Large: [7, o), rank = 3

\/

O—f)

7 remaining

lower is
better

\V/

O o
2 remaining

age

16



Limited Priority Levels

rank SRPT with three priority levels:
* Small: [0, 2), rank =1

* Medium: [2, 7), rank = 2

- Large: [7, o), rank = 3

lower is

better 7 remaining

\V/

O o
2 remaining

age

16



LPL-SRPT Questions




LPL-SRPT Questions

> age

- How many levels do we need?

17



LPL-SRPT Questions

> age

- How many levels do we need?

 How do we choose size cutoffs?

17



LPL-SRPT Questions

> age

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

17



How Many Levels?



- =
— =
L :
> =
<,
—]
>
-
S
>
O
LT -

18



- =
S
7
Q.
ye— 3
QD =
=
=]
V =
(S
)
M )
0 s,
. D)
-} A@\
[l 9
Q
= &
%
2y 75, 5
O s
=
) 5,
T,

QS
o

E[T)/E[ Tgror]
6f
S
4
3
2
1

18



How Many Levels?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tg\RPT] E[T]/E[Tg%PT]
6l _S S

High variance: 5-ish levels suffice

18



How Many Levels?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[T%RPT] E[H/E[T§KPT]
6 :_ o’ [

High variance: 5-ish levels suffice
Low variance: 2-ish levels suffice

18



How to Choose Cutoffs?



How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

19



How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

balance load arriving
to each size bucket

19



How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

balance load arriving
to each size bucket

numerical optimization

19



How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tsrpr] E[T]/ EgSRPT]

6'b' (o,f\") [ ™

S &
S
% % P B R B I RPN % G e
L &L &L g L &L L g &L g L g
$ ¢ ¢ ¢ ¢ ¢ N
v e Ka © © N v g5 ™ & © N

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

balance load arriving
to each size bucket

numerical optimization

19



How to Choose Cutoffs?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tsrpr] E[T]/ EgSRPT]

6'b' (o,f\") [ ™

&
S
3 5 8
N’ N 0 N
o © Y » ~
~ N N NI S & ~ > 5’0 NAIRS N’.@ R
B me o o 0 ls me m-
o o) o) = S B B o o) o) o) o) - o
oy oy o oy oy oy oy oy o oy oy oy
S A g A A g A A A A A g
¢ ¢ ¢ ¢ ¢ ¥ ¢ ¢ ¢ ¢ ¢ ¥
v o " A © I\ v o " A © I\

I LPL-SRPT, heuristic cutoffs [] LPL-SRPT, optimal cutoffs

balance load arriving
to each size bucket

numerical optimization

Load-balancing heuristic is pretty good

19



Can We Improve LPL-SRPT?



Can We Improve LPL-SRPT?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8
I \%I I \C?I I \%I I \%I I \C?I I \?I I \%I I \C/ol I \%I I \%I I \C?I I \?I
& & & & & & & & & & & &
& N 2 N N & & N2 2 N N &
Vv 3o w & © \ v 3o w & © A

B LPL-SRPT, heuristic cutoffs [ LPL-PSJF, heuristic cutoffs
] LPL-SRPT, optimal cutoffs [ LPL-PSJF, optimal cutoffs

20



Can We Improve LPL-SRPT?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8
I \%I I \C/ol I \%I I \%I I \C?I I \%I I \%I I \C/ol I \%I I \%I I \C?I I \%I
& & & & & & & & & & & &
& N 2 N N & & N 2 N N &
Vv 3o w & © \ v 3o w & © A

B LPL-SRPT, heuristic cutoffs [ LPL-PSJF, heuristic cutoffs
] LPL-SRPT, optimal cutoffs [ LPL-PSJF, optimal cutoffs

LPL-PSJF: uses original size
instead of remaining size

20



Can We Improve LPL-SRPT?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tsrpr] E[T]/ EOETSRPT]

[™

6_' 09

DN

I LPL-SRPT, heuristic cutoffs [ LPL-PSJF, heuristic cutoffs
] LPL-SRPT, optimal cutoffs [ LPL-PSJF, optimal cutoffs

LPL-PSJF: uses original size
instead of remaining size

20



Can We Improve LPL-SRPT?

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[Tsrpr] E[T]/ EOCETSRPT]

[™

6_' 09

DN

I LPL-SRPT, heuristic cutoffs [ LPL-PSJF, heuristic cutoffs
] LPL-SRPT, optimal cutoffs [ LPL-PSJF, optimal cutoffs

LPL-PSJF: uses original size
instead of remaining size

LPL-PSJF beats LPL-SRPT!

