The Power of SOAP Scheduling

Mor Harchol-Balter Ziv Scully

Carnegie Mellon University

Goal: analyze mean response time E[T]

Goal: analyze mean response time $\mathbf{E}[T]$ Depends on scheduling policy

What scheduling policy minimizes E[T]?

What scheduling policy minimizes $\mathbf{E}[T]$?

Shortest remaining processing time (SRPT)

... but nobody uses SRPT!

Unknown job sizes

 $Unknown\ job\ sizes\ \begin{cases} FCFS\ (first\ come,\ first\ served)\\ FB\ (foreground-background:\ least\ age) \end{cases}$

 $Unknown\ job\ sizes \begin{cases} FCFS\ (first\ come,\ first\ served) \\ FB\ (foreground-background:\ least\ age) \\ SERPT\ (least\ \emph{expected}\ remaining\ size) \\ Gittins\ (optimal!) \end{cases}$

```
Unknown\ job\ sizes \ \begin{cases} FCFS\ (first\ come,\ first\ served) \\ FB\ (foreground-background:\ least\ age) \\ SERPT\ (least\ \textit{expected}\ remaining\ size) \\ Gittins\ (optimal!) \end{cases}
```

Hardware constraints

 $Unknown\ job\ sizes \ \begin{cases} FCFS\ (first\ come,\ first\ served) \\ FB\ (foreground-background:\ least\ age) \\ SERPT\ (least\ \textit{expected}\ remaining\ size) \\ Gittins\ (optimal!) \end{cases}$

Hardware constraints \ \begin{aligned} \text{"Discrete" SRPT} \\ \text{(preempt only at checkpoints)} \end{aligned}

 $Unknown\ job\ sizes \ \begin{cases} FCFS\ (first\ come,\ first\ served) \\ FB\ (foreground-background:\ least\ age) \\ SERPT\ (least\ \emph{expected}\ remaining\ size) \\ Gittins\ (optimal!) \end{cases}$

Hardware constraints

"Discrete" SRPT

(preempt only at checkpoints)

"Bucketed" SRPT

(limited number of priority levels)

 $Unknown\ job\ sizes \ \begin{cases} FCFS\ (first\ come,\ first\ served) \\ FB\ (foreground-background:\ least\ age) \\ SERPT\ (least\ \emph{expected}\ remaining\ size) \\ Gittins\ (optimal!) \end{cases}$

Hardware constraints

"Discrete" SRPT, FB, etc.

(preempt only at checkpoints)

"Bucketed" SRPT, FB, etc.

(limited number of priority levels)

Why Not SRPT?

 $Unknown\ job\ sizes \ \begin{cases} FCFS\ (first\ come,\ first\ served) \\ FB\ (foreground-background:\ least\ age) \\ SERPT\ (least\ \textit{expected}\ remaining\ size) \\ Gittins\ (optimal!) \end{cases}$

Hardware constraints {
 "Discrete" SRPT, FB, etc.
 (preempt only at checkpoints)
 "Bucketed" SRPT, FB, etc.
 (limited number of priority levels)

Metric other than $\mathbf{E}[T]$

Why Not SRPT?

 $Unknown\ job\ sizes \ \begin{cases} FCFS\ (first\ come,\ first\ served) \\ FB\ (foreground-background:\ least\ age) \\ SERPT\ (least\ \textit{expected}\ remaining\ size) \\ Gittins\ (optimal!) \end{cases}$

Hardware constraints {
 "Discrete" SRPT, FB, etc.
 (preempt only at checkpoints)
 "Bucketed" SRPT, FB, etc.
 (limited number of priority levels)

Metric other than $\mathbf{E}[T]$ Priority classes

Why Not SRPT?

 $Unknown\ job\ sizes \ \begin{cases} FCFS\ (first\ come,\ first\ served) \\ FB\ (foreground-background:\ least\ age) \\ SERPT\ (least\ \textit{expected}\ remaining\ size) \\ Gittins\ (optimal!) \end{cases}$

Hardware constraints {
 "Discrete" SRPT, FB, etc.
 (preempt only at checkpoints)
 "Bucketed" SRPT, FB, etc.
 (limited number of priority levels)

Metric other than $\mathbf{E}[T]$ $\begin{cases} \text{Priority classes} \\ \text{RS (optimal for mean slowdown)} \end{cases}$

E[T] known

E[*T*] known

 $\mathbf{E}[T]$ known

SRPT

FCFS

E[T] known

SRPT

FCFS

FB

E[T] known

SRPT

FCFS

FB

Simple priority classes

E[T] known

E[*T*] unknown!

SRPT

FCFS

FB

Simple priority classes

E[T] known

SRPT

FCFS

FB

Simple priority classes

E[*T*] unknown!

