
Ziv Scully 
Lucas van Kreveld 
Onno Boxma 
Jan-Pieter Dorsman 
Adam Wierman

Characterizing Policies with 
Optimal Response Time Tails 
under Heavy-Tailed Job Sizes

1

CMU 
UvA 
TU/e 
UvA 
Caltech



M/G/1 Queue

2



M/G/1 Queue

2

serverqueue



M/G/1 Queue

2

serverqueue

job



size 
(unknown)

M/G/1 Queue

2

serverqueue

job



size 
(unknown)

M/G/1 Queue

2

serverqueue

job



size 
(unknown)

M/G/1 Queue

2

serverqueue

job



size 
(unknown)

M/G/1 Queue

2

serverqueue

job



size 
(unknown)

M/G/1 Queue

2

serverqueue

age

remaining size
job



size 
(unknown)

M/G/1 Queue

2

serverqueue

age

remaining size

random 
arrivals

job



size 
(unknown)

M/G/1 Queue

2

serverqueue

age

remaining size

random 
arrivals

job



size 
(unknown)

M/G/1 Queue

2

serverqueue

age

remaining size

random 
arrivals

job

X = job size r.v.

� = arrival rate

⇢ = �E[X ]< 1



size 
(unknown)

M/G/1 Queue

2

serverqueue

age

remaining size

random 
arrivals

job

X = job size r.v.

� = arrival rate

⇢ = �E[X ]< 1

Scheduling policy: 
picks which job to serve



size 
(unknown)

M/G/1 Queue

2

serverqueue

age

remaining size

random 
arrivals

job

X = job size r.v.

� = arrival rate

⇢ = �E[X ]< 1

Scheduling policy: 
picks which job to serve



size 
(unknown)

M/G/1 Queue

2

serverqueue

age

remaining size

random 
arrivals

job

X = job size r.v.

� = arrival rate

⇢ = �E[X ]< 1

Scheduling policy: 
picks which job to serve



size 
(unknown)

M/G/1 Queue

2

serverqueue

age

remaining size

random 
arrivals

job

X = job size r.v.

� = arrival rate

⇢ = �E[X ]< 1

Scheduling policy: 
picks which job to serve



size 
(unknown)

M/G/1 Queue

2

serverqueue

age

remaining size

random 
arrivals

job

X = job size r.v.

� = arrival rate

⇢ = �E[X ]< 1

Scheduling policy: 
picks which job to serve



Response Time

3



Response Time

3



Response Time

3

= T = response time



Response Time

3

= T = response time



Response Time

3

= T = response time

Goal: schedule to minimize two metrics



Response Time

3

= T = response time

Goal: schedule to minimize two metrics
• mean response time E[T]



Response Time

3

= T = response time

Goal: schedule to minimize two metrics
• mean response time E[T]
• tail of response time P[T > t]



Response Time

3

= T = response time

Goal: schedule to minimize two metrics
• mean response time E[T]
• tail of response time P[T > t] t !1 limit



Response Time

3

= T = response time

Goal: schedule to minimize two metrics
• mean response time E[T]
• tail of response time P[T > t] t !1 limit

Setting: heavy-tailed job size X



Response Time

3

= T = response time

Goal: schedule to minimize two metrics
• mean response time E[T]
• tail of response time P[T > t] t !1 limit

“P[X > x] = ⇥(x�↵) ”

Setting: heavy-tailed job size X



Scheduling with Heavy Tails

4



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

First Come, 
First Served

FCFS



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

First Come, 
First Served

FCFS bad



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

First Come, 
First Served

worstFCFS bad



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

First Come, 
First Served

P[T > t] = ⇥(t) · P[X > t]

worstFCFS bad



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Processor 
Sharing

worstFCFS
PS

bad



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Processor 
Sharing

worstFCFS
PS

bad
okay



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Processor 
Sharing

worst
best

FCFS
PS

bad
okay



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Processor 
Sharing

P[T > t] = ⇥(1) · P[X > t]

worst
best

FCFS
PS

bad
okay



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Foreground-
Background

worst
best

FCFS
PS
FB

bad
okay



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Foreground-
Background

worst
best

FCFS
PS
FB

bad
okay

serves job 
of least age



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Foreground-
Background

worst
best

FCFS
PS
FB

bad
okay
good

serves job 
of least age



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Foreground-
Background

worst
best
best

FCFS
PS
FB

bad
okay
good

serves job 
of least age



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Foreground-
Background

P[T > t] = ⇥(1) · P[X > t]

worst
best
best

FCFS
PS
FB

bad
okay
good

serves job 
of least age



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

prioritize by 
Gittins rank

worst
best
best

FCFS
PS
FB
Gittins

bad
okay
good



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

prioritize by 
Gittins rank

worst
best
best

FCFS
PS
FB
Gittins

bad
okay
good
best



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

prioritize by 
Gittins rank

worst
best
best
???

