Bounding Mlean Slowdown
in Multiserver Systems

OV

|

Ziv Scully

Carnegie Mellon University

%?A
%@\/

This talk: near-optimal
multiserver scheduling

—

000

First: background on
single-server scheduling

HRERG;

This talk: near-optimal
multiserver scheduling

—

000

First: background on
single-server scheduling

HRERG;

This talk: near-optimal
multiserver scheduling

Practical, but hardw
for queueing theory

000

First: background on
single-server scheduling

/]l
Lots of prior work @
in queueing theory

This talk: near-optimal
multiserver scheduling

Practical, but hardw
for queueing theory

000

M/G/1 Queue

M/G/1 Queue

qucuce server

M/G/1 Queue

qucuce server

job

M/G/1 Queue

qucuce server

job

Size

M/G/1 Queue

qucuce server

job

Size

M/G/1 Queue

qucuce server

job

Size

M/G/1 Queue

qucuce server

job

Size

M/G/1 Queue

qucuce server

job

}remaining size
size

M/G/1 Queue

g qucuce server
random
arrivals
job
remaining size
size

M/G/1 Queue

<3

random
arrivals

}remaining size
size

qucuce server

job

M/G/1 Queue

S = size distribution qucuc

A = arrival rate |

random
arrivals

}remaining size
size

U

job

SErver

M/G/1 Queue

S = size distribution queue server

A = arrival rate |

random G

arrivals

job
remaining size
size

Scheduling policy:
@ picks which job to serve

M/G/1 Queue

queue

S = size distribution

A = arrival rate

random
arrivals

job
remaining size
size

Scheduling policy:
@ picks which job to serve

M/G/1 Queue

queue

S = size distribution

A = arrival rate

random
arrivals

job
remaining size
size

Scheduling policy:
@ picks which job to serve

M/G/1 Queue

queue

S = size distribution

A = arrival rate

random
arrivals

job
remaining size
size

Scheduling policy:
@ picks which job to serve

M/G/1 Queue

queue

S = size distribution

A = arrival rate

random
arrivals

job
remaining size
size

Scheduling policy:
@ picks which job to serve

Response Time and Slowdown

HEERG,

Response Time and Slowdown

EENG;

Response Time and Slowdown

—

=S

= T = response time

Response Time and Slowdown

Response Time and Slowdown

(EEre:

= T = response time

Response Time and Slowdown

= T = response time

slowdown = Z = T/S = response time / size

Response Time and Slowdown

= T = response time

slowdown = Z = T/S = response time / size

Goal: schedule to minimize mean slowdown E[Z]

How to Schedule?

slowdown
Z =T/S

} remaining size
size

How to Schedule?

slowdown
Z =T/S

Want to prioritize small size and small remaining size

} remaining size
size

How to Schedule?

slowdown
Z =T/S

(‘ can finish job fast)

Want to prioritize small size and small remaining size

} remaining size
size

Cll&l

How to Schedule?

slowdown
Z =T/S

(large holding cost? (‘ can finish job fast)

Want to prioritize small size and small remaining size

} remaining size
size

Cll&l

How to Schedule?

slowdown
Z =T/S

(large holding cost? (‘ can finish job fast)

Want to prioritize small size and small remaining size

Cll&l

o g : always serve job of least
remaining Si1ze

. = size - remaining size
S1Z.€

How to Schedule?

slowdown
Z =T/S

(large holding cost? (‘ can finish job fast)

Want to prioritize small size and small remaining size

o : always serve job of least
remaining Si1ze] .. .
| @ = size - remaining size
S1zZ¢

How to Schedule?

slowdown
Z =T/S

(large holding cost? (‘ can finish job fast)

Want to prioritize small size and small remaining size

o : always serve job of least
remaining Si1ze] .. .
| @ = size - remaining size
S1zZ¢

minimizes E[Z]

First: background on
single-server scheduling

HRERG;

This talk: near-optimal
multiserver scheduling

—

000

Qy First: background on
single-server scheduling

HRERG;