SERPT

Gittins

Discrete SRPT

Discrete FB

Bucketed SRPT

Bucketed FB

RS*

Complex priority classes

... and more!

E[T] known

SRPT

FCFS

FB

Simple priority classes

E[*T*] unknown!

SERPT

Gittins

Discrete SRPT

Discrete FB

Bucketed SRPT

Bucketed FB

RS*

Complex priority classes

... and more!

SOAP

Broad *class* of scheduling policies...

SOAP

Broad *class* of scheduling policies...

... with universal response time analysis

SOAP

Schedule Ordered by Age-based Priority

Broad *class* of scheduling policies...

... with universal response time analysis

Part 1: defining SOAP policies

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 1:

defining SOAP policies

FB serve by least age

FB serve by least age

FB serve by least age

SRPT serve by least remaining size

FB serve by least age

SRPT serve by least remaining size

FB serve by least age

SRPT serve by least remaining size

FB serve by least age

SRPT serve by least remaining size

A SOAP policy is a rank function with one rule:

A **SOAP** policy is a rank function with one rule:

always serve the job of minimum rank

A **SOAP** policy is a rank function with one rule:

always serve the job of minimum rank

(break ties FCFS)

Classic SOAP Policies

Classic SOAP Policies

Classic SOAP Policies

Classic SOAP Policies

Job size distribution:

$$X = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

SOAP Policy: Gittins

SOAP Policy: Gittins

Two customer classes: humans and robots

Two customer classes: humans and robots

Humans

- unknown size
- nonpreemptible
- FCFS

Two customer classes: humans and robots

Humans

- unknown size
- nonpreemptible
- FCFS

Robots

- known size
- preemptible
- SRPT

Two customer classes: humans and robots

Humans

- unknown size
- nonpreemptible
- FCFS
- priority over robots

Robots

- known size
- preemptible
- SRPT

Two customer classes: humans and robots

Humans

- unknown size
- nonpreemptible
- FCFS
- priority over robots

Robots

- known size
- preemptible
- SRPT

Twist: small robots outrank humans

Two customer classes: humans and robots

Humans

- unknown size
- nonpreemptible
- FCFS
- priority over robots

Twist: small robots outrank humans

Robots

- known size
- preemptible
- SRPT

Two customer classes: humans and robots

Humans

- unknown size
- nonpreemptible
- FCFS
- priority over robots

Twist: small robots outrank humans

Robots

- known size
- preemptible
- SRPT

Two customer classes: humans and robots

Twist: small robots outrank humans

Full SOAP Definition

A **SOAP** policy is any policy expressible by a rank function of the form:

Full SOAP Definition

A **SOAP** policy is any policy expressible by a rank function of the form:

descriptor × age → rank

A **SOAP** policy is any policy expressible by a rank function of the form:

A **SOAP** policy is any policy expressible by a rank function of the form:

$$FB$$

$$r_{\emptyset}(a) = a$$

A **SOAP** policy is any policy expressible by a rank function of the form:

FB
$$r_{\emptyset}(a) = a$$

$$r_{x}(a) = x - a$$

A **SOAP** policy is any policy expressible by a rank function of the form:

size, class, etc.)

$$\frac{descriptor}{descriptor} \times age \longrightarrow rank$$

$$FB \qquad SRPT \\
r_{\varnothing}(a) = a \qquad r_{x}(a) = x - a$$

Descriptor can be anything that:

- does not change while a job is in the system
- is i.i.d. for each job

What isn't a SOAP policy?

What isn't a SOAP policy?

Rank changes when not in service

What isn't a SOAP policy?

- Rank changes when not in service
- Rank depends on system-wide state

What isn't a SOAP policy?

- Rank changes when not in service
- Rank depends on system-wide state
- Non-FCFS tiebreaking

What isn't a SOAP policy?

- Rank changes when not in service
- Rank depends on system-wide state
- Non-FCFS tiebreaking

Excludes: EDF, accumulating priority, PS

Part 1:

defining SOAP policies

Practice!

Part 1:

> defining SOAP policies

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 2:

analyzing SOAP policies

= rank

Running example: **SERPT**

My size Which arrivals delay me? By how much?

6

14

My size Which arrivals delay me? By how much?

