The Power of SOAP Scheduling

Mor Harchol-Balter
Ziv Scully
Carnegie Mellon University

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

Scheduling policy:
picks which job to serve

M/G/1 Queue

Scheduling policy:
picks which job to serve

M/G/1 Queue

Scheduling policy:
picks which job to serve

M/G/1 Queue

Scheduling policy:
picks which job to serve

M/G/1 Queue

Scheduling policy:
picks which job to serve

Response Time

Response Time

Response Time

Response Time

Goal: analyze mean response time $\mathrm{E}[T]$

Response Time

Goal: analyze mean response time $\mathrm{E}[T]$
Depends on scheduling policy

Impact of Scheduling

What scheduling policy minimizes $\mathrm{E}[T]$?

Impact of Scheduling

Shortest remaining processing time (SRPT)

Impact of Scheduling

Impact of Scheduling

Why Not SRPT?

Why Not SRPT?

Unknown job sizes

Why Not SRPT?

Unknown job sizes $\left\{\begin{array}{l}\text { FCFS (first come, first served) } \\ \end{array}\right.$

Why Not SRPT?

Unknown job sizes $\left\{\begin{array}{l}\text { FCFS (first come, first served) } \\ \text { FB (foreground-background: least age) }\end{array}\right.$

Why Not SRPT?

Unknown job sizes $\left\{\begin{array}{l}\text { FCFS (first come, first served) } \\ \text { FB (foreground-background: least age) } \\ \text { SERPT (least expected remaining size) }\end{array}\right.$

Why Not SRPT?

Unknown job sizes $\left\{\begin{array}{l}\text { FCFS (first come, first served) } \\ \text { FB (foreground-background: least age) } \\ \text { SERPT (least expected remaining size) } \\ \text { Gittins (optimal!) }\end{array}\right.$

Why Not SRPT?

Hardware constraints

Why Not SRPT?

Unknown job sizes $\left\{\begin{array}{l}\text { FCFS (first come, first served) } \\ \text { FB (foreground-background: least age) } \\ \text { SERPT (least expected remaining size) } \\ \text { Gittins (optimal!) }\end{array}\right.$

Hardware constraints $\left\{\begin{array}{l}\text { "Discrete" SRPT } \\ \text { (preempt only at checkpoints) }\end{array}\right.$

Why Not SRPT?

Unknown job sizes $\left\{\begin{array}{l}\text { FCFS (first come, first served) } \\ \text { FB (foreground-background: least age) } \\ \text { SERPT (least expected remaining size) } \\ \text { Gittins (optimal!) }\end{array}\right.$

Hardware constraints $\left\{\begin{array}{l}\text { "Discrete" SRPT } \\ \text { (preempt only at checkpoints) } \\ \text { "Bucketed" SRPT } \\ \text { (limited number of priority levels) }\end{array}\right.$

Why Not SRPT?

Unknown job sizes

Hardware constraints $\{$
"Discrete" SRPT, FB, etc. (preempt only at checkpoints) "Bucketed" SRPT, FB, etc. (limited number of priority levels)

Why Not SRPT?

Unknown job sizes $\left\{\begin{array}{l}\text { FCFS (first come, first served) } \\ \text { FB (foreground-background: least age) } \\ \text { SERPT (least expected remaining size) } \\ \text { Gittins (optimal!) }\end{array}\right.$

Hardware constraints $\{$
"Discrete" SRPT, FB, etc.
(preempt only at checkpoints) "Bucketed" SRPT, FB, etc.
(limited number of priority levels)

Metric other than $\mathbf{E}[T]$

Why Not SRPT?

Unknown job sizes $\left\{\begin{array}{l}\text { FCFS (first come, first served) } \\ \text { FB (foreground-background: least age) } \\ \text { SERPT (least expected remaining size) } \\ \text { Gittins (optimal!) }\end{array}\right.$

\int "Discrete" SRPT, FB, etc. (preempt only at checkpoints) "Bucketed" SRPT, FB, etc. (limited number of priority levels)

Metric other than $\mathbf{E}[T]\{$ Priority classes

Why Not SRPT?

Unknown job sizes

Hardware constraints

Metric other than $\mathbf{E}[T]\left\{\begin{array}{l}\text { Priority classes } \\ \text { RS (optimal for mean slowdown) }\end{array}\right.$

Many Scheduling Policies

Many Scheduling Policies

$\mathrm{E}[T]$ known

Many Scheduling Policies

$\mathrm{E}[T]$ known

SRPT

Many Scheduling Policies

E[T] known
SRPT
FCFS

Many Scheduling Policies

$\mathrm{E}[T]$ known
SRPT
FCFS
FB

Many Scheduling Policies

$\mathrm{E}[T]$ known

SRPT
FCFS
FB
Simple priority classes

Many Scheduling Policies

$\mathrm{E}[T]$ known

$\mathrm{E}[T]$ unknown!

SRPT
FCFS
FB
Simple priority classes

Many Scheduling Policies

$\mathrm{E}[T]$ unknown!

SERPT
Gittins
Discrete SRPT
Discrete FB
Bucketed SRPT
Bucketed FB
RS*
Complex priority classes
... and more!

Many Scheduling Policies

Simple priority classes

$\mathrm{E}[T]$ unknown!

SERPT
Gittins
Discrete SRPT
Discrete FB
Bucketed SRPT
Bucketed FB
RS*
Complex priority classes
... and more!

SOAP

Broad class of scheduling policies...

SOAP

Broad class of scheduling policies...

... with universal response time analysis

SOAP

Schedule Ordered by Age-based Priority

Broad class of scheduling policies...

... with universal response time analysis

Outline

Outline

Part 1: defining SOAP policies

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 1: defining SOAP policies

Scheduling with Ranks

Scheduling with Ranks

FB
 serve by least age
 $\theta \quad \theta$

Scheduling with Ranks

FB
serve by least age

Scheduling with Ranks

FB
serve by least age

SRPT
serve by least remaining size

[^0]
Scheduling with Ranks

FB
serve by least age

SRPT
serve by least remaining size

Scheduling with Ranks

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job's rank (priority) depends on its age

Scheduling with Ranks

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job's rank
(priority) depends on its age

Scheduling with Ranks

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job's rank
(priority) depends on its age

Scheduling with Ranks

FB
serve by least age

SRPT

serve by least remaining size

Common theme: a job's rank
(priority) depends on its age

A SOAP policy is a rank function with one rule:

always serve the job of minimum rank

always serve the job of minimum rank

(break ties FCFS)

