
57

Mean Field Analysis of Join-Below-Threshold Load
Balancing for Resource Sharing Servers

ILLÉS ANTAL HORVÁTH,MTA-BME Information Systems Research Group, Hungary

ZIV SCULLY, Carnegie Mellon University, USA

BENNY VAN HOUDT, University of Antwerp, Belgium

Load balancing plays a crucial role in many large scale computer systems. Much prior work has focused

on systems with First-Come-First-Served (FCFS) servers. However, servers in practical systems are more

complicated. They serve multiple jobs at once, and their service rate can depend on the number of jobs in

service. Motivated by this, we study load balancing for systems using Limited-Processor-Sharing (LPS). Our

model has heterogeneous servers, meaning the service rate curve and multiprogramming level (limit on the

number of jobs sharing the processor) differs between servers. We focus on a specific load balancing policy:

Join-Below-Threshold (JBT), which associates a threshold with each server and, whenever possible, dispatches

to a server which has fewer jobs than its threshold. Given this setup, we ask: how should we configure the

system to optimize objectives such as mean response time? Configuring the system means choosing both a

load balancing threshold and a multiprogramming level for each server. To make this question tractable, we

study the many-server mean field regime.

In this paper we provide a comprehensive study of JBT in the mean field regime. We begin by developing a

mean field model for the case of exponentially distributed job sizes. The evolution of our model is described by

a differential inclusion, which complicates its analysis. We prove that the sequence of stationary measures of

the finite systems converges to the fixed point of the differential inclusion, provided a unique fixed point exists.

We derive simple conditions on the service rate curves to guarantee the existence of a unique fixed point.

We demonstrate that when these conditions are not satisfied, there may be multiple fixed points, meaning

metastability may occur. Finally, we give a simple method for determining the optimal system configuration

to minimize the mean response time and related metrics.

While our theoretical results are proven for the special case of exponentially distributed job sizes, we

provide evidence from simulation that the system becomes insensitive to the job size distribution in the mean

field regime, suggesting our results are more generally applicable.
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1 INTRODUCTION
Most studies on large-scale load balancing systems consider servers that operate in a first-come-

first-served (FCFS) manner and have a fixed service rate. In such a setting a simple policy such

as the Join-Idle-Queue (JIQ) policy achieves asymptotic zero delay in both homogeneous and
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heterogeneous clusters [17]. However, servers in practical systems are more complex as they serve

multiple jobs at once and need to share resources (such as caches).

Motivated by this we consider a cluster of so-called resource sharing servers. In a resource sharing

server the throughput tends to increase as more jobs start sharing the server, but starts decreasing

beyond some point due to contention and thrashing [10]. Hence, in such a server the total service

rate µ(k) depends on the number of jobs k being processed simultaneously. In addition a limit,

called the multi-programming level (MPL), is implemented that dictates how many jobs can equally

share the server. When the number of jobs in a server exceeds its MPL, some jobs must wait before

their service starts. In other words the server operates in a limited processor sharing (LPS) fashion,

except that the total service rate also depends on the number of jobs in service. As stated before the

rates µ(k) tend to increase up to some point κ = argmaxk µ(k), and decreases afterward. In practice

the MPL is often set equal to κ, though this may not be optimal in case of an isolated resource

sharing server (see [10, 18]).

In this paper we study the Join-Below-Threshold (JBT) dispatch policy in a heterogeneous cluster

of resource sharing servers. In JBT a threshold is associated with every server and the server

informs the dispatcher whenever its queue length either reaches or drops below its threshold. This

allows the dispatcher to maintain a list of all the server IDs for which the server’s queue length is

below its associated threshold. Incoming jobs are assigned by the dispatcher to a random server

with a queue length below its threshold, unless no such server exists, in which case the job is

assigned to a random server. If we set the threshold of a server equal to its MPL, this policy is a

natural generalization of the JIQ policy for resource sharing servers as the dispatcher keeps track of

all the servers where the incoming job can immediately start service. It also retains the advantage

of JIQ that the communication overhead is upper bounded by one message per job.

The main contributions of this paper are the following:

(1) We develop a mean field model to assess the performance of JBT in a heterogeneous cluster of

resource sharing servers assuming exponential job sizes, the evolution of which is described

by a differential inclusion (DI).

(2) We prove that as the number of servers tends to infinity, the sample paths of the stochastic

systems converge towards the unique solution of the DI and the fixed point of the DI

corresponds to the weak limit of the stationary measures of the stochastic systems provided

that this fixed point is unique.

(3) Contrary to our initial expectations, we show that for arbitrary service rate curves multiple

fixed points can exist (even in a homogeneous cluster), which implies that the system is

metastable in such case. We identify simple conditions for the existence of a unique fixed

point that we expect to hold for real service rate curves.

(4) We indicate how to determine the thresholds that minimize the mean response time (and

related metrics) for a given arrival rate. This turns out to be surprisingly easy provided that

we do not necessarily assign the same threshold to all the servers of the same type.

(5) We perform simulation experiments that support our belief that the queue length distribution

becomes insensitive to the job size distribution as the system size tends to infinity. This

indicates that our results are also relevant in systems with highly variable job sizes.

The paper is structured as follows. The model and main notations are introduced in Section 2.

The transient and stationary mean field analysis is presented in Sections 3 and 4, respectively. Fixed

points are studied in Section 5. Section 6 indicates how to compute the response time distribution,

while Section 7 indicates how to set the thresholds to minimize mean response times. Simulation

experiments that suggest asymptotic insensitivity are presented in Section 8. Conclusions are drawn

in Section 9.
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1.1 Related Work
Most prior work on load balancing considers servers that operate in a FCFS manner and a simple

policy like JIQ achieves asymptotic zero delay. Under the JIQ policy [13, 15] incoming jobs are

distributed among the servers via a dispatcher. Servers inform the dispatcher whenever they become

idle. The dispatcher maintains a list of idle server IDs. The dispatcher assigns incoming jobs to idle

servers, unless the list of idle server IDs is empty. In the latter case the incoming job is assigned to

a random server.

Another load balancing policy that received a lot of attention in this setting is the Join-Shortest-

Queue-d (JSQ-d) policy, which assigns a job to a server with the shortest queue length among

d randomly selected servers [2, 14, 20]. While JSQ-d uses more messages per job compared to

JIQ, it does not require any memory at the dispatcher and thus can be readily implemented in a

setting with multiple dispatchers. For a detailed discussion on the trade-off between memory and

communication overhead we refer to [4].

Studies on load balancing servers that do not operate in a FCFS manner are quite limited. In

[2, 19] the authors studied the JSQ-d policy when the servers use processor sharing (PS). In [2, 19]

the authors showed that the fixed point of the cavity map is insensitive to the job size distribution,

but to the best of our knowledge a complete proof of asymptotic insensitivity is still missing (while

asymptotic independence of the queue lengths was proven for FCFS servers [2], it is still an open

problem for PS servers). Propagation of chaos was shown for PS servers in [19] over finite time

scales, but in order to establish asymptotic insensitivity one still needs to show that the unique fixed

point of the mean field model is a global attractor. In [9] the authors studied load balancing systems

where the size of incoming jobs is known and provide guidelines on how to get good performance

when the servers use the shortest-remaining-processing-time (SRPT) service discipline.

The heavy-traffic delay optimality of the JBT policy was recently studied in [21] in case of a fixed

number of servers N , a fixed service rate µ, FCFS service and when the same threshold K is utilized

by all N servers. Necessary and sufficient conditions on how the threshold K must scale with the

heavy traffic parameter ϵ were identified such that the system is heavy-traffic delay optimal. The

objective of this paper is to study the performance of JBT in a large-scale heterogeneous cluster

with ℓ server types, where each server type ℓ is subject to its own service rate curve µ(ℓ)(k) and
uses its own MPL K (ℓ)

.

2 MODEL AND NOTATION
The server cluster contains N ′ = N

∑L
ℓ=1

Mℓ servers and one dispatcher. We allow the cluster to be

heterogeneous: each server has a fixed type from the set {1, . . . , L} and we assume that we have

exactly NMℓ servers of type ℓ , where Mℓ,N ≥ 1 are integers. The ratio of servers of type ℓ is

γℓ = Mℓ/M , where M =
∑L

ℓ=1
Mℓ . The service rate curve of a type ℓ server is denoted as µ(ℓ)(k)

and its MPL as K (ℓ)
. A natural choice would be to set K (ℓ)

equal to argmaxk µ
(ℓ)
k , but we allow any

choice for K (ℓ)
in our model. For further use, denote µ(ℓ)k = µ(ℓ)(k) for k ≤ K (ℓ)

and µ(ℓ)k = µ(ℓ)
K (ℓ) for

k > K (ℓ)
. Hence µ(ℓ)k represents the service rate of a type ℓ server containing k jobs when its MPL

is set to K (ℓ)
.