This talk: near-optimal
multiserver scheduling

—

000

Qy First: background on
single-server scheduling

= TT0

This talk: near-optimal
multiserver scheduling

—

000

(useRSD

\

First: background on
single-server scheduling

9

@ This talk: near-optimal
o multiserver scheduling

—

\

000

Qy First: background on
single-server scheduling

(useRSD

\

9

@ This talk: near-optimal
o multiserver scheduling

(useRSD) -

\

000

Multiserver Systems

Multiserver Systems

| A

__(")» Central queue: M/G/k

o

Multiserver Systems

| A2

__()» Central queue: M/G/k

Bt

9

\
) G Load balancing: M/G/k/dispatch
\
\

r
9

Multiserver Systems

| A2

__()» Central queue: M/G/k
* How to schedule?

9

\
) G Load balancing: M/G/k/dispatch
\
\

r
9

Multiserver Systems

Central queue: M/G/k
- How to schedule?

(a5,

Load balancing: M/G/k/dispatch
- How to schedule?

W’@i W’@i i\%ﬁ W’@i

Multiserver Systems

Central queue: M/G/k
- How to schedule?

(a5,

Load balancing: M/G/k/dispatch
- How to schedule?

- How to dispatch?

\
BC

W’@i W’@i i\%ﬁ W’@i

Comparing to M/G/1

k server of speed 1/k

—

|

o000

1 server of speed 1

—

|

)

Comparing to M/G/1

k server of speed 1/k

—

|

1 server of speed 1

|

)

Comparing to M/G/1

k server of speed 1/k

—

|

(O

o

E[Z°] = E[Z"

1 server of speed 1

—

|

)

|<E[Z

Opt
k

]

Comparing to M/G/1

k server of speed 1/k 1 server of speed 1
] \ 3 \
O
- Opt Opt
E[Z°]1=E[Z,"1<E[Z,"]1<E[Z]

Comparing to M/G/1

k server of speed 1/k 1 server of speed 1
] \ 3 \
O
- Opt Opt
E[Z°]1=E[Z,"1<E[Z,"]1<E[Z]

Goal: E[Z, °| <E[Z,”]+ “small”

Comparing to M/G/1

k server of speed 1/k 1 server of speed 1
| //81] |
O
- Opt Opt
E[Z°]1=E[Z,"1<E[Z,"]1<E[Z]

Goal: E[Z, °| <E[Z,”]+ “small”

Constant-factor approx.

E[Z°] < c-E[Z.™]

Comparing to M/G/1

k server of speed 1/k 1 server of speed 1
| //81] |
O
E[Z)°]=E[Z, "] <E[Z "] <E[Z]

Goal: E[Z, °| <E[Z,”]+ “small”

Constant-factor approx. Heavy-traffic optimality

E[Z°]

E[Z,°]<c-E[Z"] _,

k

lim
p—1 E[Zl?pt]

Main Results

Goal: E[Z °|<E[Z,”]+ “small”

Main Results

Goal: E[Z °|<E[Z,”]+ “small”

Theorem: In M/G/k,

E[Z°] <E[Z}°]+ 6k

Main Results

Goal: E[Z °|<E[Z,”]+ “small”

Theorem: In M/G/k,

E[Z°] <E[Z]°]+ 6k

- RS- 0
E[Z,°1<7-E[Z "]

Main Results

Goal: E[Z °|<E[Z,”]+ “small”

Theorem: In M/G/k, Theorem: In M/G/k/dispatch
with guardrails dispatching,

E[Z "] <E[Z,”]+ 6k E[Z,]S%E[Zl]+48—Ok (0<e<?)
r 7 O
E_Zk B S 7E[Zk pt]

Main Results

Goal: E[Z °|<E[Z,”]+ “small”

Theorem: In M/G/k, Theorem: In M/G/k/dispatch
with guardrails dispatching,

E[Z "] <E[Z,”]+ 6k E[Z,]S%E[Zl]+48—Ok (0<e<?)
L .)
E[Z,°1<7-E[Z "] E[Z°] <109 -E[Z ']

Main Results

Goal: E[Z °|<E[Z,”]+ “small”