Classic SOAP Policies

FB

SRPT

Classic SOAP Policies

FB

FCFS

SRPT

Classic SOAP Policies

FB

FCFS

SRPT

Preemptive Priority

rank

Classic SOAP Policies

FB

SRPT
rank

known e Priority

SOAP Policy: SERPT

rank

$\left\{\begin{array}{c}\text { Job size distribution: } \\ X= \begin{cases}1 & \text { w.p. } \frac{1}{3} \\ 6 & \text { w.p. } \frac{1}{3} \\ 14 & \text { w.p. } \frac{1}{3}\end{cases} \\ \end{array}\right.$

SOAP Policy: SERPT

rank

Job size distribution:

$$
X= \begin{cases}1 & \text { w.p. } \frac{1}{3} \\ 6 & \text { w.p. } \frac{1}{3} \\ 14 & \text { w.p. } \frac{1}{3}\end{cases}
$$

SOAP Policy: SERPT

SOAP Policy: SERPT

SOAP Policy: SERPT

SOAP Policy: SERPT

SOAP Policy: SERPT

SOAP Policy: SERPT

SOAP Policy: Gittins

SOAP Policy: Gittins

SOAP Policy: Discrete FB

SOAP Policy: Discrete FB

rank

$\uparrow \mathrm{FB}$, but preempt only at age checkpoints

SOAP Policy: Discrete FB

rank

$\uparrow \mathrm{FB}$, but preempt only at age checkpoints

SOAP Policy: Discrete FB

rank

SOAP Policy: Discrete FB rank

SOAP Policy: Bucketed SRPT

SOAP Policy: Bucketed SRPT

rank

SRPT with three size buckets:

SOAP Policy: Bucketed SRPT

rank

\uparrow
SRPT with three size buckets:

- Small: [0, 2), rank = 1

SOAP Policy: Bucketed SRPT

SRPT with three size buckets:

- Small: [0, 2), rank = 1
- Medium: [2, 7), rank $=2$

SOAP Policy: Bucketed SRPT

SRPT with three size buckets:

- Small: [0, 2), rank = 1
- Medium: [2, 7), rank $=2$
- Large: [7, ∞), rank = 3

SOAP Policy: Bucketed SRPT

rank

I
SRPT with three size buckets:

- Small: [0, 2), rank = 1
- Medium: [2, 7), rank $=2$
- Large: [7, ∞), rank = 3

SOAP Policy: Bucketed SRPT

2 remaining

SRPT with three size buckets:

- Small: [0, 2), rank = 1
- Medium: [2, 7), rank $=2$
- Large: [7, ∞), rank = 3

SOAP Policy: Bucketed SRPT

SOAP Policy: Bucketed SRPT

SOAP Policy: Bucketed SRPT

rank
,

SRPT with three size buckets:

- Small: [0, 2), rank = 1
- Medium: [2, 7), rank $=2$

E[T] 俆known!

2 remaining

SOAP Policy: Mixture

Two customer classes: humans and robots

SOAP Policy: Mixture

Two customer classes: humans and robots

Humans

- unknown size
- nonpreemptible
- FCFS

SOAP Policy: Mixture

Two customer classes: humans and robots

- unknown size
- nonpreemptible
- FCFS

Robots

- known size
- preemptible
- SRPT

SOAP Policy: Mixture

Two customer classes: humans and robots

- unknown size
- nonpreemptible
- FCFS
- priority over robots

Robots

- known size
- preemptible
- SRPT

SOAP Policy: Mixture

Two customer classes: humans and robots

Humans

- unknown size
- nonpreemptible
- FCFS

Robots

- known size
- preemptible
- SRPT
- priority over robots

Twist: small robots outrank humans

SOAP Policy: Mixture

Two customer classes: humans and robots

- unknown size
- nonpreemptible
- FCFS

Robots

- known size
- preemptible
- SRPT
- priority over robots

Twist: small robots outrank humans

SOAP Policy: Mixture

Two customer classes: humans and robots

- unknown size
- nonpreemptible
- FCFS

Robots

- known size
- preemptible
- SRPT
- priority over robots

Twist: small robots outrank humans

SOAP Policy: Mixture

Two customer classes: humans and robots

Robots

- knawn size
- unknown size

Twist: small robots outrank humans

Full SOAP Definition

A SOAP policy is any policy expressible by a rank function of the form:

Full SOAP Definition

A SOAP policy is any policy expressible by a rank function of the form:

descriptor \times age \rightarrow rank

Full SOAP Definition

A SOAP policy is any policy expressible by a rank function of the form:
size, class, etc.
descriptor \times age \rightarrow rank

Full SOAP Definition

A SOAP policy is any policy expressible by a rank function of the form:
size, class, etc.
descriptor \times age \rightarrow rank
FB

$$
r_{\theta}(a)=a
$$

Full SOAP Definition

A SOAP policy is any policy expressible by a rank function of the form:
size, class, etc.
descriptor \times age \rightarrow rank
FB
SRPT

$$
r_{\varnothing}(a)=a
$$

$r_{x}(a)=x-a$

Full SOAP Definition

A SOAP policy is any policy expressible by a rank function of the form:
size, class, etc.
descriptor \times age \rightarrow rank

FB

$$
r_{\theta}(a)=a
$$

SRPT
$r_{x}(a)=x-a$

Descriptor can be anything that:

- does not change while a job is in the system
- is i.i.d. for each job

FAQ:

What isn't a SOAP policy?

FAQ:
 What isn't a SOAP policy?

- Rank changes when not in service

FAQ:
 What isn't a SOAP policy?

- Rank changes when not in service
- Rank depends on system-wide state

FAQ:
 What isn't a SOAP policy?

- Rank changes when not in service
- Rank depends on system-wide state
- Non-FCFS tiebreaking

FAQ:
 What isn't a SOAP policy?

- Rank changes when not in service
- Rank depends on system-wide state
- Non-FCFS tiebreaking

Excludes: EDF, accumulating priority, PS

Practice!

Part 1:
defining SOAP policies

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 2: analyzing SOAP policies

Tagged Job Analysis

Tagged Job Analysis

$\downarrow=$ rank

Tagged Job Analysis

Tagged Job Analysis

Tagged Job Analysis

Nonmonotonic rank function

Tagged Job Analysis

Nonmonotonic rank function ${ }^{\text {rank }}$

$\xrightarrow{\sim}$

Tagged Job Analysis

Nonmonotonic rank function $\xrightarrow{\text { rank }}$ § Two obstacles:

- My rank goes up and down

Tagged Job Analysis

Nonmonotonic rank function

Running example: SERPT

Warmup: Empty System

Warmup: Empty System

Warmup: Empty System

later arrivals

me

Warmup: Empty System

rank

My size Which arrivals delay me? By how much?
1
6
14

Warmup: Empty System

rank

My size Which arrivals delay me? By how much?
1
6
14

Warmup: Empty System

rank

My size Which arrivals delay me? By how much?