We can think of the local state of a server as the number of jobs queued at that server, and the

global state of the entire cluster as the collection of all the local states. Instead we define the global

state as the collection of the numbers

(
X (ℓ),N
k (t),k ≥ 0, ℓ = 1, . . . , L

)
, where X (ℓ),N

k (t) is a multiple

of 1/N ′
which denotes the fraction of queues of type ℓ with k jobs in the queue at time t . We

further assume that type ℓ servers can store at most B(ℓ) ≥ K (ℓ)
jobs and normalization is such that∑L

ℓ=1

∑B(ℓ)

k=0
X (ℓ),N
k (t) = 1. This assumption is quite common (e.g., [5, 6]) and mainly simplifies some
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of the proofs. It should have no real impact on the limiting results when the system with an infinite

buffer is stable as the buffer size can be set arbitrarily large, e.g., B(ℓ) = 10
50
. In fact, we show that

if the stationary mean field model has a unique fixed point, the loss probability in any finite buffer

B(ℓ) ≥ K (ℓ)
tends to zero as N tends to infinity.

Jobs arrive at the dispatcher according to a Poisson process with rateN ′λ and have an exponential
job size with mean one. The actual processing time of a job depends on the type of server that

executes the job. The dispatcher keeps track of servers of type ℓ holding at least K (ℓ)
jobs for each

server type ℓ. This can be done by simply keeping track of a single bit per server. Note that in our

model the choice of the MPL and the threshold of a specific server always coincide. As in the mean

field regime we expect to have at most K (ℓ)
jobs in any type ℓ server, increasing the MPL beyond

K (ℓ)
has no impact. In Section 7 we also argue that the mean response time can be minimized by

letting the MPLs and the thresholds K (ℓ)
coincide.

Type ℓ servers with at least K (ℓ)
jobs are considered full, while type ℓ servers with fewer jobs are

deemed available. Note the system behaves as the classic JIQ if µ(ℓ)k does not depend on k , K (ℓ) = 1

for all ℓ and jobs are served in FCFS order. Full servers of type ℓ with strictly more than K (ℓ)
jobs

are also called overloaded. Upon a job arrival, the dispatcher chooses a server uniformly at random

from the available servers, regardless of their type, and sends the job there. In case there are no

available servers, the dispatcher chooses a server uniformly at random from the entire cluster of

N ′
servers. If the job is assigned to a type ℓ server holding B(ℓ)

jobs, it is lost. We assume that

L∑
ℓ=1

γℓµ
(ℓ)

K (ℓ) > λ, (1)

as the maximum service rate of the system should exceed the arrival rate. Note that this condition

also corresponds to the stability condition in case the servers have an infinite queue length.

Clearly XN (t) = (X (ℓ),N
k (t),k ∈ {0, 1, . . . ,B(ℓ)}, ℓ ∈ {1, . . . , L}) is a finite state Markov process

for any fixed N on the state space

E(N ) =

{
(x (ℓ)k )ℓ∈{1, ...,L },k ∈{0, ...,B(ℓ) }

�����0 ≤ x (ℓ)k ≤ 1,NMx (ℓ)k ∈ Z,
L∑

ℓ=1

B(ℓ)∑
k=0

x (ℓ)k = 1,

B(ℓ)∑
k=0

x (ℓ)k = γℓ

}
.

For x ∈ E(N )
denote a(x) =

∑L
ℓ=1

∑K (ℓ)−1

k=0
x (ℓ)k as the fraction of available servers when the system is

in state x . The job arrival rate in state x ∈ E(N )
at a given queue of type ℓ with queue length k − 1

is given by

λ(ℓ)k−1
(x) =


λ/a(x) if k ≤ K (ℓ)

;

0 if k > K (ℓ)
and a(x) > 0;

λ if k > K (ℓ)
and a(x) = 0,

(2)

while the service rate in state x at the same queue equals

µ(ℓ)k (x) =

{
µ(ℓ)k if k < K (ℓ)

;

µ(ℓ)
K (ℓ) if k ≥ K (ℓ),

(3)

meaning the service rate does not depend on x .
Define E as

E =

{
(x (ℓ)k )ℓ∈{1, ...,L },k ∈{0, ...,B(ℓ) }

�����0 ≤ x (ℓ)k ≤ 1,

L∑
ℓ=1

B(ℓ)∑
k=0

x (ℓ)k = 1,

B(ℓ)∑
k=0

x (ℓ)k = γℓ

}
,

then E(N ) ⊂ E and E is a compact and convex subset of RL+B where B =
∑L

ℓ=1
B(ℓ)

.
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3 TRANSIENT MEAN-FIELD ANALYSIS
We start by showing that theMarkov processXN (t) = (X (ℓ),N

k (t), ℓ ∈ {1, . . . , L},k ∈ {0, 1, . . . ,B(ℓ)})

is a density dependent population process with a discontinuous drift f (x). Let Y (N )(t) be a sequence
of continuous time Markov chains on E(N ) ⊂ (MN )−1Zd with d ≥ 1 for N ≥ 1. Y (N )(t) is called
a density dependent population process if there exists a set L ⊂ M−1Zd (with 0 < L), such that

for each η ∈ L and x ∈ E(N )
, the transition rate from state x to state x + η/N can be written as

βη(x)N ≥ 0, where βη(x) does not depend on N . The i-th component of Y (N )(t) can be seen as the

density of individuals of a population of sizeMN that are in state i and a transition η changes the

number of individuals in state i by Mηi . The drift f (x) is defined as f (x) =
∑

η∈L ηβη(x). In our

case we clearly have d = B + L and the set L has size 2(B + L) as explained below.

Let e(ℓ)k be the k + 1 +
∑ℓ−1

v=1
(1 + B(v))-th row of the identity matrix of size B + L. There are

two types of transitions for this Markov chain: service completions and job arrivals. When a

service completion occurs in a type ℓ server with length k > 0 in state x , the state changes to

x + (e(ℓ)k−1
− e(ℓ)k )/(MN ). Such service completions occur at rate µ(ℓ)k x (ℓ)k MN which can be written as

β (ℓ)ser ,k (x)N , where β (ℓ)ser ,k (x) does not depend on N . Arrivals in a type ℓ server with k−1 jobs change

the state from x to (x + e(ℓ)k − e(ℓ)k−1
)/(MN ). The rate of these transitions is given by λ(ℓ)k−1

(x)x (ℓ)k−1
MN ,

which we denote as β (ℓ)arr ,k−1
(x)N . Let e(ℓ)ser ,k = (e(ℓ)k−1

−e(ℓ)k )/M , e(ℓ)arr ,k−1
= (e(ℓ)k −e(ℓ)k−1

)/M and define

the drift

f (x) =
L∑

ℓ=1

B(ℓ)∑
k=1

(
e(ℓ)ser ,kβ

(ℓ)
ser ,k (x) + e

(ℓ)
arr ,k−1

β (ℓ)arr ,k−1
(x)

)
. (4)

Due to (2) and (3) and the above discussion the drift f (x) = (f (1)
1

(x), . . . , f (ℓ)
B(ℓ) (x)) in state x ∈ E is

given by

f (ℓ)k (x) = 1[k > 0](λ(ℓ)k−1
(x)x (ℓ)k−1

− µ(ℓ)k x (ℓ)k ) − 1[k < B(ℓ)](λ(ℓ)k (x)x (ℓ)k − µ(ℓ)k+1
x (ℓ)k+1

)

= 1[k < B(ℓ)]µ(ℓ)k+1
x (ℓ)k+1

− 1[k > 0]µ(ℓ)k x (ℓ)k + 1[k > K (ℓ)]1[a(x) = 0]λ(x (ℓ)k−1
− 1[k < B(ℓ)]x (ℓ)k )

+ 1[k = K (ℓ)]λ
(
1[a(x) > 0]x (ℓ)k−1

/a(x) − 1[a(x) = 0]x (ℓ)k

)
+ 1[k < K (ℓ)]1[a(x) > 0]λ(1[k > 0]x (ℓ)k−1

− x (ℓ)k )/a(x). (5)

These drifts are discontinuous due to the presence of the indicator functions involving a(x). As
such the set of ODEs dx(t)/dt = f (x(t)) does not have a solution. Instead we define a differential

inclusion dx(t)/dt ∈ F (x(t)), where F is the set-valued function defined by

F (x) = conv

({
f (y)

���x = lim

n→∞
yn, f (y) = lim

n→∞
f (yn)

})
, (6)

where conv(A) is the convex closure of the set A. A Filippov solution to dx(t)/dt ∈ F (x(t)) is an
absolutely continuous function, that is, it is almost everywhere differentiable.