Theorem: In M/G/k, Theorem: In M/G/k/dispatch
with guardrails dispatching,

E[Z "] <E[Z,”]+ 6k E[Z,]S%E[Zl]+48—Ok (0<e<?)
ne- 5 5
E[Z,°1<7-E[Z "] E[Z°] <109 -E[Z ']
_ E[Z”]
Theorem: In both cases, lim =1

p—1 E[ngt]

Main Results

Goal: E[Z °|<E[Z,”]+ “small”

Theorem: In M/G/k, Theorem: In M/G/k/dispatch
with guardrails dispatching,

E[Z "] <E[Z,”]+ 6k E[Z,]S%E[Zl]+48—Ok (0<e<?)
ne- 5 5
E[Z,°1<7-E[Z "] E[Z°] <109 -E[Z ']
_ E[Z”]
Theorem: In both cases, lim =1

‘sp—>1 E[Zl?pt]

Main Results

Main Results

Multiserver systems
are complicated

Main Results

Multiserver systems
are complicated

Need to dispatch to
queues using

/N\

Main Results

Multiserver systems
are complicated

Need to dispatch to
queues using

/N\

Heavy-traffic E[Z]
poorly understood,
even in M/G/1

Theorem: In M/G/k,
E[Z, "] <E[Z;~]+ 6k

10

Theorem: In M/G/k,
E[Z, "] <E[Z;~]+ 6k

iii%:% \

SO0%

e T

®

10

Theorem: In M/G/k,
E[Z, "] <E[Z;~]+ 6k

ii%é:% \
Y
e T

SO0%

O

Theorem: In M/G/k,

E[Z, "] <E[Z,”]+ 6k

SO0%

-work

Key idea:

10

What is r-Work?

W = work = total remaining size of all jobs

11

What is r-Work?

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs
that have <r

TN

11

What is r-Work?

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs
that have <r

11

What is r-Work?

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs
that have <r

/C’-O\ 20-work = ?

11

What is r-Work?

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs
that have <r

20-work = ?

GE
.BE;

What is r-Work?

W = work = total remaining size of all jobs

W(r) = r-work = total remaining size of all jobs
that have <r

20-work = 5

GE
.BE;

Slowdown via r-Work

E[Z]

5

SO0%

|
I

E[Z]

Wa(r)]

e

12

Slowdown via r-Work

E[Zi] E[Z1]

9
e
bsns

relate slowdown
to r-work

Slowdown via r-Work

E[Z] E[Z1]
2
—
0, D
Step 1: A
relate slowdown
to r-work

Step 2:
bound r-work
difference

1(r)]

e

12

Slowdown via r-Work

E[Z] E[Z1]
B
0, D
Step 1: A
relate slowdown
to r-work

Step 2:
bound r-work
difference

|
W

(r)]

e

12

L3

ok

AN
NS

e

L

Step 1: E[Z] to E[H]

Holding cost of job of size s = 1/s
H = total holding cost of all jobs in system

13

L3

ok

AN
NS

e

L

Step 1: E[Z] to E[H]

Holding cost of job of size s = 1/s
H = total holding cost of all jobs in system

Generalized Little’s law:
E[H]|=AE[Z]

13

Step 1: E[H] to E[W(r)]

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

H = W(r) dr = f W(r)d(1/r)

0

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

H = W(r) dr = f W(r)d(1/r)

0

Proof:

One job’s r-work:

~>1/r

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

H = W(r) dr = f W(r)d(1/r)

0

size s,
Proof: remaining size x

One job’s r-work:

~>1/r

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

H = W(r) dr = f W(r)d(1/r)

0

size s,
Proof: remaining size x

One job’s r-work:

r-work r/S—F 77

U

~>1/r

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

H = W(r) dr = f W(r)d(1/r)

0

size s,
Proof: remaining size x

One job’s r-work:

r-wo I'k 9 j

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

H = W(r) dr = f W(r)d(1/r)

0

size s,
Proof: remaining size x

One job’s r-work:

r-work 17 A
T - r < sx: r-work = 0 83

> 1

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

H = W(r) dr = f W(r)d(1/r)

0

size s,
Proof: remaining size x

One job’s r-work:

T-WOI'k !) R j
1 i 3 r < sx: r-work = 0 83

éif% @ 83 /s E j’x }S
§ U

1/sx

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

H = W(r) dr = f W(r)d(1/r)

0

size s,
Proof: remaining size x

One job’s r-work:

T-WOI'k !) R j
1 i 3 r < sx: r-work = 0 83

A i 1 rx

s @ | i S

3¢l > ; 83 r/S—jJ }
' J

~>1/r

1/sx

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

W(r)

H =
0

size s,
Proof: remaining size x

One job’s r-work:

r-work
A [}

o

r/s—

1/sx

~>1/r

10

s

dr = f W(r)d(1/r)

r < sx:r-work =0 83

r = sx: r-work = x Qf

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

W(r)

H =

0

size s,
Proof: remaining size x

One job’s r-work:

10

s

dr = f W(r)d(1/r)

r < sx:r-work =0 83

r = sx: r-work = x Qf

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

H = W(r) dr = f W(r)d(1/r)

0

size s,
Proof: remaining size x

One job’s r-work:

r-WOI'k 1) j

>S
J
1/s ’”/S_j] r=zsx r-work = x Qf

r < sx:r-work =0 83

=
—>
[
=

14

Step 1: E[H] to E[W(r)]

Theorem: In basically any queueing system,

Cw
H = (r) dr = f W) d(1/r)
0
E size s, j
Proof: remaining size x
One job’s r-work: All jobs’ r-work:
r-W{rk r-work
s X
1/s
1/sx > 1/r 1/r

14

Step 1: E[H] to E[W(r)]
Theorem: In basically any queueing system,

Hzf W(Zr) drzf W(r)d(1/r)
o I 0

size s,
Proof: remaining size x

One job’s r-work: All jobs’ r-work:
r-work r-work
ﬁ% @ XAL 1/s1
| | 1/s 1/s2
L /sx >1/r 1/53 1/r

14

Step 1: E[H] to E[W(r)]
Theorem: In basically any queueing system,

Hzf W(Zr) drzf W(r)d(1/r)
o I 0

size s,
Proof: remaining size x

One job’s r-work: All jobs’ r-work:
r-W{rk r-work
total area = H
%% @ X p
1/s
R 1/s3
1/5x 1/r 1/r

14

Slowdown via r-Work

Slowdown via r-Work

Step 2: E[W] Difference

Step 2: E[W] Difference

work W

4\
Mtime

Step 2: E[W] Difference

work W

4\

In steady-state system, for any f,
E[f(W)] constant w.r.t. time

/\N .

W

16

Step 2: E[W] Difference

WO

In steady-state system, for any f,
E[f(W)] constant w.r.t. time

W

4\

K W

/\N .

Step 2: E[W] Difference

work W

E[W? decrease rate’

E[W? increase rate’

= 2E[BW]
= AE[(W + S)? —W?]

4\

/\N .

16

Step 2: E[W] Difference

work W
B = service rate, a.k.a. A
fraction of servers busX

E[W# decrease rate] = 2E[BW] /\N .
time

E[W? increase rate] = AE[(W + S)? — W?]

W y

Step 2: E[W] Difference

work W

B = service rate, a.k.a.
fraction of servers busy
E[W? decrease rate] = 2E[BW]
E[W? increase rate] = AE[(W + S)? — W?]

LE[S?] E[(1-B)W]

—p 1-p

W

4\

/\N .

16

Step 2: E[W] Difference

work W

B = service rate, a.k.a.
fraction of servers busy
E[W? decrease rate] = 2E[BW]
E[W? increase rate] = AE[(W + S)? — W?]

M/G/1:
(1-B)W =20

LE[S?] E[(1-B)W]
1—p | 1—p

E[W]=

W

4\

/\N .

16

Step 2: E[W] Difference

work W

B = service rate, a.k.a. A
fraction of servers busy
E[W? decrease rate] = 2E[BW] /\[\\ ,
time

E[W? increase rate] = AE[(W + S)? — W?]