FCFS
PS
FB
Gittins

bad
okay
good
best



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Monotonic Shortest 
Expected Remaining 

Processing Time

worst
best
best
???

FCFS
PS
FB
Gittins
M-SERPT

bad
okay
good
best



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Monotonic Shortest 
Expected Remaining 

Processing Time

worst
best
best
???

FCFS
PS
FB
Gittins
M-SERPT

bad
okay
good
best
5-approx.



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Monotonic Shortest 
Expected Remaining 

Processing Time

worst
best
best
???
???

FCFS
PS
FB
Gittins
M-SERPT

bad
okay
good
best
5-approx.



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Randomized 
Multi-Level 
Feedback

worst
best
best
???
???

FCFS
PS
FB
Gittins
M-SERPT
RMLF

bad
okay
good
best
5-approx.



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Randomized 
Multi-Level 
Feedback

worst
best
best
???
???

FCFS
PS
FB
Gittins
M-SERPT
RMLF

bad
okay
good
best
5-approx.
best (X unknown)



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

Randomized 
Multi-Level 
Feedback

worst
best
best
???
???
???

FCFS
PS
FB
Gittins
M-SERPT
RMLF

bad
okay
good
best
5-approx.
best (X unknown)



Scheduling with Heavy Tails

4

Mean E[T] Tail P[T > t]Policy

t !1 limit

worst
best
best
???
???
???

FCFS
PS
FB
Gittins
M-SERPT
RMLF

bad
okay
good
best
5-approx.
best (X unknown)



Question: 
can we optimize both mean 
and tail of response time?

5



Scheduling with Heavy Tails

6

Mean E[T] Tail P[T > t]Policy

t !1 limit

worst 
best 
best 
??? 
??? 
???

FCFS 
PS 
FB 
Gittins 
M-SERPT 
RMLF

bad 
okay 
good 
best 
5-approx. 
best (X unknown)



Scheduling with Heavy Tails

6

Mean E[T] Tail P[T > t]Policy

t !1 limit

worst 
best 
best 
??? 
??? 
???

FCFS 
PS 
FB 
Gittins 
M-SERPT 
RMLF

bad 
okay 
good 
best 
5-approx. 
best (X unknown)



Scheduling with Heavy Tails

6

Mean E[T] Tail P[T > t]Policy

t !1 limit

worst 
best 
best 
??? 
??? 
???

FCFS 
PS 
FB 
Gittins 
M-SERPT 
RMLF

bad 
okay 
good 
best 
5-approx. 
best (X unknown)

new!

best* 
best 
best

best* 
best 
best



Our contribution: 
a sufficient condition for 

optimal response time tail

7



Our contribution: 
a sufficient condition for 

optimal response time tail

7

Gittins, M-SERPT, 
RMLF, and more…



Our contribution: 
a sufficient condition for 

optimal response time tail

7

Gittins, M-SERPT, 
RMLF, and more…

… all asymptotically 
optimize P[T > t]



Our contribution: 
a sufficient condition for 

optimal response time tail

7

Gittins, M-SERPT, 
RMLF, and more…

… all asymptotically 
optimize P[T > t]

t !1 limit



Outline

8

Part 2: sketch proof techniques

Part 1: formally state results

E[Bp]



Part 1: 
formally state results

9



Part 1: 
formally state results

9

easy version of



10

Our contribution: 
a sufficient condition for 

optimal response time tail



10

Our contribution: 
a sufficient condition for 

optimal response time tail

Question: What does a sufficient condition 
look like?



10

Our contribution: 
a sufficient condition for 

optimal response time tail

Question: What does a sufficient condition 
look like?
• “Don’t let small jobs get stuck behind large jobs”



10

Our contribution: 
a sufficient condition for 

optimal response time tail

Question: What does a sufficient condition 
look like?
• “Don’t let small jobs get stuck behind large jobs”
• How to formalize?