Theorem 1. Let XN (t) be the density dependent population process with drift f specified by (5). If
XN (0) → x0 ∈ E in probability then for any finite T > 0 we have

sup

t ∈[0,T ]
| |XN (t) − x(t)| | → 0,

in probability, where x(t) is a solution of the differential inclusion dx(t)/dt ∈ F (x) and F is defined by
(6).
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Proof. As XN (t) is a density dependent population process with d = L + B, it suffices to verify

the three conditions of Theorem 4 in [7]. We first note that supx ∈E β
(ℓ)
ser ,k (x) ≤ µ(ℓ)k M . Further,

the expressions in (2) imply that supx ∈E β
(ℓ)
arr ,k (x) ≤ λM as x (ℓ)k−1

/a(x) ≤ 1 when a(x) > 0. Thus,

condition 1, which demands that the transition rates from state x ∈ E are bounded, holds as

sup

x ∈E

L∑
ℓ=1

B(ℓ)∑
k=1

(β (ℓ)ser ,k (x) + β
(ℓ)
arr ,k−1

(x)) ≤ BM(λ +
L

max

ℓ=1

µ(ℓ)
K (ℓ) ). (7)

Further, condition 2, which demands that

∑
η∈L | |η | |supx βη(x) < ∞, is verified by noting that

L∑
ℓ=1

B(ℓ)∑
k=1

(
| |e(ℓ)ser ,k | |β

(ℓ)
ser ,k (x) + | |e(ℓ)arr ,k−1

| |β (ℓ)arr ,k−1
(x)

)
≤

L∑
ℓ=1

B(ℓ)∑
k=1

√
2

M
M(µ(ℓ)k + λ) ≤

√
2B(λ +

L
max

ℓ=1

µ(ℓ)
K (ℓ) ).

(8)

The final condition to apply Theorem 4 in [7] requires that there exists a c > 0 with | | f (x)| | ≤
c(1 + | |x | |) for all x ∈ E. This condition is in fact redundant as condition 2 implies that there exists

a constant c (being
√

2B(λ +max
L
ℓ=1

µ(ℓ)
K (ℓ) ) in our case) such that | | f (x)| | ≤ c . �

In the next subsection we describe the evolution of any solution x(t) of the DI that remains

within E.

3.1 Differential inclusion
We now specify the set-valued function F (x) for f defined in (5). Whenever a(x) > 0, we clearly

have F (x) = { f (x)}. When a(x) = 0 the set F (x) is the convex closure of all the drift vectors f (y)
that can be obtained as the limit points of a sequence of drifts f (yn)where yn converges to x . When

applied to (5) we have for any x with a(x) = 0 that

F (x) =

{
f (x)

�����0 ≤ α0,α
(ℓ)
k ≤ 1,α0 +

L∑
ℓ=1

K (ℓ)∑
k=0

α (ℓ)
k = 1,

f (ℓ)k (x) = 1[k < B(ℓ)]µ(ℓ)k+1
x (ℓ)k+1

− 1[k > 0]µ(ℓ)k x (ℓ)k + 1[k < K (ℓ)]λ(1[k > 0]α (ℓ)
k−1

− α (ℓ)
k )

+ 1[k = K (ℓ)]λ(α (ℓ)

K (ℓ)−1

− α0x
(ℓ)
k ) + 1[k > K (ℓ)]α0λ(x

(ℓ)
k−1

− 1[k < B(ℓ)]x (ℓ)k )

}
. (9)

Note that the expression for f (ℓ)k (x) is identical to (5) with 1[a(x) = 0] replaced by α0 and 1[a(x) >

0]x (l )k /a(x) by α (l )
k . We now argue that the differential inclusion

d

dt
x(t) ∈ F (x(t)),

with x(0) = x0 has a (Filippov) solution for any x0 ∈ E such that x(t) ∈ E for t ≥ 0.

Define H = {x ∈ E |a(x) = 0}. For any x ∈ E \ H , the drift is fully determined by (5), that is,

f (ℓ)k (x) = 1[k < B(ℓ)]µ(ℓ)k+1
x (ℓ)k+1

− 1[k > 0]µ(ℓ)k x (ℓ)k + 1[k = K (ℓ)]λx (ℓ)k−1
/a(x)

+ 1[k < K (ℓ)]λ(1[k > 0]x (ℓ)k−1
− x (ℓ)k )/a(x). (10)

The set of ODEs dx(t)/dt = f (x(t)) has a unique local solution for x(0) ∈ E \ H as the drift f is

locally Lipschitz continuous, that is, for any x ∈ E \ H there exists an open neighborhood Vx of x
and a constant Lx such that for any y, z ∈ Vx we have | | f (y) − f (z)| | ≤ Lx | |y − z | |. Note that the
drift f is not globally Lipschitz continuous on E \ H .
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For x ∈ H there are two possibilities. Let

Hs =

{
x ∈ H

����� L∑
ℓ=1

µ(ℓ)
K (ℓ)x

(ℓ)

K (ℓ) ≤ λ

}
.

If x ∈ Hs the rate at which available servers are created does not exceed the arrival rate and a(x)
remains zero, which implies that a sliding motion on Hs occurs. In this case the parameters α0 and

α (ℓ)
k must be such that a(x) remains zero and x (ℓ)k remains larger than or equal to zero. Looking

at (9) with k = 0 this yields that α (ℓ)
0
= 0 (for K (ℓ) > 1) as the drift of x (ℓ)

0
is given by −λα (ℓ)

0
.

Similarly for 0 < k < K (ℓ) − 1 we have by induction that α (ℓ)
k = 0. For k = K (ℓ) − 1 the drift equals

µ(ℓ)
K (ℓ)x

(ℓ)

K (ℓ) − λα (ℓ)

K (ℓ)−1

, meaning

α (ℓ)

K (ℓ)−1

=
µ(ℓ)
K (ℓ)x

(ℓ)

K (ℓ)

λ
,

such that a(x) remains zero and α0 = 1 −
∑L

ℓ=1
α (ℓ)

K (ℓ)−1

. During this sliding motion on Hs , the drift

is therefore given by

f (ℓ)k (x) = 1[k < B(ℓ)]µ(ℓ)k+1
x (ℓ)k+1

− µ(ℓ)k x (ℓ)k + 1[k = K (ℓ)]λ
©«
µ(ℓ)
K (ℓ)x

(ℓ)

K (ℓ)

λ
−

©«1 −

L∑
v=1

µ(ℓ)
K (ℓ)x

(ℓ)

K (ℓ)

λ

ª®¬x (ℓ)k
ª®¬

+ 1[k > K (ℓ)]λ
©«1 −

L∑
v=1

µ(v)
K (v )

x (v)
K (v )

λ

ª®¬ (x (ℓ)k−1
− 1[k < B(ℓ)]x (ℓ)k ), (11)

for k ≥ K (ℓ)
and equals zero for k < K (ℓ)

. The set of ODEs that characterize this sliding motion has

a unique local solution as the drift f is globally Lipschitz continuous onHs . It is worth noting that

α (ℓ)

K (ℓ)−1

is the probability that an incoming job is assigned to a type ℓ server with length K (ℓ) − 1

during this sliding motion and α0 is the probability that the job is assigned to a full or overloaded

server.