14

Warmup: Empty System

rank

My size Which arrivals delay me? By how much?
n/a
6
14

Warmup: Empty System

ater arrivals me

My size Which arrivals delay me? By how much?
n/a
6
14

Warmup: Empty System

My size Which arrivals delay me? By how much?
n/a
6
14

Warmup: Empty System

later arrivals
me

| 9 |
| :--- | :--- | :--- |
| 8 |
| 7 |
| 6 |
| 4 |

My size Which arrivals delay me? By how much?

1	none
6	when $0 \leq$ my age <3

14

Warmup: Empty System

My size Which arrivals delay me? By how much?

1	none	n/a
6	when $0 \leq$ my age <3	1

14

Warmup: Empty System

later arrivals me

My size Which arrivals delay me? By how much?

1	none	n/a
6	when $0 \leq$ my age <3	1

14

Warmup: Empty System

later arrivals
me

| 9 |
| :--- | :--- | :--- |
| 8 |
| 7 |
| 6 |
| 4 |

My size Which arrivals delay me? By how much?

1	none	n/a
6	when $0 \leq$ my age <3	1

14

Warmup: Empty System

later arrivals
me

| 9 |
| :--- | :--- |
| 8 |
| 7 |
| 6 |
| 4 |

My size Which arrivals delay me? By how much?

1	none	n/a
6	when $0 \leq$ my age <3	1
14	when $0 \leq$ my age <7	

Warmup: Empty System

later arrivals
me

My size Which arrivals delay me? By how much?

1	none	n/a
6	when $0 \leq$ my age <3	1
14	when $0 \leq$ my age <7	1

SOAP Insight \#1: Pessimism Principle

Replace my rank with my worst future rank

Pessimism Principle

Replace my rank with my worst future rank

Pessimism Principle

Replace my rank with my worst future rank

my size $=1$

Pessimism Principle

Replace my rank with my worst future rank

my size $=1$

Pessimism Principle

Replace my rank with my worst future rank

Pessimism Principle

Replace my rank with my worst future rank

Pessimism Principle

Replace my rank with my worst future rank

Pessimism Principle

Replace my rank with my worst future rank

Pessimism Principle

Replace my rank with my worst future rank

Pessimism Principle

Replace my rank with my worst future rank

Pessimism Principle

Replace my rank with my worst future rank

Pessimism Principle

Replace my rank with my worst future rank

$$
\rho_{\mathrm{new}}(a)=\{\begin{array}{lll}
\lambda \cdot 1 & 0 \leq a<7 & \text { my size }=14 \\
\lambda \cdot 0 & 7 \leq a<14 & 8 \\
7
\end{array} \underbrace{\text { rank }}_{\underbrace{\text { me by } 1}_{\text {Arrivals delay }}}
$$

Pessimism Principle

Replace my rank with my worst future rank

$$
\begin{aligned}
& \text { my size }=14 \\
& \rho_{\text {new }}(a)= \begin{cases}\lambda \cdot 1 & 0 \leq a<7 \\
\lambda \cdot 0 & 7 \leq a<14\end{cases} \\
& \mathrm{E}\left[T_{14} \mid \text { empty }\right]=\int_{0}^{14} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}(a)}
\end{aligned}
$$

Response Time Analysis

arrival

departure

Response Time Analysis

departure

Response Time Analysis

arrival

first
departure
residence time
response time

Residence Time

departure

Residence Time

departure

Question: is residence time...

Residence Time

departure

Question: is residence time...

- my size?

Residence Time

Question: is residence time...

- my size?

Residence Time

Question: is residence time...

- my size? X

Residence Time

departure

Question: is residence time...

- my size? X
- $\mathrm{E}[T \mid$ empty]?

Residence Time

Question: is residence time...

- my size? X
- E[T | empty]?

Residence Time

Question: is residence time...

- my size? X
- E[T | empty]?

Residence Time

Question: is residence time...

- my size? X
- E[T | empty]?

Residence Time

Question: is residence time...

- my size? X
- $\mathrm{E}[T \mid$ empty]?

Residence Time

 arrival

departure

Question: is residence time... Pessimism Principle:

- my size? X
- $\mathrm{E}[T \mid$ empty $]$?
replace my rank with my worst future rank

Residence Time

Question: is residence time...

- my size? X
- E[T | empty]?

Pessimism Principle: replace my rank with my worst future rank

Residence Time

Question: is residence time...

- my size? X
- $\mathrm{E}[T \mid$ empty]?

Pessimism Principle: replace my rank with my worst future rank

Residence Time

Question: is residence time...

- my size? X
- $\mathrm{E}[T \mid$ empty]?

Pessimism Principle: replace my rank with my worst future rank

Residence Time

Question: is residence time...

- my size? X
- E[T | empty]?

Pessimism Principle: replace my rank with my worst future rank

Residence Time

arrival

my rank
jumps up
Question: is residence time... Pessimism Principle:

- my size? X
- E[T | empty]?

$$
\text { e.g. } \mathrm{E}\left[R_{14}\right]=\mathrm{E}\left[T_{14} \mid \text { empty }\right]=\int_{0}^{14} \frac{\mathrm{~d} a}{1-\rho_{\text {new }}(a)}
$$

Waiting Time

arrival
\square waiting time

Waiting Time

departure

Waiting Time

arrival

waiting time

worst future rank $=w$
See relevant work with rank $\leq w$
departure

Waiting Time

Waiting Time

Waiting Time

Response Time: Size 14

Response Time: Size 14

Response Time: Size 14

Response Time: Size 14

Relevant work ($w=9$):

Response Time: Size 14

Relevant work ($w=9$):
$\mathrm{E}[U[9]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X^{2}\right]}{1-\rho}$

Response Time: Size 14

Relevant work ($w=9$):
$\mathrm{E}[U[9]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X^{2}\right]}{1-\rho}$
Waiting time:

$$
\mathrm{E}\left[Q_{14}\right]=\frac{\mathrm{E}[U[9]]}{1-\rho_{\mathrm{new}}(0)}
$$

Response Time: Size 14

Relevant work ($w=9$):
$\mathrm{E}[U[9]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X^{2}\right]}{1-\rho}$
Waiting time:

$$
\mathrm{E}\left[Q_{14}\right]=\frac{\mathrm{E}[U[9]]}{1-\rho_{\mathrm{new}}(0)}
$$