Describing Policies with SOAP

11

Scheduling policy: 
picks which job to serve



Describing Policies with SOAP

11

SOAP scheduling policy: 
picks which job to serve 
using a rank function

Scheduling policy: 
picks which job to serve



Describing Policies with SOAP

11

SOAP scheduling policy: 
picks which job to serve 
using a rank function

Scheduling policy: 
picks which job to serve

r : age! rank



Describing Policies with SOAP

11

SOAP scheduling policy: 
picks which job to serve 
using a rank function

Scheduling policy: 
picks which job to serve

r : age! rank

age



Describing Policies with SOAP

11

SOAP scheduling policy: 
picks which job to serve 
using a rank function

Scheduling policy: 
picks which job to serve

r : age! rank

age

a job’s priority 
(lower is better)



Describing Policies with SOAP

11

SOAP scheduling policy: 
picks which job to serve 
using a rank function

Scheduling policy: 
picks which job to serve

r : age! rank

age

a job’s priority 
(lower is better) age

rank

FB

lo
w

er
 is

 b
et

te
r



Describing Policies with SOAP

11

SOAP scheduling policy: 
picks which job to serve 
using a rank function

Scheduling policy: 
picks which job to serve

r : age! rank

age

a job’s priority 
(lower is better) age

rank

FB

lo
w

er
 is

 b
et

te
r

serves job 
of least age



Describing Policies with SOAP

11

SOAP scheduling policy: 
picks which job to serve 
using a rank function

Scheduling policy: 
picks which job to serve

r : age! rank

age

a job’s priority 
(lower is better) age

rank

FB

lo
w

er
 is

 b
et

te
r

r(a) = a

serves job 
of least age



Wide Range of SOAP Policies

12

One rule of SOAP: 
always serve job of minimum rank 

(break ties FCFS)



Wide Range of SOAP Policies

12

One rule of SOAP: 
always serve job of minimum rank 

(break ties FCFS)

age

rank

FB
r(a) = a



Wide Range of SOAP Policies

12

One rule of SOAP: 
always serve job of minimum rank 

(break ties FCFS)

age

rank

FB
r(a) = a

age

rank

FCFS



Wide Range of SOAP Policies

12

One rule of SOAP: 
always serve job of minimum rank 

(break ties FCFS)

age

rank

FB
r(a) = a

age

rank

FCFS
r(a) = 1



Wide Range of SOAP Policies

12

One rule of SOAP: 
always serve job of minimum rank 

(break ties FCFS)

age

rank

FB
r(a) = a

age

rank

FCFS
r(a) = 1

worst tail best tail



Wide Range of SOAP Policies

12

One rule of SOAP: 
always serve job of minimum rank 

(break ties FCFS)

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1

worst tail best tail



Wide Range of SOAP Policies

12

One rule of SOAP: 
always serve job of minimum rank 

(break ties FCFS)

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

worst tail best tail



Wide Range of SOAP Policies

12

One rule of SOAP: 
always serve job of minimum rank 

(break ties FCFS)

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

… with some 
randomization

worst tail best tail



Wide Range of SOAP Policies

12

One rule of SOAP: 
always serve job of minimum rank 

(break ties FCFS)

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

… with some 
randomization

worst tail ??? best tail



13

Our contribution: 
a sufficient condition for 

optimal response time tail



13

Our contribution: 
a sufficient condition for 

optimal response time tail



13

Our contribution: 
a sufficient condition for 

optimal response time tail

For SOAP policies: want a 
condition on the rank function



Sufficient Condition

14

age

rank



Sufficient Condition

14

my size
age

rank



Sufficient Condition

14

my size
age

rank

my worst 
ever rank



Sufficient Condition

14

my size
age

rank

big jobs

my worst 
ever rank



Sufficient Condition

14

my size
age

rank

big jobs

Big jobs get 
in my way!

my worst 
ever rank



Sufficient Condition

14

my size
age

rank

big jobs
age

rank

Big jobs get 
in my way!

my worst 
ever rank



Sufficient Condition

14

my size my size
age

rank

big jobs
age

rank

Big jobs get 
in my way!

my worst 
ever rank



Sufficient Condition

14

my size my size
age

rank

big jobs
age

rank

Big jobs get 
in my way!

my worst 
ever rank

my worst 
ever rank



Sufficient Condition

14

my size my size
age

rank

big jobs
age

rank

No big jobs 
bothering me

Big jobs get 
in my way!

my worst 
ever rank

my worst 
ever rank



Sufficient Condition

14

my size
age

rank

big jobs
age

rank

No big jobs 
bothering me

Big jobs get 
in my way!

my worst 
ever rank



Sufficient Condition

14

my size
age

rank

big jobs
age

rank

No big jobs 
bothering me

Big jobs get 
in my way!