6

14

My size	Which arrivals delay me?	By how much?
1	none	
6		
14		

My size	Which arrivals delay me?	By how much?
1	none	n/a
6		
14		

My size	Which arrivals delay me?	By how much?
1	none	n/a
6		
14		

My size	Which arrivals delay me?	By how much?
1	none	n/a
6		
14		

My size	Which arrivals delay me?	By how much?
1	none	n/a
6	when $0 \le my$ age < 3	
14		

My size	Which arrivals delay me?	By how much?
1	none	n/a
6	when $0 \le my$ age < 3	1
14		

My size	Which arrivals delay me?	By how much?
1	none	n/a
6	when $0 \le my$ age < 3	1
14		

My size	Which arrivals delay me?	By how much?
1	none	n/a
6	when $0 \le my$ age < 3	1
14		

Warmup: Empty System

My size	Which arrivals delay me?	By how much?
1	none	n/a
6	when $0 \le my$ age < 3	1
14	when $0 \le my$ age < 7	

Warmup: Empty System

My size	Which arrivals delay me?	By how much?
1	none	n/a
6	when $0 \le my$ age < 3	1
14	when $0 \le my$ age < 7	1

SOAP Insight #1: Pessimism Principle

Replace my rank with my worst future rank

my size = 14

Replace my rank with my worst future rank

$$\rho_{\text{new}}(a) = \begin{cases} \lambda \cdot 1 & 0 \le a < 7 \\ \lambda \cdot 0 & 7 \le a < 14 \end{cases}$$

my size = 14

Replace my rank with my worst future rank

$$\rho_{\text{new}}(a) = \begin{cases} \lambda \cdot 1 & 0 \le a < 7 \\ \lambda \cdot 0 & 7 \le a < 14 \end{cases}$$

$$\mathbf{E}[T_{14} \mid \text{empty}] = \int_0^{14} \frac{da}{1 - \rho_{\text{new}}(a)}$$

my size = 14

Response Time Analysis

Response Time Analysis

Response Time Analysis

Question: is residence time...

my size?

Question: is residence time...

my size?

Question: is residence time...

my size? X

- my size? X
- $\mathbf{E}[T \mid \text{empty}]$?

- my size? X
- $\mathbf{E}[T \mid \text{empty}]$?

- my size? X
- $\mathbf{E}[T \mid \text{empty}]$?

- my size? X
- $\mathbf{E}[T \mid \text{empty}]$?

- my size? X
- $\mathbf{E}[T \mid \text{empty}]$?

Question: is residence time...

- my size? X
- $\mathbf{E}[T \mid \text{empty}]$?

Pessimism Principle: replace my rank with my worst future rank

Question: is residence time...

- my size? X
- $\mathbf{E}[T \mid \text{empty}]$?

Pessimism Principle: replace my rank with my worst future rank

Question: is residence time...

- my size? X
- $\mathbf{E}[T \mid \text{empty}]$?

Pessimism Principle: replace my rank with

my worst future rank

Question: is residence time...

- my size? X
- $\mathbf{E}[T \mid \text{empty}]$?

Pessimism Principle: replace my rank with my worst future rank

Question: is residence time...

- my size? XE[T | empty]?

Pessimism Principle:

Question: is residence time... Pessimism Principle:

- my size? X
 E[T | empty]?

e.g.
$$\mathbf{E}[R_{14}] = \mathbf{E}[T_{14} \mid \text{empty}] = \int_0^{14} \frac{da}{1 - \rho_{\text{new}}(a)}$$

Waiting Time

Waiting Time

U[w] = relevant work

U[w] = relevant work

U[w] = relevant work

Waiting time is busy period started by U[w]

Relevant work (w = 9):

Relevant work (w = 9):

$$\mathbf{E}[U[9]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X^2]}{1 - \rho}$$

Relevant work (w = 9):

$$\mathbf{E}[U[9]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X^2]}{1 - \rho}$$

Waiting time:

$$\mathbf{E}[Q_{14}] = \frac{\mathbf{E}[U[9]]}{1 - \rho_{\text{new}}(0)}$$

Relevant work (w = 9):

$$\mathbf{E}[U[9]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X^2]}{1 - \rho}$$

Waiting time:

$$\mathbf{E}[Q_{14}] = \frac{\mathbf{E}[U[9]]}{1 - \rho_{\text{new}}(0)}$$

Residence time:

$$\mathbf{E}[R_{14}] = \int_{0}^{14} \frac{\mathrm{d}a}{1 - \rho_{\text{new}}(a)}$$

Relevant work (w = 9):

$$\mathbf{E}[U[9]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X^2]}{1 - \rho}$$

Waiting time:

$$\mathbf{E}[Q_{14}] = \frac{\mathbf{E}[U[9]]}{1 - \rho_{\text{new}}(0)}$$

Residence time:

$$\mathbf{E}[R_{14}] = \int_{0}^{14} \frac{\mathrm{d}a}{1 - \rho_{\text{new}}(a)}$$

Response time:

$$\mathbf{E}[T_{14}] = \mathbf{E}[Q_{14}] + \mathbf{E}[R_{14}]$$

rank

Relevant work (w = 9):

$$\mathbf{E}[U[9]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X^2]}{1 - \rho}$$