Residence time:

$$
\mathrm{E}\left[R_{14}\right]=\int_{0}^{14} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}(a)}
$$

Response Time: Size 14

Relevant work ($w=9$):
$\mathrm{E}[U[9]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X^{2}\right]}{1-\rho}$
Waiting time:

$$
\mathrm{E}\left[Q_{14}\right]=\frac{\mathrm{E}[U[9]]}{1-\rho_{\mathrm{new}}(0)}
$$

Residence time:

$$
\mathrm{E}\left[R_{14}\right]=\int_{0}^{14} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}(a)}
$$

rank

Response time:

$$
\mathrm{E}\left[T_{14}\right]=\mathrm{E}\left[Q_{14}\right]+\mathrm{E}\left[R_{14}\right]
$$

Response Time: Size 14

Relevant work ($w=9$):

$$
\mathrm{E}[U[9]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X^{2}\right]}{1-\rho}
$$

Waiting time:

$$
\mathbf{E}
$$

$$
\mathrm{E}[U[9]]
$$

Residence time:

$$
\begin{aligned}
& \mathrm{E}\left[R_{14}\right]=\int_{0}^{14} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}(a)} \mathrm{E}\left[T_{14}\right]=\mathrm{E}\left[Q_{14}\right]+\mathrm{E}\left[R_{14}\right]
\end{aligned}
$$

Response Time: Size 1

Response Time: Size 1

Response Time: Size 1

Response Time: Size 1

Relevant work ($w=7$):

Response Time: Size 1

Relevant work ($w=7$):
$\mathrm{E}[U[7]]=? ? ?$

Relevant Work

Two causes of relevant work:

Relevant Work

Two causes of relevant work:

- I_{0} : arrivals

Relevant Work

Two causes of relevant work:

- I_{0} : arrivals
- I_{1}, I_{2} : recyclings

Relevant Work

Relevant Work

Observations:

Relevant Work

Observations:

- at most one recycled job at a time

Relevant Work

Observations:

- at most one recycled job at a time

Relevant Work

Observations:

- at most one recycled job at a time

Relevant Work

Observations:

- at most one recycled job at a time

Relevant Work

Observations:

- at most one recycled job at a time
- recyclings occur only when no relevant work

SOAP Insight \#2:

 Vacation Transformation

 Vacation Transformation}

Replace recycled jobs with server vacations

Vacation Transformation

Vacation Transformation

Vacation Transformation

(Fuhrmann and Cooper, 1985)

Vacation Transformation

Vacation Transformation

Response Time: Size 1

Relevant work ($w=7$):
$\mathrm{E}[U[7]]=? ? ?$

Response Time: Size 1

Relevant work ($w=7$):
$\mathrm{E}[U[7]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X_{0}^{2}\right]+\mathrm{E}\left[X_{1}^{2}\right]+\mathrm{E}\left[X_{2}^{2}\right]}{1-\lambda \mathrm{E}\left[X_{0}\right]}$

Response Time: Size 1

Relevant work ($w=7$):

$$
\mathrm{E}[U[7]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X_{0}^{2}\right]+\mathrm{E}\left[X_{1}^{2}\right]+\mathrm{E}\left[X_{2}^{2}\right]}{1-\lambda \mathrm{E}\left[X_{0}\right]}
$$

Waiting time:

$$
\mathrm{E}\left[Q_{1}\right]=\frac{\mathrm{E}[U[7]]}{1-\rho_{\mathrm{new}}(0)}
$$

Response Time: Size 1

Relevant work ($w=7$):
$\mathrm{E}[U[7]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X_{0}^{2}\right]+\mathrm{E}\left[X_{1}^{2}\right]+\mathrm{E}\left[X_{2}^{2}\right]}{1-\lambda \mathrm{E}\left[X_{0}\right]}$
Waiting time:

$$
\mathrm{E}\left[Q_{1}\right]=\frac{\mathrm{E}[U[7]]}{1-\rho_{\mathrm{new}}(0)}
$$

Residence time:

$$
\mathrm{E}\left[R_{1}\right]=\int_{0}^{1} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}(a)}
$$

Response Time: Size 1

Relevant work ($w=7$):
$\mathrm{E}[U[7]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X_{0}^{2}\right]+\mathrm{E}\left[X_{1}^{2}\right]+\mathrm{E}\left[X_{2}^{2}\right]}{1-\lambda \mathrm{E}\left[X_{0}\right]}$
Waiting time:

$$
\mathrm{E}\left[Q_{1}\right]=\frac{\mathrm{E}[U[7]]}{1-\rho_{\mathrm{new}}(0)}
$$

Residence time:

$$
\mathrm{E}\left[R_{1}\right]=\int_{0}^{1} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}(a)}
$$

Response Time: Size 1

Relevant work ($w=7$):
$\mathrm{E}[U[7]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X_{0}^{2}\right]+\mathrm{E}\left[X_{1}^{2}\right]+\mathrm{E}\left[X_{2}^{2}\right]}{1-\lambda \mathrm{E}\left[X_{0}\right]}$
Waiting time:

$$
\mathrm{E}\left[Q_{1}\right]=\frac{\mathrm{E}[U[7]]}{1-\rho_{\mathrm{new}}(0)}=\mathrm{E}[U[7]]
$$

Residence time:

$$
\mathbf{E}\left[R_{1}\right]=\int_{0}^{1} \frac{\mathrm{~d} a \mid}{1-\rho_{\mathrm{new}}(a)}=1
$$

Response Time: Size 1

Relevant work ($w=7$):
$\mathrm{E}[U[7]]=\frac{\lambda}{2} \cdot \frac{\mathrm{E}\left[X_{0}^{2}\right]+\mathrm{E}\left[X_{1}^{2}\right]+\mathrm{E}\left[X_{2}^{2}\right]}{1-\lambda \mathrm{E}\left[X_{0}\right]}$
Waiting time:

$$
\left.\mathrm{E}\left[Q_{1}\right]=\frac{\mathrm{E}[U[7]]}{1-\rho_{\mathrm{new}}(0)}=\mathrm{E}[U[7]]\right)
$$

Residence time:

$$
\mathbf{E}\left[R_{1}\right]=\int_{0}^{1} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}(a)}=1
$$

$$
\mathrm{E}\left[T_{1}\right]=\mathrm{E}\left[Q_{1}\right]+\mathrm{E}\left[R_{1}\right]
$$