When x ∈ H \ Hs the rate at which available servers are created exceeds the arrival rate and

a(x) becomes positive, meaning the solution leaves the set H . As in the previous case α (ℓ)
k = 0 for

k < K (ℓ) − 1 (for the solution to stay in E),

α (ℓ)

K (ℓ)−1

=
µ(ℓ)
K (ℓ)x

(ℓ)

K (ℓ)∑L
v=1

µ(v)
K (v )

x (v)
K (v )

,

and α0 = 0, which implies that f (ℓ)k (x) = 0 for k < K (ℓ) − 1 and

f (ℓ)k (x) = 1[k < B(ℓ)]µ(ℓ)k+1
x (ℓ)k+1

− µ(ℓ)k x (ℓ)k +
(
1[k = K (ℓ)] − 1[k = K (ℓ) − 1]

) λµ(ℓ)
K (ℓ)x

(ℓ)

K (ℓ)∑L
v=1

µ(v)
K (v )

x (v)
K (v )

. (12)

Remarks: (1) For x0 < H , the solution x(t) may be such that a(x(t∗)) = 0 for some t∗ > 0, if this

happens x(t∗) ∈ Hs and a sliding motion starts.

(2) When B(ℓ) = K (ℓ)
for ℓ = 1, . . . , L, thenHs = ∅ due to (1) and there are no sliding motions.

(3) When u(x(t∗)) =
∑L

ℓ=1

∑
k>K (ℓ) x

(ℓ)
k (t∗) = 0 for some t∗ ≥ 0, then u(x(t)) = 0 for any t ≥ t∗.

This can be seen by noting that u(x(t)) can only become non-zero if a(x(t)) = 0 as well, but this

implies that x (ℓ)
K (ℓ) (t) = γℓ for all ℓ and we assumed that λ <

∑L
ℓ=1

γℓµ
(ℓ)

K (ℓ) . Hence, if u(x(t
∗)) = 0 for
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some t∗ ≥ 0, then a(x(t)) > 0 for t ≥ t∗ and x(t) is the unique differentiable solution of (10) on

[t∗,∞).

4 STATIONARY MEAN-FIELD ANALYSIS
Let π ∈ E \ H be a fixed point of the DI. Due to (10) we find that f (ℓ)

B(ℓ) (π ) = −µ(ℓ)
B(ℓ)π

(ℓ)

B(ℓ) , hence

π (ℓ)

B(ℓ) = 0 and by induction we get π (ℓ)
k = 0 for k > K (ℓ)

. In the next two subsections we provide

conditions such that the fixed point is unique and define a set of equations to determine the non-zero

components π (ℓ)
k for k ≤ K (ℓ)

.

To argue that we cannot have a fixed point on H under condition (1), first note that such a fixed

point must be part ofHs . However onHs the system evolves according to the set of ODEs given

by (11) and it is not hard to verify that

L∑
ℓ=1

B(ℓ)∑
k=K (ℓ)

k f (ℓ)k (x(t)) = λ

(
1 −

L∑
ℓ=1

x (ℓ)
B(ℓ) (t)

)
−

L∑
ℓ=1

µ(ℓ)
K (ℓ)γℓ .

Thus, under condition (1) the right hand side cannot be zero, while it must be zero in any fixed

point π ∈ Hs .

Theorem 2. Provided that all trajectories of the DI starting in E converge to a unique fixed point
π ∈ E \ H , the sequence of stationary measures XN (∞) of the finite state Markov chains XN (t)
converges weakly to the dirac measure of the fixed point π .

Proof. The result is immediate from Theorem 3.5 and Corollary 3.9 in [16], as the Birkhoff

center of the DI is the singleton containing the fixed point π when all the solutions starting in E
converge to π . �

Thus, if a fixed point π is a global attractor, the stationary queue length distribution of a type ℓ

server weakly converges to (π (ℓ)
0
, π (ℓ)

1
, . . . , π (ℓ)

K (ℓ), 0, . . . , 0).

We now show that if the fixed point is unique, then it is necessarily a global attractor. For x, x̃ ∈ E

we state that x ≤a x̃ if

∑
k≥i x

(ℓ)
k ≤

∑
k≥i x̃

(ℓ)
k for ℓ = 1, . . . , L and i = 1, . . . ,K (ℓ)

.

Theorem 3. Let x(t, x∗) be the unique solution of the DI with x(0, x∗) = x∗. If x∗ ≤a x̃∗, then
x(t, x∗) ≤a x(t, x̃∗).

Proof. Denote y(ℓ)i (t, x∗) =
∑

k≥i x
(ℓ)
k (t, x∗). We need to show that if x(t, x∗) ≤a x(t, x̃∗) and

y(ℓ)i (t, x∗) = y(ℓ)i (t, x̃∗) for some ℓ and i , then d
dty

(ℓ)
i (t, x∗) ≤ d

dty
(ℓ)
i (t, x̃∗). We start with the case

where x(t, x∗) and x(t, x̃∗) both belong to E \ H . Due to (10) we have

d

dt
y(ℓ)i (t, x∗) = −µ(ℓ)i (y(ℓ)i (t, x∗) − y(ℓ)i+1

(t, x∗)) + 1[i ≤ K (ℓ)]λ
y(ℓ)i−1

(t, x∗) − y(ℓ)i (t, x∗)

1 −
∑L

ℓ=1
y(ℓ)K (t, x∗)

. (13)

Therefore, when x(t, x∗) ≤a x(t, x̃∗) and y(ℓ)i (t, x∗) = y(ℓ)i (t, x̃∗), we have

d

dt
(y(ℓ)i (t, x̃∗) − y(ℓ)i (t, x∗)) ≥ µ(ℓ)i (y(ℓ)i+1

(t, x̃∗) − y(ℓ)i+1
(t, x∗)) + 1[i ≤ K (ℓ)]λ

y(ℓ)i−1
(t, x̃∗) − y(ℓ)i−1

(t, x∗)

1 −
∑L

ℓ=1
y(ℓ)K (t, x̃∗)

≥ 0,

as −1/(1 −
∑L

ℓ=1
y(ℓ)K (t, x∗)) ≥ −1/(1 −

∑L
ℓ=1

y(ℓ)K (t, x̃∗)).
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Next assume x(t, x∗) and x(t, x̃∗) both belong to Hs . By (11) we observe that for i > K (ℓ)

d

dt
y(ℓ)i (t, x∗) = −µ(ℓ)i (y(ℓ)i (t, x∗) − y(ℓ)i+1

(t, x∗))

+

(
λ −

L∑
v=1

µ(v)
K (v )

(γv − y(v)
K (v )+1

(t, x))

)
(y(ℓ)i−1

(t, x∗) − y(ℓ)i (t, x∗)), (14)

while
d
dty

(ℓ)
i (t, x∗) = 0 for i ≤ K (ℓ)

. Hence, when x(t, x∗) ≤a x(t, x̃∗) and y(ℓ)i (t, x∗) = y(ℓ)i (t, x̃∗)

d

dt
(y(ℓ)i (t, x̃∗) − y(ℓ)i (t, x∗)) ≥ µ(ℓ)i (y(ℓ)i+1

(t, x̃∗) − y(ℓ)i+1
(t, x∗))

+

(
λ −

L∑
v=1

µ(v)
K (v )

(γv − y(v)
K (v )+1

(t, x̃))

)
(y(ℓ)i−1

(t, x∗) − y(ℓ)i (t, x∗)) ≥ 0,

for i > K (ℓ)
and it equals zero for i ≤ K (ℓ)

.

The case where x(t, x∗) ∈ Hs and x(t, x̃∗) ∈ E \ H cannot occur when x(t, x∗) ≤a x(t, x̃∗)

as

∑L
ℓ=1

y(ℓ)
K (ℓ) (t, x) = 1 and

∑L
ℓ=1

y(ℓ)
K (ℓ) (t, x) < 1 in such case. We continue with the case where

x(t, x∗) ∈ E \ H and x(t, x̃∗) ∈ Hs . If y
(ℓ)
i (t, x∗) = y(ℓ)i (t, x̃∗) for i ≤ K (ℓ)

, then y(ℓ)i (t, x∗) =

γℓ as y(ℓ)i (t, x̃∗) = γℓ . This implies that y(ℓ)i−1
(t, x∗) = γℓ and by (13) we see that

d
dty

(ℓ)
i (t, x∗) =

−µ(ℓ)i (y(ℓ)i (t, x∗) − y(ℓ)i+1
(t, x∗)) ≤ 0, while for i ≤ K (ℓ)

we have
d
dty

(ℓ)
i (t, x̃∗) = 0. When i > K (ℓ)

and

y(ℓ)i (t, x∗) = y(ℓ)i (t, x̃∗), we immediately see from (13) and (14) that
d
dty

(ℓ)
i (t, x̃∗) − d

dty
(ℓ)
i (t, x∗) ≥ 0.