Waiting time:

$$\mathbf{E}[Q_{14}] = \frac{\mathbf{E}[U[9]]}{1 - \rho_{\text{new}}(\mathbf{q})}$$

Residence time:

$$\mathbf{E}[R_{14}] = \int_0^{14} \frac{\mathrm{d}a}{1 - \rho_{\text{new}}(a)}$$

$$\mathbf{E}[T_{14}] = \mathbf{E}[Q_{14}] + \mathbf{E}[R_{14}]$$

Relevant work (w = 7):

Relevant work (w = 7):

$$E[U[7]] = ???$$

Two causes of relevant work:

Two causes of relevant work:

• I_0 : arrivals

Two causes of relevant work:

- I_0 : arrivals
- I_1 , I_2 : recyclings

Observations:

Observations:

Observations:

Observations:

Observations:

Observations:

- at most one recycled job at a time
- recyclings occur only when no relevant work

SOAP Insight #2: Vacation Transformation

Replace recycled jobs with server vacations

Vacation Transformation

$$\mathbf{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X_0^2] + \mathbf{E}[X_1^2] + \mathbf{E}[X_2^2]}{1 - \lambda \mathbf{E}[X_0]}$$

$$\mathbf{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X_0^2] + \mathbf{E}[X_1^2] + \mathbf{E}[X_2^2]}{1 - \lambda \mathbf{E}[X_0]}$$

Relevant work (w = 7):

$$E[U[7]] = ???$$

Relevant work (w = 7):

$$\mathbf{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X_0^2] + \mathbf{E}[X_1^2] + \mathbf{E}[X_2^2]}{1 - \lambda \mathbf{E}[X_0]}$$

Relevant work (w = 7):

$$\mathbf{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X_0^2] + \mathbf{E}[X_1^2] + \mathbf{E}[X_2^2]}{1 - \lambda \mathbf{E}[X_0]}$$

Waiting time:

$$\mathbf{E}[Q_1] = \frac{\mathbf{E}[U[7]]}{1 - \rho_{\text{new}}(0)}$$

Relevant work (w = 7):

$$\mathbf{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X_0^2] + \mathbf{E}[X_1^2] + \mathbf{E}[X_2^2]}{1 - \lambda \mathbf{E}[X_0]}$$

Waiting time:

$$\mathbf{E}[Q_1] = \frac{\mathbf{E}[U[7]]}{1 - \rho_{\text{new}}(0)}$$

Residence time:

$$\mathbf{E}[R_1] = \int_0^1 \frac{\mathrm{d}a}{1 - \rho_{\text{new}}(a)}$$

Relevant work (w = 7):

$$\mathbf{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X_0^2] + \mathbf{E}[X_1^2] + \mathbf{E}[X_2^2]}{1 - \lambda \mathbf{E}[X_0]}$$

Waiting time:

$$\mathbf{E}[Q_1] = \frac{\mathbf{E}[U[7]]}{1 - \rho_{\text{new}}(0)}$$

Residence time:
$$\rho_{\text{new}}(a) = \lambda \cdot 0$$
$$E[R_1] = \int_0^1 \frac{da}{1 - \rho_{\text{new}}(a)}$$

Relevant work (w = 7):

$$\mathbf{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X_0^2] + \mathbf{E}[X_1^2] + \mathbf{E}[X_2^2]}{1 - \lambda \mathbf{E}[X_0]}$$

Waiting time:

$$\mathbf{E}[Q_1] = \frac{\mathbf{E}[U[7]]}{1 - \rho_{\text{new}}(0)} = \mathbf{E}[U[7]]$$

Residence time:
$$\rho_{\text{new}}(a) = \lambda \cdot 0$$
$$E[R_1] = \int_0^1 \frac{da}{1 - \rho_{\text{new}}(a)} = 1$$

Relevant work (w = 7):

$$\mathbf{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbf{E}[X_0^2] + \mathbf{E}[X_1^2] + \mathbf{E}[X_2^2]}{1 - \lambda \mathbf{E}[X_0]}$$

Waiting time:

$$\mathbf{E}[Q_1] = \frac{\mathbf{E}[U[7]]}{1 - \rho_{\text{new}}(0)} = \mathbf{E}[U[7]]$$