Running example: SERPT

Running example: SERPT

E[T] of any SOAP Policy

Worst Future Rank

Worst Future Rank

$$
w_{x}(a)=\sup _{a \leq b<x} r(b)
$$

Worst Future Rank

$$
w_{x}(a)=\sup _{a \leq b<x} r(b)
$$

Relevant Intervals

Relevant Intervals

$I_{i}[w]=i$ th interval when $r(a) \leq w$

Relevant Intervals

$$
I_{i}[w]=i \text { th interval when } r(a) \leq w
$$

Relevant Intervals

$I_{i}[w]=i$ th interval when $r(a) \leq w$

Detail: start with $i=0$ iff first interval contains age 0 , else start with $i=1$

Relevant Intervals

$I_{i}[w]=i$ th interval when $r(a) \leq w$

Detail: start with $i=0$ iff first interval contains age 0 , else start with $i=1$

Detail: interval can be empty

SOAP Analysis: One Descriptor

SOAP Analysis: One Descriptor

Worst Future Rank

$$
w_{x}(a)=\sup _{a \leq b<x} r(b)
$$

Relevant Intervals

$$
I_{i}[w]=i \text { th interval when } r(a) \leq w
$$

SOAP Analysis: One Descriptor

Worst Future Rank

$$
w_{x}(a)=\sup _{a \leq b<x} r(b)
$$

$$
\begin{aligned}
\mathbf{E}\left[T_{x}\right]= & \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}\left[X_{i}\left[w_{x}\right]^{2}\right]}{\left(1-\rho_{0}\left[w_{x}\right]\right)\left(1-\rho_{\mathrm{new}}\left[w_{x}\right]\right)} \\
& +\int_{0}^{x} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}\left[w_{x}(a)\right]}
\end{aligned}
$$

Relevant Intervals
$I_{i}[w]=i$ th interval when $r(a) \leq w$

SOAP Analysis: One Descriptor

Worst Future Rank

$$
\begin{aligned}
w_{x}(a) & =\sup _{a \leq b<x} r(b) \\
w_{x} & =w_{x}(0)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{E}\left[T_{x}\right]= & \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}\left[X_{i}\left[w_{x}\right]^{2}\right]}{\left(1-\rho_{0}\left[w_{x}\right]\right)\left(1-\rho_{\mathrm{new}}\left[w_{x}\right]\right)} \\
& +\int_{0}^{x} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}\left[w_{x}(a)\right]}
\end{aligned}
$$

Relevant Intervals
$I_{i}[w]=i$ th interval when $r(a) \leq w$

SOAP Analysis: One Descriptor

Worst Future Rank

$$
\begin{aligned}
w_{x}(a) & =\sup _{a \leq b<x} r(b) \\
w_{x} & =w_{x}(0)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{E}\left[T_{x}\right]= & \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}\left[X_{i}\left[w_{x}\right]^{2}\right]}{\left(1-\rho_{0}\left[w_{x}\right]\right)\left(1-\rho_{\mathrm{new}}\left[w_{x}\right]\right)} \\
& +\int_{0}^{x} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}\left[w_{x}(a)\right]}
\end{aligned}
$$

Relevant Intervals
$I_{i}[w]=i$ th interval when $r(a) \leq w$
$X_{i}[w]=$ service a job receives in $I_{i}[w]$

SOAP Analysis: One Descriptor

Worst Future Rank

$$
\begin{gathered}
w_{x}(a)=\sup _{a \leq b<x} r(b) \\
w_{x}=w_{x}(0)
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{E}\left[T_{x}\right]= & \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}\left[X_{i}\left[w_{x}\right]^{2}\right]}{\left(1-\rho_{0}\left[w_{x}\right]\right)\left(1-\rho_{\mathrm{new}}\left[w_{x}\right]\right)} \\
& +\int_{0}^{x} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}\left[w_{x}(a)\right]}
\end{aligned}
$$

Relevant Intervals

$$
\begin{aligned}
I_{i}[w] & =i \text { th interval when } r(a) \leq w \\
X_{i}[w] & =\text { service a job receives in } I_{i}[w] \\
\rho_{0}[w] & =\lambda \mathrm{E}\left[X_{0}[w]\right]
\end{aligned}
$$

SOAP Analysis: One Descriptor

Worst Future Rank

$$
\begin{gathered}
w_{x}(a)=\sup _{a \leq b<x} r(b) \\
w_{x}=w_{x}(0)
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{E}\left[T_{x}\right]= & \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}\left[X_{i}\left[w_{x}\right]^{2}\right]}{\left(1-\rho_{0}\left[w_{x}\right]\right)\left(1-\rho_{\mathrm{new}}\left[w_{x}\right]\right)} \\
& +\int_{0}^{x} \frac{\mathrm{~d} a}{1-\rho_{\mathrm{new}}\left[w_{x}(a)\right]}
\end{aligned}
$$

Relevant Intervals
$I_{i}[w]=i$ th interval when $r(a) \leq w$
$X_{i}[w]=$ service a job receives in $I_{i}[w]$
$\rho_{0}[w]=\lambda \mathrm{E}\left[X_{0}[w]\right]$
$\rho_{\text {new }}[w]=\lambda \mathbf{E}\left[X_{0}[w-]\right]$

SOAP Analysis: Complete

Worst Future Rank

$$
w_{x}(a)=\sup _{a \leq b<x} r(b)
$$

Relevant Intervals
$I_{i}[w]=i$ th interval when $r(a) \leq w$

SOAP Analysis: Complete

Worst Future Rank

$$
w_{d, x}(a)=\sup _{a \leq b<x} r_{d}(b)
$$

Relevant Intervals
$I_{i, d}[w]=i$ th interval when $r_{d}(a) \leq w$

SOAP Analysis: Complete

Worst Future Rank

$$
w_{d, x}(a)=\sup _{a \leq b<x} r_{d}(b)
$$

Relevant Intervals

$I_{i, d}[w]=i$ th interval when $r_{d}(a) \leq w$
$X_{i, d}[w]=$ service a job of descriptor d receives in $I_{i, d}[w]$

SOAP Analysis: Complete

Worst Future Rank

$$
w_{d, x}(a)=\sup _{a \leq b<x} r_{d}(b)
$$

Relevant Intervals
$I_{i, d}[w]=i$ th interval when $r_{d}(a) \leq w$
$X_{i, d}[w]=$ service a job of descriptor d receives in $I_{i, d}[w]$

SOAP Analysis: Complete

Worst Future Rank

$$
w_{d, x}(a)=\sup _{a \leq b<x} r_{d}(b)
$$

Relevant Intervals
$I_{i, d}[w]=i$ th interval when $r_{d}(a) \leq w$
$X_{i, d}[w]=$ service a job of descriptor d receives in $I_{i, d}[w]$
$X_{i}[w]=X_{i, D}[w]$