We end by noting that we do not need to consider the cases with x(t, x∗) or x(t, x̃∗) inH \Hs as

we immediately leave this set and never return to it afterwards. �

Theorem 4. If the DI has a unique fixed point, it is a global attractor on E.

Proof. Using the order ≤a , we clearly have xmin ≤a x ≤a xmax for any x ∈ E, with (xmin)
(ℓ)
0
= γℓ

and (xmax )
(ℓ)

B(ℓ) = γℓ for ℓ = 1, . . . , L. Hence, by Theorem 3 it suffices to show that the trajectories

staring in xmin and xmax both converge to π . Now as xmin = x(0, xmin) ≤a x(t − s, xmin), we have

x(s, xmin) ≤a x(t, xmin) for any s < t . Further, x(t, xmin) ≤a π as xmin ≤a π and x(t, π ) = π . Hence,
x(t, xmin) converges as t tends to infinity and because E is a compact set, it converges to a fixed

point of the DI due to Theorem 1.4 in [11, p248]. By the uniqueness of the fixed point x(t, xmin)

converges to π . The argument starting in xmax proceeds similarly. �

Corollary 1. If the DI has a unique fixed point π , the sequence of stationary measures XN (∞) of
the finite state Markov chains XN (t) converges weakly to the dirac measure of the fixed point π .

4.1 Model validation
Before we proceed by identifying conditions for having a unique fixed point, we briefly study

the accuracy of the mean field approximation by comparing with simulation. The only difference

between the simulation and the mean field analysis is that the number of servers is finite in the

simulation.

We use the service rate curves µ(1)k and µ(2)k depicted in Figure 1. The service rate curve µ(1)k is the

same as in [10, 18], with maximum 1.25 at k = 4 and 5, while the service rate curve µ(2)k is similar

in shape, but with maximum 1.7 at k = 9 and 10. Table 1 contains simulation results for the mean

response time for various combinations of ρ and N ′
. The remaining parameters of the server cluster

are γ1 = 0.6, γ2 = 0.4, K (1) = 4 and K (2) = 9. The system load ρ is defined as ρ−1 = 1

λ
∑L

ℓ=1
γk µ

(ℓ)

K (ℓ) .
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Fig. 1. Typical service rate curves

ρ 0.6000 0.7000 0.8000 0.9000

N ′ = 10 3.5337 3.7642 3.9771 4.3590

N ′ = 20 3.5261 3.7550 3.9498 4.1752

N ′ = 40 3.5225 3.7509 3.9449 4.1094

N ′ = 80 3.5207 3.7490 3.9434 4.0955

N ′ = 160 3.5199 3.7478 3.9426 4.0942

mean field 3.5190 3.7467 3.9417 4.0942

Table 1. Mean response time for various system loads and number of servers

In Table 1, the mean field mean response time is calculated from (24), while the other elements

are obtained using simulations, with a deviation of less than 10
−4
. Table 1 shows that for the mean

response time, the mean field approximation is already very accurate even for N ′ = 10 when the

load is not too high. Convergence to the mean field limit can also be observed as N ′
increases.

Dispite the non-smoothness of the drift of the mean field model, it is also possible to develop a

refined mean field approximation using the method presented in [8]. Numerical experiments (not

reported in the paper) indicate that this further improves the accuracy of the mean field model for

small N ′
values as long as the fixed point is not too close to the boundary areaH where the drift is

discontinuous.

5 FIXED POINT ANALYSIS
5.1 Homogeneous server cluster
First we present the special case when the server cluster is homogeneous, that is, ℓ = 1, to display

some of the ideas with some easier calculations. In this case, we drop ℓ entirely from the notation

and just have a single service rate curve (µk ,k = 0, . . . ,K) for all servers and stationary mean-field

limit (πk ,k = 0, 1, . . . ,K).
The stability condition is now simply

µK > λ. (15)
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The corresponding version of (2) and (3) is that the arrival rate for a queue with k − 1 jobs is

λk−1(x) =


λ/a(x) if k ≤ K ;

0 if k > K and a(x) > 0;

λ if k > K and a(x) = 0.
(16)

while the service rate at the same queue is

µk (x) =

{
µk if k < K ;

µK if k ≥ K .
(17)

The fixed point equations can then be derived from (10) by setting dx(t)/dt = 0 to get

µkπk =
λπk−1

1 − πK
, for k = 1, . . . ,K, and π0 + · · · + πK = 1. (18)

The next theorem gives a sufficient condition for the existence of a unique fixed point.

Theorem 5. If µK > λ, (18) has an odd number of positive solutions. Further, if there exists an s ≥ 1

such that µ1, . . . , µs−1 ≤ λ ≤ µs , . . . , µK−1, then the solution is unique.

Proof. Rearranging (18) to express all πk in terms of πK gives

πk =
©«

K∏
j=k+1

µ j

λ

ª®¬ (1 − πK )
K−kπK k = 0, . . . ,K − 1

and

K−1∑
k=0

©«
K∏

j=k+1

µ j

λ

ª®¬ (1 − πK )
K−kπK = 1 − πK ,

which is a polynomial in x = 1 − πK :

K−1∑
k=0

©«
K∏

j=k+1

µ j

λ

ª®¬xK−k (1 − x) = x

After simplifying by x and re-indexing with i = K − 1 − k we have

K−1∑
i=0

(
K∏

j=K−i

µ j

λ

)
x i (1 − x) = 1.

which is equivalent to( µK
λ

− 1

)
+

K−1∑
i=1

(
K∏

j=K−i+1

µ j

λ

) ( µK−i

λ
− 1

)
x i −

(
K∏
j=1

µ j

λ

)
xK = 0.

The constant term is positive as µK > λ, the coefficient of xK is negative, which implies there

exists an odd number of positive solutions. Further if s is such that µ1, . . . , µs−1 ≤ λ ≤ µs , . . . , µK−1,

the middle coefficients change sign exactly once, so by Descartes’ rule of signs, the equation has

a unique positive solution. Putting in x = 0 and x = 1 also shows that the solution must be in

(0, 1). �

Due to Corollary 1 and Theorem 5, we have the following:

Corollary 2. If µK > λ and there exists an s ≥ 1 such that µ1, . . . , µs−1 ≤ λ ≤ µs , . . . , µK−1, then
the sequence of stationary measures XN (∞) of the finite state Markov chains XN (t) converges weakly
to the dirac measure of the fixed point π .
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π0 π1 π2 π3 type

0.000012 0.000236 0.017035 0.982717 stable

0.005934 0.013912 0.122323 0.857831 unstable

0.154791 0.101726 0.250698 0.492785 stable

Table 2. Three fixed points for a homogeneous system with K = 3, λ = 1, µ1 = 3, µ2 = 0.8 and µ3 = 1.003.

5.1.1 Multiple fixed points example. We now present an example that illustrates that there can be

multiple fixed points if we do not put any restrictions on the rates µk (apart from demanding that

µK > λ). Consider the system with K = 3, λ = 1, µ1 = 3, µ2 = 0.8 and µ3 = 1.003. This system has

three fixed points that are listed in Table 2. By linearization one finds that two of these fixed points

are stable (meaning any trajectory starting sufficiently close to the fixed point converges towards

this fixed point) and one is unstable.

For a finite N ′
, the stability regions of the stable fixed points correspond to quasi-stationary

distributions concentrated around the stable fixed point. The system spends very long periods of

time near one of the stable fixed points, but switches to another fixed point eventually. As N ′
is

increased, the time spent near a fixed point (before switching to another fixed point) gets longer

and longer, but remains finite and random for any finite N ′
.

Also, for larger values of K , it is possible to construct examples that have more than 3 fixed

points (e.g., 3 stable and 2 unstable for K = 5), but we do not pursue this direction.

5.2 Heterogeneous server cluster

In general, the balance equations for π (ℓ)
k are

µ(ℓ)k π (ℓ)
k =

λπ (ℓ)
k−1

1 −
∑L

ℓ=1
π (ℓ)

K (ℓ)

, (19)

for k = 0, . . . ,K (ℓ), ℓ = 1 . . . , L and

π (ℓ)
0
+ · · · + π (ℓ)

K (ℓ) = γℓ,

for ℓ = 1 . . . , L.

