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= T = response time

Goal: schedule to minimize two metrics
• mean response time E[T]
• tail of response time P[T > t] t !1 limit

“P[X > x] = ⇥(x�↵) ”

Setting: heavy-tailed job size X
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Our contribution: 
a sufficient condition for 

optimal response time tail

Question: What does a sufficient condition 
look like?
• “Don’t let small jobs get stuck behind large jobs”
• How to formalize?
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Our contribution: 
a sufficient condition for 

optimal response time tail

For SOAP policies: want a 
condition on the rank function
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Then if

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

and suppose a SOAP policy with rank function r satisfies⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � �> 0, a!1)

Main theorem: Consider an M/G/1 queue whose job size 
distribution X is intermediate regularly varying and satisfies

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

(� � ↵> 1, a!1)

the SOAP policy is tail-optimal for X, meaning

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

⌦(k�� ) P[X > kx]
P[X > x]

 O(k�↵), (k!1)

⌦(a�) r(a) O(a�), (a!1)

�

�
<
↵� 1
2�

+

vut
1+
Å
↵� 1
2�

ã2
,

P
ï

T >
x

1�⇢

ò
⇠ P[X > x]. (x !1)

�= � suffices
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�= � = 1 ) M-SERPT is tail-optimal
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Result: sufficient condition for tail-optimality

Key idea #2: new bound on fractional 
moments of M/G/1 busy periods

E[Bp]

Key idea #1: condition stated using 
rank function of SOAP policy

Get in touch: zscully@cs.cmu.edu
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Núñez-Queija (2002): policy is tail-optimal if 
moments of T(x) are small
• Hard to verify!

response time 
of job of size x

NWZ (2008): SMART policies are tail-optimal
• Easy to verify…
• … but only applies with known job sizes

SRPT and 
its friends

Wanted: 
easy-to-verify condition for 
systems with unknown job sizes