Residence time:

esidence time:
$$\begin{array}{c}
\rho_{\text{new}}(a) = \lambda \cdot 0 \\
E[R_1] = \int_0^1 \frac{da}{1 - \rho_{\text{new}}(a)} = 1
\end{array}$$
Response time:
$$E[T_1] = E[Q_1] + E[R_1]$$

$$\mathbf{E}[T_1] = \mathbf{E}[Q_1] + \mathbf{E}[R_1]$$

Running example: **SERPT**

Running example: **SERPT**

E[T] of any SOAP Policy

Worst Future Rank

Worst Future Rank

$$w_x(a) = \sup_{a \le b < x} r(b)$$

Worst Future Rank

$$w_x(a) = \sup_{a \le b < x} r(b)$$

$$I_i[w] = i$$
th interval when $r(a) \le w$

 $I_i[w] = i$ th interval when $r(a) \le w$

$$I_i[w] = i$$
th interval when $r(a) \le w$

Detail: start with i = 0 iff first interval contains age 0, else start with i = 1

$$I_i[w] = i$$
th interval when $r(a) \le w$

Detail: start with i = 0 iff first interval contains age 0, else start with i = 1

Detail: interval can be empty

Worst Future Rank

$$w_x(a) = \sup_{a \le b < x} r(b)$$

$$I_i[w] = i$$
th interval when $r(a) \le w$

Worst Future Rank

$$w_x(a) = \sup_{a \le b < x} r(b)$$

$$\mathbf{E}[T_x] = \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}[X_i[w_x]^2]}{(1 - \rho_0[w_x])(1 - \rho_{\text{new}}[w_x])} + \int_0^x \frac{da}{1 - \rho_{\text{new}}[w_x(a)]}$$

$$I_i[w] = i$$
th interval when $r(a) \le w$

Worst Future Rank

Norst Future Rank
$$w_{x}(a) = \sup_{a \le b < x} r(b)$$

$$w_{x} = w_{x}(0)$$

$$E[T_{x}]$$

$$\mathbf{E}[T_x] = \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}[X_i[w_x]^2]}{(1 - \rho_0[w_x])(1 - \rho_{\text{new}}[w_x])} + \int_0^x \frac{da}{1 - \rho_{\text{new}}[w_x(a)]}$$

$$I_i[w] = i$$
th interval when $r(a) \le w$

Worst Future Rank

Vorst Future Rank
$$w_{x}(a) = \sup_{a \le b < x} r(b)$$

$$w_{x} = w_{x}(0)$$

$$\mathbf{E}[T_x] = \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}[X_i[w_x]^2]}{(1 - \rho_0[w_x])(1 - \rho_{\text{new}}[w_x])} + \int_0^x \frac{da}{1 - \rho_{\text{new}}[w_x(a)]}$$

Relevant Intervals

 $I_i[w] = i$ th interval when $r(a) \le w$

 $X_i[w] = \text{service a job receives in } I_i[w]$

Worst Future Rank

$$w_x(a) = \sup_{a \le b < x} r(b)$$
$$w_x = w_x(0)$$

$$\mathbf{E}[T_x] = \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}[X_i[w_x]^2]}{(1 - \rho_0[w_x])(1 - \rho_{\text{new}}[w_x])} + \int_0^x \frac{da}{1 - \rho_{\text{new}}[w_x(a)]}$$

$$I_i[w] = i$$
th interval when $r(a) \le w$
 $X_i[w] =$ service a job receives in $I_i[w]$
 $\rho_0[w] = \lambda \mathbf{E}[X_0[w]]$

Worst Future Rank

$$w_{x}(a) = \sup_{a \le b < x} r(b)$$
$$w_{x} = w_{x}(0)$$

$$\mathbf{E}[T_x] = \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}[X_i[w_x]^2]}{(1 - \rho_0[w_x])(1 - \rho_{\text{new}}[w_x])} + \int_0^x \frac{da}{1 - \rho_{\text{new}}[w_x(a)]}$$

$$I_i[w] = i$$
th interval when $r(a) \le w$
 $X_i[w] =$ service a job receives in $I_i[w]$
 $\rho_0[w] = \lambda \mathbf{E}[X_0[w]]$
 $\rho_{\text{new}}[w] = \lambda \mathbf{E}[X_0[w-]]$

Worst Future Rank

$$w_x(a) = \sup_{a \le b < x} r(b)$$

$$I_i[w] = i$$
th interval when $r(a) \le w$

Worst Future Rank

$$w_{d,x}(a) = \sup_{a \le b < x} r_d(b)$$

$$I_{i,d}[w] = i$$
th interval when $r_d(a) \le w$

Worst Future Rank

$$w_{d,x}(a) = \sup_{a \le b < x} r_d(b)$$

Relevant Intervals

 $I_{i,d}[w] = i$ th interval when $r_d(a) \le w$

 $X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w]$

Worst Future Rank

$$w_{d,x}(a) = \sup_{a \le b < x} r_d(b)$$

Relevant Intervals

 X_d = size distribution for descriptor d

$$I_{i,d}[w] = i$$
th interval when $r_d(a) \le w$

$$X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w]$$

Worst Future Rank

$$w_{d,x}(a) = \sup_{a \le b < x} r_d(b)$$

Relevant Intervals

 X_d = size distribution for descriptor d

$$I_{i,d}[w] = i$$
th interval when $r_d(a) \le w$
 $X_{i,d}[w] =$ service a job of descriptor d receives in $I_{i,d}[w]$
 $X_i[w] = X_{i,D}[w]$