Theorem 6. Assuming the stability condition (1) holds, (19) has an odd number of positive solutions.
Further, if µ(ℓ)

1
≤ · · · ≤ µ(ℓ)

K (ℓ) holds for all 1 ≤ ℓ ≤ L, this solution is unique.

Proof. Similarly to Theorem 5, from (19) we get

π (ℓ)
k =

©«
K (ℓ)∏
j=k+1

µ(ℓ)j

λ

ª®¬
(
1 −

L∑
ℓ=1

π (ℓ)

K (ℓ)

)K (ℓ)−k

π (ℓ)

K (ℓ) (20)

for k = 0, . . . ,K (ℓ) − 1, ℓ = 1, . . . , L and

K (ℓ)−1∑
k=0

©«
K (ℓ)∏
j=k+1

µ(ℓ)j

λ

ª®¬
(
1 −

L∑
ℓ=1

π (ℓ)

K (ℓ)

)K (ℓ)−k

π (ℓ)

K (ℓ) + π
(ℓ)

K (ℓ) = γℓ

for ℓ = 1, . . . , L, from which

πK (ℓ) =
γℓ

1 +
∑K (ℓ)−1

k=0

(∏K (ℓ)

j=k+1

µ (ℓ)j
λ

) (
1 −

∑L
ℓ=1

π (ℓ)

K (ℓ)

)K (ℓ)−k
, (21)
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for ℓ = 1, . . . , L. We sum (21) for ℓ = 1, . . . , L to get

L∑
ℓ=1

πK (ℓ) =

L∑
ℓ=1

γℓ

1 +
∑K (ℓ)−1

k=0

(∏K (ℓ)

j=k+1

µ (ℓ)j
λ

) (
1 −

∑L
ℓ=1

π (ℓ)

K (ℓ)

)K (ℓ)−k
,

which only depends on x = 1 −
∑L

ℓ=1
πK (ℓ) :

1 − x =
L∑

ℓ=1

γℓ

1 +
∑K (ℓ)−1

k=0

(∏K (ℓ)

j=k+1

µ (ℓ)j
λ

)
xK (ℓ)−k

. (22)

If we subtract 1 from both sides, divide by −x and use the fact that

∑
ℓ γℓ = 1, we get

1 =

L∑
ℓ=1

γℓ
∑K (ℓ)−1

k=0

(∏K (ℓ)

j=k+1

µ (ℓ)j
λ

)
xK

(ℓ)−k−1

1 + x
∑K (ℓ)−1

k=0

(∏K (ℓ)

j=k+1

µ (ℓ)j
λ

)
xK (ℓ)−k−1

=

L∑
ℓ=1

γℓ
∑K (ℓ)−1

i=0

(∏K (ℓ)

j=K (ℓ)−i

µ (ℓ)j
λ

)
x i

1 + x
∑K (ℓ)−1

i=0

(∏K (ℓ)

j=K (ℓ)−i

µ (ℓ)j
λ

)
x i
. (23)

This can be written as 1 = P(x) =
∑

ℓ γℓpℓ(x)/(1 + xpℓ(x)), where pℓ(x) =
∑K (ℓ)−1

i=0
a(ℓ)i x i and

a(ℓ)i =
∏K (ℓ)

j=K (ℓ)−i µ
(ℓ)
j /λ. By (1) we have P(0) > 1 and as

∑
ℓ γℓ = 1 we further have that P(1) < 1.

Hence, there exists an odd number of solutions x ∈ (0, 1) such that P(x) = 1 (as P(x) is continuous).

We now show that P(x) is decreasing on (0, 1) if the condition µ(ℓ)
1

≤ · · · ≤ µ(ℓ)
K (ℓ) holds and

therefore there exists a unique x ∈ (0, 1) such that P(x) = 1. P(x) is clearly decreasing if pℓ(x)/(1 +
xpℓ(x)) is decreasing in x for ℓ = 1, . . . , L. Taking the derivative we see that pℓ(x)/(1 + xpℓ(x))
decreases if p ′l (x) < pℓ(x)

2
. Both p ′l (x) and pℓ(x)

2
are polynomials in x and by comparing the

coefficients, we see that p ′l (x) < pℓ(x)
2
if (i + 1)a(ℓ)i+1

≤
∑i

s=0
a(ℓ)s a(ℓ)i−s for i = 0, . . . ,K (ℓ) − 2. Now,

i∑
s=0

a(ℓ)s a(ℓ)i−s =

i∑
s=0

K (ℓ)∏
j=K (ℓ)−s

µ(ℓ)j

λ

K (ℓ)∏
j′=K (ℓ)−(i−s)

µ(ℓ)j′

λ
≥

i∑
s=0

K (ℓ)∏
j=K (ℓ)−s

µ(ℓ)j

λ

K (ℓ)−s−1∏
j′=K (ℓ)−i−1

µ(ℓ)j′

λ
= (i + 1)a(ℓ)i+1

.

Having found

∑L
ℓ=1

π (ℓ)

K (ℓ) , we immediately have π (ℓ)

K (ℓ) from (21) and the remaining entries π (ℓ)
k

with k < K (ℓ)
follow from (20). �

Due to Corollary 1 and Theorem 6, we have the following:

Corollary 3. If µK > λ and if µ(ℓ)
1

≤ · · · ≤ µ(ℓ)
K (ℓ) holds for all 1 ≤ ℓ ≤ L, then the sequence of

stationary measures XN (∞) of the finite state Markov chains XN (t) converges weakly to the dirac
measure of the fixed point π .

6 RESPONSE TIME DISTRIBUTION
In case we have a unique fixed point π , we can also compute the limiting response time distribution.

Let R(s) be the Laplace transform of the response time distribution of a job and R(ℓ)
k (s) the Laplace

transform of the response time distribution of a job that is assigned to a type ℓ server that contained
k − 1 jobs on arrival. Clearly we have

R(s) =
L∑

ℓ=1

K (ℓ)∑
k=1

π (ℓ)
k−1

1 −
∑L

ℓ=1
π (ℓ)

K (ℓ)

R(ℓ)
k (s),
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N ′ q(0.1) q(0.2) q(0.3) q(0.4) q(0.5) q(0.6) q(0.7) q(0.8) q(0.9) q(0.99)

10 0.370 0.789 1.270 1.831 2.502 3.334 4.425 5.996 8.770 18.690

20 0.370 0.788 1.267 1.827 2.497 3.328 4.416 5.982 8.747 18.636

40 0.370 0.788 1.266 1.825 2.494 3.324 4.411 5.975 8.736 18.611

80 0.369 0.787 1.266 1.825 2.493 3.322 4.408 5.972 8.731 18.600

160 0.369 0.787 1.266 1.824 2.493 3.322 4.408 5.971 8.729 18.595

mean field 0.369 0.787 1.265 1.824 2.492 3.321 4.406 5.969 8.727 18.592

Table 3. Response time distribution quantiles

as all the incoming jobs are randomly assigned among the servers that have a queue length below

the threshold. Denote λ∗ = λ/(1 −
∑L

ℓ=1
π (ℓ)

K (ℓ) ) as the arrival rate of a server with a queue length

below its threshold. Then, due to the exponential service time and the fact that the servers use

processor sharing, we obtain the following set of equations:

R(ℓ)
1
(s) =

µ(ℓ)
1

s + λ∗ + µ(ℓ)
1

+
λ∗

s + λ∗ + µ(ℓ)
1

R(ℓ)
2
(s),

R(ℓ)
k (s) =

µ(ℓ)k

s + λ∗ + µ(ℓ)k

(
1

k
+
k − 1

k
R(ℓ)
k−1

(s)

)
+

λ∗

s + λ∗ + µ(ℓ)k

R(ℓ)
k+1

(s) (1 < k < K (ℓ)),

R(ℓ)

K (ℓ) (s) =
µ(ℓ)
K (ℓ)

s + µ(ℓ)
K (ℓ)

(
1

K (ℓ)
+
K (ℓ) − 1

K (ℓ)
R(ℓ)

K (ℓ)−1

(s)

)
.

Hence, we obtain ℓ linear systems of equations, where the ℓ-th system is of size K (ℓ)
. For a given s

we can numerically solve these linear systems of equations and therefore compute the response

time distribution by numerically inverting the Laplace transform [1, 12].