SOAP Analysis: Complete

Worst Future Rank

$$
w_{d, x}(a)=\sup _{a \leq b<x} r_{d}(b)
$$

Relevant Intervals

$$
I_{i, d}[w]=i \text { th interval when } r_{d}(a) \leq w /
$$

$$
X_{i, d}[w]=\text { service a job of descriptor } d \text { receives in } I_{i, d}[w]
$$

$$
X_{i}[w]=X_{i, D} \xlongequal{[w]}
$$

SOAP Analysis: Complete

Worst Future Rank

$$
\begin{gathered}
w_{d, x}(a)=\sup _{a \leq b<x} r_{d}(b) \\
w_{d, x}=w_{d, x}(0)
\end{gathered}
$$

Relevant Intervals
$X_{d}=$ size distribution for descriptor d
$I_{i, d}[w]=i$ th interval when $r_{d}(a) \leq w$
$X_{i, d}[w]=$ service a job of descriptor d receives in $I_{i, d}[w]$
$X_{i}[w]=X_{i, D}[w] D=$ descriptor distribution
$\rho_{0}[w]=\lambda \mathbf{E}\left[X_{0}[w]\right]$
$\rho_{\text {new }}[w]=\lambda \mathbf{E}\left[X_{0}[w-]\right]$

SOAP Analysis: Complete

Worst Future Rank

$$
\begin{aligned}
w_{d, x}(a) & =\sup _{a \leq b<x} r_{d}(b) \\
w_{d, x} & =w_{d, x}(0)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{E}\left[T_{d, x}\right]= & \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}\left[X_{i}\left[w_{d, x}\right]^{2}\right]}{\left(1-\rho_{0}\left[w_{d, x}\right]\right)\left(1-\rho_{\text {new }}\left[w_{d, x}\right]\right)} \\
& +\int_{0}^{x} \frac{\mathrm{~d} a}{1-\rho_{\text {new }}\left[w_{d, x}(a)\right]}
\end{aligned}
$$

Relevant Intervals

$$
I_{i, d}[w]=i \text { th interval when } r_{d}(a) \leq w /
$$

$$
X_{i, d}[w]=\text { service a job of descriptor } d \text { receives in } I_{i, d}[w]
$$

$$
X_{i}[w]=X_{i, D} \xrightarrow[D]{[w=\text { descriptor distribution }}
$$

$$
\rho_{0}[w]=\lambda \mathrm{E}\left[X_{0}[w]\right.
$$

$\rho_{\text {new }}[w]=\lambda \mathbf{E}\left[X_{0}[w-]\right]$

Example: Preemptive Priority

Example: Preemptive Priority

Urgent $(d=\mathbf{U}, r=1)$

Normal ($d=\mathbf{N}, r=2$)

Example: Preemptive Priority

Urgent ($d=\mathrm{U}, r=1$)

- $1 / 4$ of all jobs

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal $(d=\mathbf{N}, r=2)$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathrm{N}, r=2$)

- $3 / 4$ of all jobs

Example: Preemptive Priority

Urgent ($d=\mathrm{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathrm{N}, r=2$)

- 3/4 of all jobs

- Size distribution X_{N}

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & = & I_{0, \mathrm{~N}}[1-] & = \\
I_{0, \mathrm{U}}[1] & = & I_{0, \mathrm{~N}}[1] & = \\
I_{0, \mathrm{U}}[2-] & = & I_{0, \mathrm{~N}}[2-] & = \\
I_{0, \mathrm{U}}[2] & = & I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathrm{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & = & I_{0, \mathrm{~N}}[1-] & = \\
I_{0, \mathrm{U}}[1] & = & I_{0, \mathrm{~N}}[1] & = \\
I_{0, \mathrm{U}}[2-] & = & I_{0, \mathrm{~N}}[2-] & = \\
I_{0, \mathrm{U}}[2] & = & I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathrm{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset & I_{0, \mathrm{~N}}[1-] & = \\
I_{0, \mathrm{U}}[1] & = & I_{0, \mathrm{~N}}[1] & = \\
I_{0, \mathrm{U}}[2-] & = & I_{0, \mathrm{~N}}[2-] & = \\
I_{0, \mathrm{U}}[2] & = & I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathrm{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset & I_{0, \mathrm{~N}}[1-] & =\emptyset \\
I_{0, U}[1] & = & I_{0, \mathrm{~N}}[1] & = \\
I_{0, U}[2-] & = & I_{0, \mathrm{~N}}[2-] & = \\
I_{0, U}[2] & = & I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset \\
I_{0, U}[1] & = \\
I_{0, U}[2-] & = \\
I_{0, U}[2] & =
\end{aligned}
$$

$$
\begin{aligned}
I_{0, N}[1-] & =\emptyset \\
I_{0, N}[1] & = \\
I_{0, \mathrm{~N}}[2-] & = \\
I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset \\
I_{0, U}[1] & =[0, \infty) \\
I_{0, U}[2-] & = \\
I_{0, U}[2] & =
\end{aligned}
$$

$$
\begin{aligned}
I_{0, N}[1-] & =\emptyset \\
I_{0, \mathrm{~N}}[1] & = \\
I_{0, \mathrm{~N}}[2-] & = \\
I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset \\
I_{0, U}[1] & =[0, \infty) \\
I_{0, U}[2-] & = \\
I_{0, U}[2] & =
\end{aligned}
$$

$$
\begin{aligned}
I_{0, \mathrm{~N}}[1-] & =\emptyset \\
I_{0, \mathrm{~N}}[1] & =\emptyset \\
I_{0, \mathrm{~N}}[2-] & = \\
I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset \\
I_{0, U}[1] & =[0, \infty) \\
I_{0, U}[2-] & = \\
I_{0, U}[2] & =
\end{aligned}
$$

$$
\begin{aligned}
I_{0, \mathrm{~N}}[1-] & =\emptyset \\
I_{0, \mathrm{~N}}[1] & =\emptyset \\
I_{0, \mathrm{~N}}[2-] & = \\
I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset \\
I_{0, U}[1] & =[0, \infty) \\
I_{0, U}[2-] & =[0, \infty) \\
I_{0, U}[2] & =
\end{aligned}
$$

$$
\begin{aligned}
I_{0, N}[1-] & =\emptyset \\
I_{0, N}[1] & =\emptyset \\
I_{0, N}[2-] & = \\
I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset \\
I_{0, U}[1] & =[0, \infty) \\
I_{0, U}[2-] & =[0, \infty) \\
I_{0, U}[2] & =
\end{aligned}
$$