Worst Future Rank

$$w_{d,x}(a) = \sup_{a \le b < x} r_d(b)$$

Relevant Intervals

 X_d = size distribution for descriptor d

$$I_{i,d}[w] = i$$
th interval when $r_d(a) \le w$

$$X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w]$$

$$X_i[w] = X_{i,D}[w]$$

$$D = \text{descriptor distribution}$$

Worst Future Rank

$$w_{d,x}(a) = \sup_{a \le b < x} r_d(b)$$
$$w_{d,x} = w_{d,x}(0)$$

Relevant Intervals

 X_d = size distribution for descriptor d

$$I_{i,d}[w] = i$$
th interval when $r_d(a) \le w$

$$X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w]$$

$$X_i[w] = X_{i,D}[w]$$

$$\rho_0[w] = \lambda \mathbf{E}[X_0[w]]$$

$$\rho_{\text{new}}[w] = \lambda \mathbf{E}[X_0[w-]]$$

Worst Future Rank

$$w_{d,x}(a) = \sup_{a \le b < x} r_d(b)$$
$$w_{d,x} = w_{d,x}(0)$$

$$\mathbf{E}[T_{d,x}] = \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbf{E}[X_i[w_{d,x}]^2]}{(1 - \rho_0[w_{d,x}])(1 - \rho_{\text{new}}[w_{d,x}])} + \int_0^x \frac{da}{1 - \rho_{\text{new}}[w_{d,x}(a)]}$$

Relevant Intervals

 $(X_d = \text{size distribution for descriptor } d)$

$$I_{i,d}[w] = i$$
th interval when $r_d(a) \le w$

$$X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w]$$

$$X_i[w] = X_{i,D}[w]$$

$$\rho_0[w] = \lambda \mathbf{E}[X_0[w]]$$

$$\rho_{\text{new}}[w] = \lambda \mathbf{E}[X_0[w-]]$$

Urgent (
$$d = U, r = 1$$
)

Normal (d = N, r = 2)

Urgent (
$$d = U, r = 1$$
)

• 1/4 of all jobs

Normal (d = N, r = 2)


```
Urgent (d = U, r = 1)
```

- 1/4 of all jobs
- Size distribution X_{\cup}

Normal (d = N, r = 2)

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

• 3/4 of all jobs

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] =$$
 $I_{0,U}[1] =$
 $I_{0,U}[2-] =$
 $I_{0,U}[2] =$

$$I_{0,N}[1-] =$$
 $I_{0,N}[1] =$
 $I_{0,N}[2-] =$
 $I_{0,N}[2] =$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] =$$
 $I_{0,U}[1] =$
 $I_{0,U}[2-] =$
 $I_{0,U}[2] =$

$$I_{0,N}[1-] =$$
 $I_{0,N}[1] =$
 $I_{0,N}[2-] =$
 $I_{0,N}[2] =$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = I_{0,U}[2-] = I_{0,U}[2] = I_{0,U}[2]$

$$I_{0,N}[1-] =$$
 $I_{0,N}[1] =$
 $I_{0,N}[2-] =$
 $I_{0,N}[2] =$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = I_{0,U}[2-] = I_{0,U}[2] = I_{0,U}[2]$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = I_{0,N}[2-] = I_{0,N}[2] = I_{0,N}[2]$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] =$
 $I_{0,U}[2-] =$
 $I_{0,U}[2] =$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = I_{0,N}[2-] = I_{0,N}[2] = I_{0,N}[2]$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = [0, \infty)$
 $I_{0,U}[2-] = I_{0,U}[2] = I$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = I_{0,N}[2-] = I_{0,N}[2] = I_{0,N}[2]$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = [0, \infty)$
 $I_{0,U}[2-] = I_{0,U}[2] = I$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = \emptyset$
 $I_{0,N}[2-] = I_{0,N}[2] = \emptyset$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = [0, \infty)$
 $I_{0,U}[2-] = I_{0,U}[2] = I_{0,U}[2] = I_{0,U}[2] = I_{0,U}[2]$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = \emptyset$
 $I_{0,N}[2-] = I_{0,N}[2] = 0$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = [0, \infty)$
 $I_{0,U}[2-] = [0, \infty)$
 $I_{0,U}[2] = [0, \infty)$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = \emptyset$
 $I_{0,N}[2-] = I_{0,N}[2] = 0$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = [0, \infty)$
 $I_{0,U}[2-] = [0, \infty)$
 $I_{0,U}[2] = [0, \infty)$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = \emptyset$
 $I_{0,N}[2-] = \emptyset$
 $I_{0,N}[2] = \emptyset$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = [0, \infty)$
 $I_{0,U}[2-] = [0, \infty)$
 $I_{0,U}[2] = [0, \infty)$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = \emptyset$
 $I_{0,N}[2-] = \emptyset$
 $I_{0,N}[2] = \emptyset$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = [0, \infty)$
 $I_{0,U}[2-] = [0, \infty)$
 $I_{0,U}[2] = [0, \infty)$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = \emptyset$
 $I_{0,N}[2-] = \emptyset$
 $I_{0,N}[2] = \emptyset$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$I_{0,U}[1-] = \emptyset$$
 $I_{0,U}[1] = [0, \infty)$
 $I_{0,U}[2-] = [0, \infty)$
 $I_{0,U}[2] = [0, \infty)$