20



LPL-SRPT Questions

> age

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

21



LPL-SRPT Questions

age

G—Iigh var: 5—i54Q gi)w var: 2—ile
- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

21



LPL-SRPT Questions

age

Hi :5-ish ) (L P 2-1
Clgh var: > IQ gi)w rr IS}D Balancing load is
+ How many levels do we need?\, 2 800d heuristic

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

21



LPL-SRPT Questions

age

G—Iigh var: 5—is@ gow var: 2—ile

Balancing load is
+ How many levels do we need?", 2 800d heuristic

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

Yes! LPL-PSJF
often better

21



Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Limited number
of priority levels

22



Overview

SOAP

analyzes a huge variety
of scheduling heuristics

4

Limited number
of priority levels

22



Overview

SOAP

analyzes a huge variety
of scheduling heuristics

Preemption restricted
and/or costly

22



Scheduling Packet Flows

Job is sequence of packets

]

23



Scheduling Packet Flows

Job is sequence of packets

23



Scheduling Packet Flows

Job is sequence of packets




Scheduling Packet Flows

Job is sequence of packets

T
/1N
) 00 om

packet size §




Packets as a Rank Function

rank

lower is
better

age

24



Packets as a Rank Function

rank
Can only preempt only at packet boundaries

lower is
better

age

24



Packets as a Function

Can only preempt only at packet boundaries

lower is
better

I ————————————————————— 2 €

0 o) 20 30

24



Packets as a Rank Function

rank

Can only preempt only at packet boundaries
@

:

a ) \ \¢

age

24



Scheduling Packet Flows

Job is sequence of packets

T
/1N
) 00 om

packet size §




Scheduling Packet Flows

Job is sequence of packets

packet size §



Scheduling Packet Flows

Job is sequence of packets

overhead y / \l/ \)
e

LV__J

packet size §

25



Best Packet Size?

Given job size distribution S, load p, and overhead v,
what is the optimal packet size 6?

* large 6: less overhead

26



Best Packet Size?

Given job size distribution S, load p, and overhead v,
what is the optimal packet size 6?

* large 6: less overhead
- small 6: better scheduling

26



Best Packet Size?

Given job size distribution S, load p, and overhead v,
what is the optimal packet size 6?

* large 6: less overhead
- small 6: better scheduling

E[T]
A

26



Best Packet Size?

Given job size distribution S, load p, and overhead v,
what is the optimal packet size 6?

* large 6: less overhead
- small 6: better scheduling

E[T]
A

]

26



Ensuring Stability

BOUNDED PARETO, ¥ = 0.1 E[S], p = 0.8 WEIBULL, ¥ = 0.1 E[S], p = 0.8
E[T]/E[Trg] E[T]/E[Trs]

St Sf

4t 41

3| 3t

2t 2

11— G/E[S] 1 GUE[S]
15 15



Ensuring Stability

BOUNDED PARETO, ¥ = 0.1 E[S], p = 0.8 WEIBULL, ¥ = 0.1 E[S], p = 0.8
E[T]/E[Trg] E[T]/E[Trs]

Sf Sf

41 41

3t 3t

2 2t

11— S/E[S] e EEEE——— S/E[S]
0 5 10 15 0 15

minimum safe
packet size

27



Ensuring Stability

BOUNDED PARETO, ¥ = 0.1 E[S], p = 0.8 WEIBULL, ¥ = 0.1 E[S], p = 0.8
E[T]/E[Trg] E[T]/E[Trs]

Sf Sf

4t 4t

31 31

2 2

11— S/E[S] e EEEE——— S/E[S]

0 5 10 15 0 15

minimum safe
packet size

27



Packet Size Heuristic

BOUNDED PARETO, ¥ = 0.1 E[S] WEIBULL, ¥ = 0.1 E[S]
E[T]/E[Trg] E[T]/E[Trs]
5F : ] 5t I
_ I _ |
[ I [ I 1
B Il 4 4'_ |
y! ; : '|
I i |
3 3r |\
! ! \
[ [ \
2T 27
1 ‘ 0/E[S] 1 ‘ ‘ ‘
0.01 0.10 100 101 2 0.01 0.10 100 101
p=05 _____ p=0.8 .......... ,0=095

'~ 0/E[S]
102

28



Packet Size Heuristic
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Gittins: Optimal but Complex
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Can SERPT Replace Gittins?

E[T] Job size distribution:
60 1 W.D. %
50¢ S = { 6 wp. 3

| 1
30}

| SERPT
20

| - = = Gittins

* Gittins is hard to compute
- SERPT has no E[T] guarantee
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Simplifying Gittins: Practice

Worst-case performance on 100 distributions:

WORST-CASE S1ZE-OBLIVIOUS, p = 0.95

E[T]/E[Tgittins]
P[S = s] ;
0.04 6F
0.03 A S5t
: 4
0.021 :
: 3F
0.01} m ol
0.00 S 1 | SERPT |

... Just use SERPT
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M-SERPT Performance

Job size distribution:

E[T] 1 W.D. %
60;_ S = { 6 wp. 3
50} |14 W.p.%
40t

30} SERPT
207 - = = Gittins

smaller at low load

Theorem:

first constant ratio

E[ Tviserpr | <t
E[ TGittins] B

[Scully, Harchol-Balter, & Scheller-Wolf, SIGMETRICS 2020]
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Future Directions

Scheduling jobs that occupy multiple servers
(e.g. data centers and other clusters)

Scheduling with noisy size estimates
(e.g. transmitting a file of known size over a noisy network)

Scheduling jobs that must be served in batches
(e.g. GPUs and other pipelined systems)

Scheduling when complete/incomplete is not binary
(e.g. training machine-learning models)

Your problem here!
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