$$
\begin{aligned}
I_{0, \mathrm{~N}}[1-] & =\emptyset \\
I_{0, \mathrm{~N}}[1] & =\emptyset \\
I_{0, \mathrm{~N}}[2-] & =\emptyset \\
I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset \\
I_{0, U}[1] & =[0, \infty) \\
I_{0, U}[2-] & =[0, \infty) \\
I_{0, U}[2] & =
\end{aligned}
$$

$$
\begin{aligned}
I_{0, \mathrm{~N}}[1-] & =\emptyset \\
I_{0, \mathrm{~N}}[1] & =\emptyset \\
I_{0, \mathrm{~N}}[2-] & =\emptyset \\
I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset \\
I_{0, U}[1] & =[0, \infty) \\
I_{0, U}[2-] & =[0, \infty) \\
I_{0, U}[2] & =[0, \infty)
\end{aligned}
$$

$$
\begin{aligned}
I_{0, \mathrm{~N}}[1-] & =\emptyset \\
I_{0, \mathrm{~N}}[1] & =\emptyset \\
I_{0, \mathrm{~N}}[2-] & =\emptyset \\
I_{0, \mathrm{~N}}[2] & =
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- $3 / 4$ of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
I_{0, U}[1-] & =\emptyset \\
I_{0, U}[1] & =[0, \infty) \\
I_{0, U}[2-] & =[0, \infty) \\
I_{0, U}[2] & =[0, \infty)
\end{aligned}
$$

$$
\begin{aligned}
I_{0, \mathrm{~N}}[1-] & =\emptyset \\
I_{0, \mathrm{~N}}[1] & =\emptyset \\
I_{0, \mathrm{~N}}[2-] & =\emptyset \\
I_{0, \mathrm{~N}}[2] & =[0, \infty)
\end{aligned}
$$

Example: Preemptive Priority

Urgent ($d=\mathbf{U}, r=1$)

- $1 / 4$ of all jobs
- Size distribution X_{U}

Normal ($d=\mathbf{N}, r=2$)

- 3/4 of all jobs

- Size distribution X_{N}

$$
\begin{aligned}
X_{0, U}[1-] & =0 \\
X_{0, U}[1] & =X_{U} \\
X_{0, U}[2-] & =X_{U} \\
X_{0, U}[2] & =X_{U}
\end{aligned}
$$

$$
\begin{aligned}
X_{0, \mathrm{~N}}[1-] & =0 \\
X_{0, \mathrm{~N}}[1] & =0 \\
X_{0, \mathrm{~N}}[2-] & =0 \\
X_{0, \mathrm{~N}}[2] & =X_{\mathrm{N}}
\end{aligned}
$$

Example: Preemptive Priority

$$
\begin{aligned}
& \text { Urge } X_{0}[1-]=0 \\
& \begin{array}{l}
\text { - } 1 /\{ \\
\text { - Siz } \\
\text { Norn }
\end{array} \quad X_{0}[1]= \begin{cases}X_{U} & \text { w.p. } \frac{1}{4} \\
0 & \text { w.p. } \frac{3}{4}\end{cases} \\
& \begin{aligned}
& \text { t: }: 1 \\
& \\
& \\
& X_{0, \mathrm{~N}}[1-]=0 \\
& X_{0, \mathrm{~N}}[1]=0 \\
& X_{0, \mathrm{~N}}[2-]=0 \\
& X_{0, \mathrm{~N}}[2]=X_{\mathrm{N}}
\end{aligned}
\end{aligned}
$$

Part 2: analyzing SOAP policies

Practice!

Part 2: analyzing SOAP policies

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

Part 1: defining SOAP policies
 Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Two Design Problems

Bucketed SRPT

Noisy Systems

Bucketed SRPT

Question: given number of priority levels, which job sizes go in which size buckets?

Two Buckets

$X=$ bounded Pareto on $\left[1,10^{6}\right]$ with $\alpha=1$

Two Buckets

$X=$ bounded Pareto on $\left[1,10^{6}\right]$ with $\alpha=1$
 $t=$ threshold between buckets

Two Buckets

$X=$ bounded Pareto on $\left[1,10^{6}\right]$ with $\alpha=1$
 $t=$ threshold between buckets

Bucketed SRPT

Two Buckets

$X=$ bounded Pareto on [$1,10^{6}$] with $\alpha=1$
$t=$ threshold between buckets

Bucketed SRPT

Two Buckets

$X=$ bounded Pareto on [$1,10^{6}$] with $\alpha=1$
$t=$ threshold between buckets

Bucketed PSJF

Noisy System

Noisy System

Gittins

Noisy System

Gittins

$\left\{\begin{array}{lll}1 & \text { w.p. } \frac{1}{3} & \text { Q: What if we have noisy }\end{array}\right.$ $X=\left\{\begin{array}{lll}6 & \text { w.p. } \frac{1}{3} \\ 14 & \text { w. } \frac{1}{3}\end{array} \quad\right.$ age information?

Noisy System

Gittins

Noisy System

Gittins

 minimizes $\mathrm{E}[T]$

SOAP Bubble Analysis

SOAP Bubble Analysis

SOAP Bubble Analysis

Idea: do tagged job analysis, but...

- I get worst possible rank
- Everyone else gets best possible rank

SOAP Bubble Analysis

Idea: do tagged job analysis, but...

- I get worst possible rank
- Everyone else gets best possible rank

Theorem: this always gives an upper bound on E[T]

SOAP Bubble Analysis

Idea: do tagged job analysis, but...

- I get worst possible rank
- Everyone else gets best possible rank

Noise could be adversarial!

Theorem: this always gives an upper bound on $\mathbf{E}[T]$

Designing for Noisy Systems

Gittins

Designing for Noisy Systems

Gittins

Designing for Noisy Systems

Gittins

Problem:
I can jump up to rank 9 before age 1

Designing for Noisy Systems

Gittins

Problem:

I can jump up to rank 9 before age 1 Solution: shift

$$
X= \begin{cases}1 & \text { w.p. } \frac{1}{3} \\ 6 & \text { w.p. } \frac{1}{3} \\ 14 & \text { w.p. } \frac{1}{3}\end{cases}
$$

Designing for Noisy Systems

Shift Gittins

Problem:
I can jump up to rank 9 before age 1 Solution: shift

$$
X= \begin{cases}1 & \text { w.p. } \frac{1}{3} \\ 6 & \text { w.p. } \frac{1}{3} \\ 14 & \text { w.p. } \frac{1}{3}\end{cases}
$$

Designing for Noisy Systems

Shift Gittins

Problem:
I can jump up to rank 9 before age 1 Solution: shift

Problem: other jobs might not reach rank 9

$$
X= \begin{cases}1 & \text { w.p. } \frac{1}{3} \\ 6 & \text { w.p. } \frac{1}{3} \\ 14 & \text { w.p. } \frac{1}{3}\end{cases}
$$