$$I_{0,N}[1-] = \emptyset$$
 $I_{0,N}[1] = \emptyset$
 $I_{0,N}[2-] = \emptyset$
 $I_{0,N}[2] = [0, \infty)$

Urgent (
$$d = U, r = 1$$
)

- 1/4 of all jobs
- Size distribution X_{U}

Normal (
$$d = N, r = 2$$
)

- 3/4 of all jobs
- Size distribution X_N

$$X_{0,U}[1-] = 0$$

 $X_{0,U}[1] = X_{U}$
 $X_{0,U}[2-] = X_{U}$
 $X_{0,U}[2] = X_{U}$

$$X_{0,N}[1-] = 0$$

 $X_{0,N}[1] = 0$
 $X_{0,N}[2-] = 0$
 $X_{0,N}[2] = X_{N}$

Part 2:

analyzing SOAP policies

Practice!

Part 2: analyzing SOAP policies

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 3:

policy design with SOAP

Two Design Problems

Noisy Systems

Bucketed SRPT

Question: given number of priority levels, which job sizes go in which size buckets?

 $X = \text{bounded Pareto on } [1, 10^6] \text{ with } \alpha = 1$

 $X = \text{bounded Pareto on } [1, 10^6] \text{ with } \alpha = 1$ t = threshold between buckets

 $X = \text{bounded Pareto on } [1, 10^6] \text{ with } \alpha = 1$ t = threshold between buckets

Bucketed SRPT

X = bounded Pareto on [1, 10⁶] with $\alpha = 1$ t = threshold between buckets

Bucketed SRPT

Two Buckets

X = bounded Pareto on [1, 10⁶] with $\alpha = 1$ t = threshold between buckets

Bucketed PSJF

Q: What if we have noisy

Gittins

Q: What if we have noisy

A: Each age has rank range

Q: What if we have noisy

A: Each age has rank range

Q: What if we have noisy **age** information?

A: Each age has rank range

Q: How do we analyze resulting scheduling policy?

A: **SOAP** Bubble analysis

Idea: do tagged job analysis, but...

Idea: do tagged job analysis, but...

• I get *worst* possible **rank**

Idea: do tagged job analysis, but...

- I get *worst* possible rank
- Everyone else gets best possible rank

Idea: do tagged job analysis, but...

- I get *worst* possible rank
- Everyone else gets best possible rank

Theorem: this *always* gives an upper bound on E[T]

Idea: do tagged job analysis, but...

- I get worst possible rank
- Everyone else gets *best* possible rank

Noise could be adversarial!

Theorem: this *always* gives an upper bound on E[T]

Problem:

I can jump up to rank 9 before age 1

Problem:

I can jump up to rank 9 before age 1

Solution: *shift*

Problem:

I can jump up to rank 9 before age 1

Solution: *shift*

Problem:

I can jump up to rank 9 before age 1

Solution: *shift*

Problem:

other jobs might not reach rank 9

Problem:

I can jump up to rank 9 before age 1

Solution: *shift*

Problem:

other jobs might not reach rank 9

Solution: flatten

Shift Gittins

Shift-Flat Gittins

Problem:

I can jump up to rank 9 before age 1

Solution: shift

Problem:

other jobs might not reach rank 9

Solution: flatten

Shift-Flat Gittins

Problem:

I can jump up to rank 9 before age 1

Solution: *shift*

Problem:

other jobs might not reach rank 9

Solution: flatten

Theorem:

 $\mathbf{E}[T \text{ of Shift-Flat Gittins with noise } \Delta]$ = $\mathbf{E}[T \text{ of Gittins without noise}] + O(\Delta)$