Table 3 uses the same two class setup as in Table 1, and displays some quantiles of the response

time distribution for N ′ = 10, 20, 40, 80, 160 as well as the mean field limit. The system load is

ρ = 0.7.
The mean field mean response time is calculated from numerical Laplace inversion using con-

centrated matrix exponential distributions of order 100 which guarantee a precision of 10
−4

[12],

while the other elements are obtained using simulations with a deviation of less than 10
−3
. q(0.1)

denotes the 10% quantile of the response time distribution etc.

Note that the mean response time E[R] can be obtained directly from the fixed point π using

Little’s law, that is,

E[R] =
1

λ

L∑
ℓ=1

K (ℓ)∑
k=1

kπ (ℓ)
k . (24)

7 OPTIMAL THRESHOLD SETTING
We give a method for configuring the thresholds in the system to minimize mean response time and

related metrics. Specifically, we consider cost functions c̄ that can be described by a single-server

cost function c in the following way:

c̄ =
∑
ℓ,k

π (ℓ)
k c(ℓ)k .

Some examples of possible objectives are:
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• Minimize mean number in system, and thereby mean respone time, with c(ℓ)k = k .
• Minimize energy consumption by setting

c(ℓ)k = r
(ℓ)
k + µ

(ℓ)
k s(ℓ)k ,

where r (ℓ)k and s(ℓ)k are the energy costs of running the server and switching between jobs,

respectively.

The key idea is the following: within a group of servers of the same type there is no need to

enforce all servers within that group to use the same threshold K (ℓ)
. If we demand that all servers

of the same type must use the same threshold, the optimization problem would be much harder.

Note that our model allows us to analyze systems where we split some server types into a finite

number of subtypes, as this is equivalent to a system with an increased number of server types. We

will show that the optimal threshold settings will be such that all servers belonging to the same type
use the same threshold, except for (at most) one server type that must be split into two server subtypes.
Using this key idea and assuming the service rate curves are increasing up to the point K (ℓ)

∗ =

argmaxk µ
(ℓ)
k , the system can have any limiting distribution π ≥ 0 as long as it satisfies the con-

straints

L∑
ℓ=1

K (ℓ)
∗∑

k=1

π (ℓ)
k µ(ℓ)k = λ, (25)

K (ℓ)
∗∑

k=1

π (ℓ)
k = γ

(ℓ), (26)

for ℓ = 1, . . . , L. Indeed, all we need to do is to set the threshold and MPL of a fraction π (ℓ)
k /γ (ℓ)

of

the type ℓ servers to k . In this manner, in the mean field regime, all the servers will have a constant

queue length equal to their threshold/MPL (due to the increasing nature of the service rate curve

until it reaches its maximum).

Maximizing c̄ subject to the above constraints is a linear program. In the rest of this section we

show that the linear program has a specific structure that makes it especially easy to solve, yielding

a simple description of the optimal threshold configuration.

7.1 Homogeneous Servers
We start with the case of homogeneous servers, meaning every server has the same type, so we

drop the superscripts from our notation.

Define the point pk = (µk , ck ), for k = 1, . . . ,K , and p0 = (0, 0), and let P = {p0, . . . ,pK }. We can

visualize the optimization problem by plotting the points in P on a plane. The point

p̄ =
∑
k

πkpk

describes the overall system behavior: its first coordinate is the average service rate

∑
k πk µk , which

is constrained to be λ, and its second coordinate is the average cost c̄ =
∑

k πkck (i.e., queue length

if we set ck = k).
The point p̄ is a convex combination of the points in P , so the polytope conv(P) is the achievable

region of (λ, c̄) pairs. Moreover, given the arrival rate λ, the optimal point p̄ lies on the lower

boundary of conv(P), meaning it is on a line segment between two vertices of the polytope (see

Figure 2 for an illustration). This means that the optimal server configuration is given by the

following procedure:

(1) Find the set Ξ of values of k such that pk is on the lower boundary of conv(P). This step needs
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c1 = 1

c2 = 2

c3 = 3

c4 = 4

c5 = 5

c6 = 6

c7 = 7

c8 = 8

1 2 3 4

λ

E[Q]

2.3p0

p1

p2

p3

p4

p5

p6

p7

p8

Fig. 2. Illustration of polytope conv(P) for µ1 = 1, µ2 = 1.6, µ3 = 2.7, µ4 = 3, µ5 = 3.8, µ6 = 4, µ7 = 3.9 and
µ8 = 3.7. The mean queue length is minimized for λ = 2.3 when a fraction 4/17 of the servers set their
threshold at 1 and the remaining servers set their threshold at 3.

to be done just once, as the result can be reused for every arrival rate λ.
(2) Given an arrival rate λ, find the values of k1,k2 ∈ Ξ with service rates immediately below and

above λ. That is, k1 = arg maxk ∈Ξ{µk |µk ≤ λ} and k2 = arg mink ∈Ξ{µk |µk > λ}. Set every server’s

threshold to either k1 or k2 such that the overall service rate is λ:

πk1
=

µk2
− λ

µk2
− µk1

,

πk2
=

λ − µk1

µk2
− µk1

.

Note that the lower boundary of the polytope conv(P) is the same as the lower bound of the polytope

formed by the points P = {p0, . . . ,pK∗
} with K∗ = arg maxk µk . In Figure 2 the set Ξ = {0, 1, 3, 5, 6}

and for λ = 2.3 we find π1 = 4/17 and π3 = 13/17. An immediate corollary is the following:

Corollary 4. The minimization objective c̄ under the constraints (25) and (26) as a function of λ
is convex, nondecreasing, and piecewise linear if we assume that ck is nondecreasing in k and µk is
increasing up to K∗ = arg maxk µk .

7.2 Heterogeneous Servers
We now turn to the case of heterogeneous servers. Roughly speaking, we split the problem into

homogeneous subproblems, solve each one as in the previous subsection, then combine the solutions.

Assume that the arrival rate to the type ℓ servers is λ(ℓ) with
∑

ℓ λ
(ℓ) = λ. In order to find the

optimal threshold settings for the type ℓ servers, given λ(ℓ), we can simply study the optimal setting

in a homogeneous system where all the servers are of type ℓ and the overall arrival rate equals

λ(ℓ)/γ (ℓ)
. Thus it suffices to determine the optimal arrival rates λ(ℓ) at which jobs are dispatched to

type ℓ servers and to use the results of the homogeneous setting.

Recall from the homogeneous case that the optimal cost is a convex, nondecreasing, piecewise

linear function of the arrival rate. So if we increase the overall arrival rate λ =
∑

ℓ λ
(ℓ)

by a

sufficiently small amount δ , it is optimal to “allocate” that δ to whichever server type ℓ∗ has the
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(a) Optimalmean queue length for type 1 and type 2 servers when µ(1)
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= 1, µ

(1)

2
= 1.55, µ

(1)

3
= 2, µ

(1)

4
= 1.8

and µ
(2)

1
= 0.9, µ

(2)

2
= 1.6, µ

(2)

3
= 2.1, µ

(2)

4
= 2.2.

c1 = 1

c2 = 2

c3 = 3

c4 = 4

1 2

λ

E[Q]

(0.3, 0.3)

(0.93, 1)

(1.42, 1.7)
(1.585, 2)

(1.935, 2.7)

(2.07, 3)

(2.14, 3.7)

(b) Stitched optimal mean queue length when γ (1) = 0.3 and γ (2) = 0.7

Fig. 3. Illustration of achievable region polytopes for heterogeneous system with two server types

least marginal cost, that is, for which the slope in λ(ℓ)/γ (ℓ)
is the smallest (where ties can be broken

arbitrarily).

The resulting optimal cost curve has a simple geometric interpretation: take the optimal cost

curves for each type ℓ (see Figure 3a), sort all the line segments by slope, then arrange them

end-to-end to create one big curve (see Figure 3b). This means that in general, all but one server

type will have a single threshold, and that last server type ℓ∗ is split between two thresholds such

that λ =
∑

ℓ λℓ . In Figure 3b the slopes coming from type 1 are solid, while those coming from type

2 are dashed. Thus, if we want to minimize E[Q] for λ ∈ (0.93, 1.42) we should set the threshold of

the type 1 servers to one and split the type 2 servers in two groups where one group has threshold

1 and the other threshold value 2 (as λ falls into the second dashed slope and there is one solid

slope that precedes the second dashed one). If we modify the fractions γℓ we can still use the same

slopes in the exact same order, but only need to modify how long they last.
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Fig. 4. Illustration of the sensitivity of the thresholds settings for the service rate curves shown in Figure 1
with γ (1) = 0.3 and γ (2) = 0.7.