M/G/1:
(1-B)W =20
E[W] = 5E[S?] _E[1—-B)W] |Theorem:

e E[1W,] = E[W,]

16

Step 2: E[W] Difference

work W

B = service rate, a.k.a. A
fraction of servers busy
E[W? decrease rate] = 2E[BW] /\[\\ ,
time

E[W? increase rate] = AE[(W + S)? — W?]

M/G/1:
(1-B)W =20
E[W] = SE[S?] _E[1—-B)W] |Theorem:
1=p 1=p E[W,]=E[W,]-

(similar holds for r-work)

:]‘ > i 16

Step 2: Bound in M/G/k

Step 2: Bound in M/G/k

Suppose S < smax With probability 1

E[(1—B)W,]
1-p

E[W;]=E[W,]

17

Step 2: Bound in M/G/k

Suppose S < smax With probability 1
(‘ < (k —1)Smax)

E[(1—B)W,]
1-p

E[W;]=E[W,]

17

Step 2: Bound in M/G/k

Suppose S < smax With probability 1

(E[B] = pz E<(k 1)Smax)

E[(1—
1-p

E[W;]=E[W,]

17

Step 2: Bound in M/G/k

Suppose S < smax With probability 1

‘E[B] ? f < (k — 1)Smax ,

E[(1—

1-p
< E[Wl] T (k B 1)5max

E[W;]=E[W,]

17

Step 2: Bound in M/G/k

Suppose S < smax With probability 1

‘E[B] ? f < (k — 1)Smax ,

E[(1—

1-p
< E[Wl] T (k B 1)5max

; “work of < k -1 jobs”)

E[W;]=E[W,]

17

Step 2: Bound in M/G/k

Suppose S < smax With probability 1

(E[B] = ? (< (k- 1)Smax)

E[(1—

1-p
< E[Wl] T (k B 1)5max

; “work of < k -1 jobs”)

E[W,.(r)]=E[W,()]+ “r-work of < k—1 jobs”

:]‘ > i 17

E[W;]=E[W,]

Step 2: Bound in M/G/k

Suppose S < smax With probability 1

‘E[B] ? f < (k — 1)Smax ’

E[(1—
1—p
< E[Wl] T (k o 1)5max

; “work of < k-1 jobs”)
Single job’s r-work is at most 4/

E[W,.(r)]=E[W,()]+ “r-work of < k—1 jobs”

:]‘ > i 17

E[W;]=E[W,]

Step 2: Bound in M/G/k

Suppose S < smax With probability 1

Single job’s r-work is at most 4/

E[

E[W;]=E[W,]

‘E[B] ? f < (k — 1)Smax ’

E[(1—
1—p

< E[Wl] T (k o 1)5max

(r)] =
<E

E:W1 (r)
W, (r)

; “work of < k -1 jobs”)

+ “r-work of < k—1 jobs”

1+ (k—=1)vr

17

Slowdown via r-Work

Slowdown via r-Work

@3 E'z\k]% <} > E[Z:] @

Slowdown via r-Work

E[Z]
Lt 2
é@' \ \O¢ n
AN\ AN
) - N\\;
el
E[Wi(r)]

Summary

Minimize mean slowdown
o in multiserver systems

19

Summary

Minimize mean slowdown
o in multiserver systems

Multiserver systems very
hard to analyze directly

19

Summary

Minimize mean slowdown
o in multiserver systems

Q New technique based on
relating E[Z] to r-work

Multiserver systems very
hard to analyze directly

19

Summary

Minimize mean slowdown Multiserver systems very
o in multiserver systems hard to analyze directly

E[Z°] < E[Z/°] + (6 or 54)k

Q New technique based on has “near-optimal
relating E[Z] to r-work

E[Z] in the M/G/k and
M/G/k/dispatch

19

Summary

Minimize mean slowdown Multiserver systems very
o in multiserver systems hard to analyze directly

E[Z°] < E[Z/°] + (6 or 54)k

. has “near-optimal”
New technique based on .
Q relating E[Z] to r-work ﬁ E[Z] in the M/G/k and
Get in touch: zscully@cs.cmu.edu

M/G/k/dispatch

19