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 4:

optimality proofs with SOAP

Gittins

$$r(a) = \sup_{\Delta > 0} \frac{\mathbf{E}[\min\{X - a, \Delta\} \mid X > a]}{\mathbf{P}[X - a \le \Delta \mid X > a]}$$

Gittins

$$r(a) = \sup_{\Delta > 0} \frac{\mathbf{E}[\min\{X - a, \Delta\} \mid X > a]}{\mathbf{P}[X - a \le \Delta \mid X > a]}$$

SERPT

$$r(a) = \mathbf{E}[X - a \mid X > a]$$

Gittins

$$r(a) = \sup_{\Delta > 0} \frac{\mathbf{E}[\min\{X - a, \Delta\} \mid X > a]}{\mathbf{P}[X - a \le \Delta \mid X > a]}$$

Minimizes $\mathbf{E}[T]$, but can be intractable

SERPT

$$r(a) = \mathbf{E}[X - a \mid X > a]$$

Gittins

$$r(a) = \sup_{\Delta > 0} \frac{\mathbf{E}[\min\{X - a, \Delta\} \mid X > a]}{\mathbf{P}[X - a \le \Delta \mid X > a]}$$

Minimizes $\mathbf{E}[T]$, but can be intractable

SERPT

$$r(a) = \mathbf{E}[X - a \mid X > a]$$

 \bigwedge Simple, but no $\mathbf{E}[T]$ guarantee

Gittins

$$r(a) = \sup_{\Delta > 0} \frac{\mathbf{E}[\min\{X - a, \Delta\} \mid X > a]}{\mathbf{P}[X - a \le \Delta \mid X > a]}$$

 \bigwedge Minimizes $\mathbf{E}[T]$, but can be intractable

SERPT

$$r(a) = \mathbf{E}[X - a \mid X > a]$$

 \bigwedge Simple, but no $\mathbf{E}[T]$ guarantee

Question: is there a *simple* policy with near-optimal $\mathbf{E}[T]$?

M-SERPT is like SERPT, but *rank* never goes down

M-SERPT is like SERPT, but *rank* never goes down

M-SERPT is like SERPT, but *rank* never goes down

Theorem:

$$\frac{\mathbf{E}[T \text{ of M-SERPT}]}{\mathbf{E}[T \text{ of Gittins}]} \le 5$$

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Idea: schedule with

rank functions

Idea: schedule with

rank functions

Result: universal response time analysis

Idea: schedule with

rank functions

Result: universal response time analysis

Impact: optimize and prove guarantees

References: SOAP

- Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf (2018). **SOAP: One Clean Analysis of All Age-Based Scheduling Policies**. *Proceedings of the ACM on Measurement and Analysis of Computing Systems (POMACS)*, 2(1), 16. Presented at SIGMETRICS 2018.
- Z. Scully and M. Harchol-Balter (2018). **SOAP Bubbles: Robust Scheduling Under Adversarial Noise**. In *56th Annual Allerton Conference on Communication, Control, and Computing* (pp. 144–154). IEEE.
- Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf (2019). **Simple Near-Optimal Scheduling for the M/G/1**. *ACM SIGMETRICS Performance Evaluation Review*, to appear. Presenting at MAMA 2019 this Friday!

References: Analyzing E[T]

- L. Kleinrock and R. R. Muntz (1972). **Processor sharing queueing models of mixed scheduling disciplines for time shared system**. *Journal of the ACM (JACM)*, 19(3), 464–482.
- S. W. Furhmann and R. B. Cooper (1985). **Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations**. *Operations Research*, 33(5), 1117–1129.
- M. Harchol-Balter (2013). *Performance Modeling and Design of Computer Systems: Queueing Theory in Action*. Cambridge University Press.

References: Possible Applications

- M. Harchol-Balter, Schroeder, B., Bansal, N., and Agrawal, M. (2003). **Size-based scheduling to improve web performance**. *ACM Transactions on Computer Systems* (*TOCS*), 21(2), 207–233.
- B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout (2018). **Homa: A receiver-driven low-latency transport protocol using network priorities**. In *Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication* (pp. 221–235). ACM.
- S. Emadi, R. Ibrahim, and S. Kesavan (2019). Can "very noisy" information go a long way? An exploratory analysis of personalized scheduling in service systems. Working paper.
- M. Mitzenmacher (2019). **Scheduling with Predictions and the Price of Misprediction**. Preprint, *arXiv:1902.00732*.
- B. Kamphorst (2018). *Heavy-traffic behaviour of scheduling policies in queues* (Doctoral dissertation, Technische Universiteit Eindhoven).
- Y. Chen and J. Dong (2019). The Power of Two in Queue Scheduling. Working paper.