my worst 
ever rank

⌦(a���) r(a) O(a���)

Suppose for some ��� � ���> 0:



Sufficient Condition

14

my size
age

rank

big jobs
age

rank

No big jobs 
bothering me

Big jobs get 
in my way!

my worst 
ever rank

⌦(a���) r(a) O(a���)

Suppose for some ��� � ���> 0:



Sufficient Condition

14

my size
age

rank

big jobs
age

rank

No big jobs 
bothering me

Big jobs get 
in my way!

my worst 
ever rank

⌦(a���) r(a) O(a���)

Suppose for some ��� � ���> 0:

Want ��� and ���
to be close



15

Main theorem: Consider an M/G/1 queue whose job size 
distribution X is intermediate regularly varying and satisfies

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � ↵> 1, a!1)



15

and suppose a SOAP policy with rank function r satisfies⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � �> 0, a!1)

Main theorem: Consider an M/G/1 queue whose job size 
distribution X is intermediate regularly varying and satisfies

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � ↵> 1, a!1)



15

and suppose a SOAP policy with rank function r satisfies⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � �> 0, a!1)

Main theorem: Consider an M/G/1 queue whose job size 
distribution X is intermediate regularly varying and satisfies

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � ↵> 1, a!1)

age

rank
O(a�)

⌦(a�)



15

Then if

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

and suppose a SOAP policy with rank function r satisfies⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � �> 0, a!1)

Main theorem: Consider an M/G/1 queue whose job size 
distribution X is intermediate regularly varying and satisfies

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � ↵> 1, a!1)

age

rank
O(a�)

⌦(a�)



15

Then if

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

and suppose a SOAP policy with rank function r satisfies⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � �> 0, a!1)

Main theorem: Consider an M/G/1 queue whose job size 
distribution X is intermediate regularly varying and satisfies

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � ↵> 1, a!1)

the SOAP policy is tail-optimal for X, meaning

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

age

rank
O(a�)

⌦(a�)



15

Then if

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

and suppose a SOAP policy with rank function r satisfies⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � �> 0, a!1)

Main theorem: Consider an M/G/1 queue whose job size 
distribution X is intermediate regularly varying and satisfies

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � ↵> 1, a!1)

the SOAP policy is tail-optimal for X, meaning

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

�= � suffices

age

rank
O(a�)

⌦(a�)



Applying the Condition

16

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

worst tail ??? best tail



Applying the Condition

16

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

worst tail ??? best tail



Applying the Condition

16

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

worst tail ??? best tail

�= � = 1



Applying the Condition

16

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

worst tail ??? best tail

�= � = 1



Applying the Condition

16

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

worst tail ??? best tail

�= � = 1



Applying the Condition

16

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

worst tail ??? best tail

�= � = 1

�= � = 1



Applying the Condition

16

age

rank

FB
r(a) = a

age

rank

RMLF

age

rank

FCFS
r(a) = 1 r(a) = 2blog2bacc

worst tail best tailbest tail

�= � = 1

�= � = 1



M-SERPT

17

r(a) = max
0ba

E[X � b | X > b]



M-SERPT

17

age

rank

r(a) = max
0ba

E[X � b | X > b]



⇥(a)

M-SERPT

17

age

rank

r(a) = max
0ba

E[X � b | X > b]



⇥(a)

M-SERPT

17

age

rank

r(a) = max
0ba

E[X � b | X > b]



⇥(a)

M-SERPT

17

age

rank

r(a) = max
0ba

E[X � b | X > b]

�= � = 1 ) M-SERPT is tail-optimal



Gittins

18

inf
b�a

1
hX (b)

 rGittins(a) rM-SERPT(a)



Gittins

18

inf
b�a

1
hX (b)

 rGittins(a) rM-SERPT(a)
hazard rate of X



Gittins

18

O(a)

⌦(a�)

age

rank

inf
b�a

1
hX (b)

 rGittins(a) rM-SERPT(a)
hazard rate of X



Gittins

18

Theorem: Gittins is tail-optimal if 
X ’s hazard rate obeys

for some
hX (a) = O(a��)

�>

vut
1+
Å
↵� 1
2�

ã2
� ↵� 1

2�
.

O(a)

⌦(a�)

age

rank

inf
b�a

1
hX (b)

 rGittins(a) rM-SERPT(a)
hazard rate of X



Gittins

18

Theorem: Gittins is tail-optimal if 
X ’s hazard rate obeys

for some
hX (a) = O(a��)

�>

vut
1+
Å
↵� 1
2�

ã2
� ↵� 1

2�
.