Designing for Noisy Systems

Shift Gittins

Problem:
I can jump up to rank 9 before age 1 Solution: shift

Problem:
other jobs might not reach rank 9 Solution: flatten

$$
X= \begin{cases}1 & \text { w.p. } \frac{1}{3} \\ 6 & \text { w.p. } \frac{1}{3} \\ 14 & \text { w.p. } \frac{1}{3}\end{cases}
$$

Designing for Noisy Systems

Shift-Flat Gittins

Problem:
I can jump up to rank 9 before age 1 Solution: shift

Problem: other jobs might not reach rank 9 Solution: flatten

$$
X= \begin{cases}1 & \text { w.p. } \frac{1}{3} \\ 6 & \text { w.p. } \frac{1}{3} \\ 14 & \text { w.p. } \frac{1}{3}\end{cases}
$$

Designing for Noisy Systems

Shift-Flat Gittins

Problem:
I can jump up to rank 9 before age 1 Solution: shift

Problem: other jobs might not reach rank 9 Solution: flatten

$$
X= \begin{cases}1 & \text { w.p. } \frac{1}{3} \\ 6 & \text { w.p. } \frac{1}{3} \\ 14 & \text { w.p. } \frac{1}{3}\end{cases}
$$

$\mathrm{E}[T$ of Shift-Flat Gittins with noise $\Delta]$
$=\mathrm{E}[T$ of Gittins without noise $]+O(\Delta)$

Outline

Part 1: defining SOAP policies
 Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 4: optimality proofs with SOAP

Gittins vs. SERPT

Gittins vs. SERPT

Gittins

$$
r(a)=\sup _{\Delta>0} \frac{\mathrm{E}[\min \{X-a, \Delta\} \mid X>a]}{\mathrm{P}[X-a \leq \Delta \mid X>a]}
$$

Gittins vs. SERPT

Gittins

$$
r(a)=\sup _{\Delta>0} \frac{\mathbf{E}[\min \{X-a, \Delta\} \mid X>a]}{\mathbf{P}[X-a \leq \Delta \mid X>a]}
$$

SERPT

$$
r(a)=\mathrm{E}[X-a \mid X>a]
$$

Gittins vs. SERPT

Gittins

$$
r(a)=\sup _{\Delta>0} \frac{\mathrm{E}[\min \{X-a, \Delta\} \mid X>a]}{\mathrm{P}[X-a \leq \Delta \mid X>a]}
$$

\} Minimizes \mathrm { E } [T] , but can be intractable
SERPT

$$
r(a)=\mathrm{E}[X-a \mid X>a]
$$

Gittins vs. SERPT

Gittins

$$
r(a)=\sup _{\Delta>0} \frac{\mathrm{E}[\min \{X-a, \Delta\} \mid X>a]}{\mathrm{P}[X-a \leq \Delta \mid X>a]}
$$

\} Minimizes \mathrm { E } [T] , but can be intractable
SERPT

$$
\begin{aligned}
& r(a)=\mathrm{E}[X-a \mid X>a] \\
& \text { \} \text { Simple, but no } \mathrm { E } [T] \text { guarantee } }
\end{aligned}
$$

Gittins vs. SERPT

Gittins

$$
r(a)=\sup _{\Delta>0} \frac{\mathrm{E}[\min \{X-a, \Delta\} \mid X>a]}{\mathrm{P}[X-a \leq \Delta \mid X>a]}
$$

\} Minimizes \mathrm { E } [T] , but can be intractable
SERPT

$$
\begin{aligned}
& r(a)=\mathrm{E}[X-a \mid X>a] \\
& \text { \} \text { Simple, but no } \mathrm { E } [T] \text { guarantee } }
\end{aligned}
$$

Question: is there a simple policy with near-optimal E[T]?

Monotonic SERPT

rank

Monotonic SERPT

M-SERPT is like SERPT,
but rank never goes down

Monotonic SERPT

rank

M-SERPT is like SERPT,
but rank never goes down

Monotonic SERPT

M-SERPT is like SERPT
but rank never goes down

Theorem:

$$
\frac{\mathrm{E}[T \text { of M-SERPT }]}{\mathrm{E}[T \text { of Gittins }]} \leq 5
$$

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

SOAP Summary

SOAP Summary

Idea: schedule with
rank functions

SOAP Summary

Idea: schedule with rank functions

Result: universal response time analysis

SOAP Summary

Idea: schedule with rank functions

Result: universal response time analysis

Impact: optimize and prove guarantees

References: SOAP

Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf (2018). SOAP: One Clean Analysis of All Age-Based Scheduling Policies. Proceedings of the ACM on Measurement and Analysis of Computing Systems (POMACS), 2(1), 16. Presented at SIGMETRICS 2018.
Z. Scully and M. Harchol-Balter (2018). SOAP Bubbles: Robust Scheduling Under Adversarial Noise. In 56th Annual Allerton Conference on Communication, Control, and Computing (pp. 144-154). IEEE.
Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf (2019). Simple Near-Optimal Scheduling for the M/G/1. ACM SIGMETRICS Performance Evaluation Review, to appear. Presenting at MAMA 2019 this Friday!

References: Analyzing E[T]

L. Kleinrock and R. R. Muntz (1972). Processor sharing queueing models of mixed scheduling disciplines for time shared system. Journal of the ACM (JACM), 19(3), 464-482.
S. W. Furhmann and R. B. Cooper (1985). Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations. Operations Research, 33(5), 1117-1129.
M. Harchol-Balter (2013). Performance Modeling and Design of Computer Systems: Queueing Theory in Action. Cambridge University Press.

References: Possible Applications

M. Harchol-Balter, Schroeder, B., Bansal, N., and Agrawal, M. (2003). Size-based scheduling to improve web performance. ACM Transactions on Computer Systems (TOCS), 21(2), 207-233.
B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout (2018). Homa: A receiver-driven low-latency transport protocol using network priorities. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication (pp. 221-235). ACM.
S. Emadi, R. Ibrahim, and S. Kesavan (2019). Can "very noisy" information go a long way? An exploratory analysis of personalized scheduling in service systems. Working paper.
M. Mitzenmacher (2019). Scheduling with Predictions and the Price of Misprediction. Preprint, arXiv:1902.00732.
B. Kamphorst (2018). Heavy-traffic behaviour of scheduling policies in queues (Doctoral dissertation, Technische Universiteit Eindhoven).
Y. Chen and J. Dong (2019). The Power of Two in Queue Scheduling. Working paper.

[^0]: (