7.3 Guaranteed Mean Response Time
In a real system the arrival rate λ changes over time and as such one needs to reset the thresholds

whenever such a change occurs in order to minimize the mean response time. Further the exact

service rate curves can also be hard to estimate. In addition, the mean response time may be quite

sensitive to the exact settings of the thresholds as illustrated in Figure 4. In this Figure we used the

service rate curves of Figure 1 and depict the relative increase in the mean response time if the

thresholds are not set in an optimal manner. The No split opt curve corresponds to the setting where
we do not split one of the homogeneous groups of servers into two subgroups, which is needed to

achieve a minimum mean response time. The No split opt + a curves are identical, but in addition

we also increased all thresholds by a (with an upper bound of arg maxk µ
(ℓ)
k for a type ℓ server).

The curve with the square markers corresponds to using fixed thresholds equal to arg maxk µ
(ℓ)
k . If

the thresholds are not set in the optimal manner, but somewhat larger, some jobs could be served

more efficiently by another server. Surprisingly, even a little bit of this type of inefficiency degrades

performance significantly as the No split opt + a curves with a = 1 and a = 2 quickly approach the

fixed threshold curve. Thus, if a system designer uses a conservative estimate of the service rate

curves or a loose upper bound for the arrival rate λ, performance may be significantly worse than

optimal.

As a system designer may be mostly interested in guaranteeing a certain performance, it may

suffice to make sure that the mean response time is below some predefined target, instead of

necessarily minimizing the mean response time. The result in the previous two subsections can

also be leveraged for exactly this purpose.

Suppose we know that the arrival rate lies somewhere between 0 and some λmax . Given a feasible

target mean response time E[R](tarдet ), we propose to set the thresholds in the following manner.

Let E[Q](tarдet ) = E[R](tarдet )/λmax and determine the arrival rate λ∗ for which the minimum

mean queue length equals E[Q](tarдet ). If λ∗ < λmax , the target mean response time E[R](tarдet ) is
not feasible. Otherwise, if λ∗ > λmax , we suggest to use the threshold setting that minimizes the

mean response time when arrival rate equals λ∗. This should typically suffice to guarantee that
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l µ(ℓ)
0

µ(ℓ)
1

µ(ℓ)
2

µ(ℓ)
3

µ(ℓ)
4

µ(ℓ)
5

µ(ℓ)
6

1 0.5 0.6 0.8 0.85 1 1.2 1.2

2 0.5 0.65 0.8 0.9 1.05 1.2 1.2

Table 4. Service rate curves used in simulation experiments with non-exponential job sizes.

N ′ SCV ℓ π (ℓ)
0

π (ℓ)
1

π (ℓ)
2

π (ℓ)
3

π (ℓ)
4

π (ℓ)
5

π (ℓ)
6

π (ℓ)
7

π (ℓ)
8

π (ℓ)
9

12 1 1 .0007 .0024 .0073 .0177 .0448 .1148 .3399 .0783 .0325 .0147

2 .0280 .1388 .0410 .0271 .0196 .0148 .0115 .0092 .0075 .0060

10 1 .0007 .0026 .0078 .0190 .0460 .1118 .3034 .0709 .0338 .0189

2 .0269 .0926 .0223 .0148 .0112 .0093 .0081 .0071 .0065 .0059

102 1 1 .0002 .0008 .0034 .0116 .0402 .1326 .4680 .0086 .0011 .0002

2 .0368 .2845 .0092 .0020 .0005 .0002 .0001 .0000 .0000 .0000

10 1 .0002 .0008 .0034 .0116 .0403 .1321 .4638 .0112 .0022 .0006

2 .0368 .2588 .0183 .0075 .0040 .0024 .0015 .0010 .0007 .0005

1020 1 1 .0001 .0003 .0020 .0089 .0385 .1453 .4715 0 0 0

2 .0383 .2950 .0000 0 0 0 0 0 0 0

10 1 .0001 .0004 .0021 .0090 .0386 .1454 .4711 0 0 0

2 .0384 .2950 0 0 0 0 0 0 0 0

mean field limit 1 .0000 .0003 .0018 .0085 .0383 .1470 .4708 0 0 0

2 .0384 .2950 0 0 0 0 0 0 0 0

Table 5. Simulation results that suggest asymptotic insensitivity of the queue length distributions with
respect to the job size distribution for a system with a load ρ = 27/29.

the mean response time is below the target E[R](tarдet ) for any λ < λmax as the mean response

time typically increases with the arrival rate. However for exotic service rate curves the mean

response time may not be monotone in the arrival rate. We do know that this threshold setting

guarantees a mean queue length below E[Q](tarдet ) for any λ < λ∗, as all queues have a length that

is upper bounded by the threshold value for λ < λ∗ and the mean threshold value is by design

exactly E[Q](tarдet ).
We could also set the thresholds such that the mean response time is minimized when the arrival

rate equals λmax . This however would imply that we use smaller threshold values and therefore

we expect that the queue lengths at the servers are typically closer to the threshold, which yields a

higher communication overhead. Further, if we use the thresholds associated with λmax the system

load can get arbitrarily close to 1, which means that a very large finite system may be needed for

the mean field model to be highly accurate.

8 ASYMPTOTIC INSENSITIVITY
The mean field model presented in this paper assumed an exponential job size distribution, while in

real systems jobs tend to be more variable. We believe however that the mean field limit obtained

and studied in this paper is also the proper limit in case of non-exponential job sizes. Thus, we

believe that the queue length distribution is asymptotically insensitive to the job size distribution.

Note this type of asymptotic insensitivity is known to hold for JIQ [17] and is believed to hold for

JSQ-d with processor sharing servers [2, 19].

The main reason why we believe that asymptotic insensitivity holds is that in the limit we expect

that the fraction of jobs that is assigned at random tends to zero (if the load is below one) and
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therefore each server behaves as an M/G/1 processor sharing server with queue length dependent

arrival and service rates. The queue length distribution of such queues is known to be insensitive

to the job size distribution [3]. In our case the arrival rate is fixed for any queue length below the

threshold and zero otherwise.

To support this belief we also performed simulation experiments where we compare the queue

length distribution of a system with exponential job sizes to that with hyperexponential job sizes

with balanced means and a squared coefficient of variation (SCV) equal to 10. We used an arbitrarily

selected system with 2 types of servers with γ1 = 2/3, K (1) = 6, K (2) = 1 and λ = 0.9. The service
rate curves are shown in Table 4. Table 5 strengthens our believe as the queue length distributions

for both job size distributions become nearly indistinguishable from each other as the number of

servers N ′
becomes large. For N ′

small we see that the tail of the distribution for the more variable

job sizes decays more slowly as expected. Note that the load in this experiment is quite high, being

27/29. Additional experiments (not reported in the paper) suggest that the job size distribution

matters less for lower loads.

Note that by Little’s law insensitivity with respect to the job size distribution also implies that the

mean response time is insensitive. The response time distribution clearly depends on the complete

job size distribution. As we expect that all arriving jobs in the mean field regime can immediately

commence service and a minimal service rate is guaranteed, the tail behavior of the response time

distribution should be the same as that of the job size distribution.

9 CONCLUSIONS
In this paper we studied the Join-Below-Threshold (JBT) load balancing policy in a heterogeneous

system of resource sharing servers in the mean field regime under exponential job sizes. JBT is

a natural generalization of the Join-Idle-Queue policy for resource sharing servers. We proved

convergence of the stationary measures to the fixed point of the mean field model, provided that

it is unique. We derive simple sufficient conditions for the existence of a unique fixed point and

illustrated that for arbitrary service rate curves metastability can occur. We showed how to optimize

the mean response time and presented some simulation experiments that suggest that the queue

length distribution is asymptotically insensitive to the job size distribution.

A possible extension to this work is developing a mean field model for more general service

times and proving asymptotic insensitivity. In addition in a heterogeneous cluster one can also

consider variations of JBT that take the server speeds into account when assigning jobs (instead of

blindly picking a server with a queue length below its threshold).
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