�= 1 suffices

O(a)

⌦(a�)

age

rank

inf
b�a

1
hX (b)

 rGittins(a) rM-SERPT(a)
hazard rate of X



Part 2: 
sketch proof techniques

19

E[Bp]



Proof Outline

20



Proof Outline

20

tail-optimal



Proof Outline

20

tail-optimal

Núñez-Queija’s 
method (2002)

E[T (x)p] small



Proof Outline

20

tail-optimal

Núñez-Queija’s 
method (2002)

E[T (x)p] small

response time 
of job of size x



Proof Outline

20

tail-optimal

SOAP 
(2018)

E[Bp] small

Núñez-Queija’s 
method (2002)

E[T (x)p] small



Proof Outline

20

tail-optimal

SOAP 
(2018)

E[Bp] small

Núñez-Queija’s 
method (2002)

E[T (x)p] small

M/G/1 busy period

B



Proof Outline

20

tail-optimal

SOAP 
(2018)

E[Bp] small

Núñez-Queija’s 
method (2002)

E[T (x)p] small

uses rank 
function

M/G/1 busy period

B



Proof Outline

20

tail-optimal

SOAP 
(2018)

E[Bp] small

Núñez-Queija’s 
method (2002)

E[T (x)p] small

uses rank 
function

new bound on 
fractional moments

M/G/1 busy period

B



Proof Outline

20

tail-optimal

SOAP 
(2018)

E[Bp] small

Núñez-Queija’s 
method (2002)

E[T (x)p] small

uses rank 
function

new bound on 
fractional moments

new version

M/G/1 busy period

B



Proof Outline

20

tail-optimal

SOAP 
(2018)

E[Bp] small

Núñez-Queija’s 
method (2002)

E[T (x)p] small

uses rank 
function

new version

new bound on 
fractional moments

new version

M/G/1 busy period

B



Summary

21

Result: sufficient condition for tail-optimality



Summary

21

Result: sufficient condition for tail-optimality

Key idea #1: condition stated using 
rank function of SOAP policy



Summary

21

Result: sufficient condition for tail-optimality

Key idea #2: new bound on fractional 
moments of M/G/1 busy periods

E[Bp]

Key idea #1: condition stated using 
rank function of SOAP policy



Summary

21

Result: sufficient condition for tail-optimality

Key idea #2: new bound on fractional 
moments of M/G/1 busy periods

E[Bp]

Key idea #1: condition stated using 
rank function of SOAP policy

Get in touch: zscully@cs.cmu.edu



Bonus Slides

22



Prior Sufficient Conditions

23



Prior Sufficient Conditions

23

Núñez-Queija (2002): policy is tail-optimal if 
moments of T(x) are small



Prior Sufficient Conditions

23

Núñez-Queija (2002): policy is tail-optimal if 
moments of T(x) are small

response time 
of job of size x



Prior Sufficient Conditions

23

Núñez-Queija (2002): policy is tail-optimal if 
moments of T(x) are small
• Hard to verify!

response time 
of job of size x



Prior Sufficient Conditions

23

Núñez-Queija (2002): policy is tail-optimal if 
moments of T(x) are small
• Hard to verify!

response time 
of job of size x

NWZ (2008): SMART policies are tail-optimal



Prior Sufficient Conditions

23

Núñez-Queija (2002): policy is tail-optimal if 
moments of T(x) are small
• Hard to verify!

response time 
of job of size x

NWZ (2008): SMART policies are tail-optimal

SRPT and 
its friends



Prior Sufficient Conditions

23

Núñez-Queija (2002): policy is tail-optimal if 
moments of T(x) are small
• Hard to verify!

response time 
of job of size x

NWZ (2008): SMART policies are tail-optimal
• Easy to verify…

SRPT and 
its friends



Prior Sufficient Conditions

23

Núñez-Queija (2002): policy is tail-optimal if 
moments of T(x) are small
• Hard to verify!

response time 
of job of size x

NWZ (2008): SMART policies are tail-optimal
• Easy to verify…
• … but only applies with known job sizes

SRPT and 
its friends



Prior Sufficient Conditions

23

Núñez-Queija (2002): policy is tail-optimal if 
moments of T(x) are small
• Hard to verify!

response time 
of job of size x

NWZ (2008): SMART policies are tail-optimal
• Easy to verify…
• … but only applies with known job sizes

SRPT and 
its friends

Wanted: 
easy-to-verify condition for 
systems with unknown job sizes


