Uniform Bounds for Scheduling with Job Size Estimates

Ziv Scully

Cornell

Isaac Grosof

Carnegie Mellon \rightarrow Northwestern

Michael Mitzenmacher

Harvard

algorithms with predictions

scheduling algorithms with predictions

scheduling algorithms with job size predictions

scheduling algorithms

with

job size predictions

Twist: stochastic setting

How do we schedule to minimize delay with noisy size estimates?

How do we schedule to minimize delay with noisy size estimates?

How do we schedule to minimize delay with noisy size estimates?

What are scheduling and delay?

What job size noise model?

How do we schedule to minimize delay with noisy size estimates?

What are scheduling and delay?

What job size noise model?

What can we hope to achieve?

job

What are scheduling and delay?

Scheduling policy: decides which job to serve

What are scheduling and delay?

Scheduling policy: decides which job to serve

response time

stochastic arrival process λ , S

response time

stochastic arrival process λ , S

stochastic arrival process λ , S

Goal: minimize mean response time E[T]

stochastic arrival process λ , S

Goal: minimize mean response time E[T]

Warmup: if sizes known?

stochastic arrival process λ , S

Goal: minimize mean response time E[T]

Warmup: if sizes known? **SRPT**

stochastic arrival process λ , S

Goal: minimize mean response time E[T]

Warmup: if sizes known? **SRPT**

always serves job of least remaining size

Model: (β, α) -bounded noise

true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Model: (β, α) -bounded noise

true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Goal: design a policy with "good" E[T] for

- any joint distribution (S, Z)
- any values of α , β

Goal: design a policy with "good" E[T] for

- any joint distribution (S, Z)
- any values of α , β semi-adversarial

Goal: design a policy with "good" E[T] for

- any joint distribution (S, Z)
- any values of α , β semi-adversarial

C-consistent:
$$\frac{\mathbf{E}[T_{P}]}{\mathbf{E}[T_{SRPT}]} \to C \qquad \text{as } \alpha, \beta \to 1$$

C-consistent:
$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \to C$$

as
$$\alpha, \beta \to 1$$

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le R$$

for all α , β

C-consistent:
$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \to C$$

as
$$\alpha, \beta \to 1$$

$$\bigotimes R$$
-robust:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le R$$

for all α , β

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \to C$$

as
$$\alpha, \beta \to 1$$

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le G \cdot \frac{\alpha}{\beta}$$

for all
$$\alpha$$
, β

$$R$$
-robust:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le R$$

for all α , β

$$C$$
-consistent:
$$\frac{\mathbf{E}[T_P]}{\mathbf{E}[T_{SRDT}]} \to C$$

as
$$\alpha, \beta \to 1$$

$$\sqrt{G}$$
-graceful:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le G \cdot \frac{\alpha}{\beta} \qquad \text{for}$$

for all
$$\alpha$$
, β

$$\bigotimes R$$
-robust:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le R$$

for all α , β

Our contribution: first policy P that's consistent and graceful

- G = 3.5
- C = 1

$$C$$
-consistent:

$$C$$
-consistent:
$$\frac{\mathbf{E}[T_P]}{\mathbf{E}[T_{SRPT}]} \to C$$

as
$$\alpha, \beta \to 1$$

$$G$$
-graceful:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le G \cdot \frac{\alpha}{\beta}$$

for all
$$\alpha$$
, β

$$\bigotimes R$$
-robust:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le R$$

for all α , β

Our contribution: first policy P that's consistent and graceful

$$C$$
-consistent:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \to C$$

as
$$\alpha, \beta \to 1$$

$$\sqrt{G}$$
-graceful:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le G \cdot \frac{\alpha}{\beta}$$

for all
$$\alpha$$
, β

$$\bigotimes R$$
-robust:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le R$$

for all α , β

impossible in worst case Azar, Leonardi, & Touitou (STOC 2021)

•
$$C = 1$$

Our contribution: first policy P that's consistent and graceful G = 3.5

Our contribution: first policy P that's consistent and graceful

What is the new policy?

Our contribution: first policy P that's consistent and graceful G = 3.5

What is the new policy?

How do we bound its performance?

Our contribution: first policy P that's consistent and graceful G = 3.5

What does "policy" mean?

What is the new policy?

How do we bound its performance?

Scheduling with rank functions

Policy design space: rank functions

Naive

Theorem: Radical is 1-consistent, 3.5-graceful

Schedule Ordered by Age-based Priority

Schedule Ordered by Age-based Priority

stochastic arrival process λ , (S, \mathbf{Z})

any rank function

Schedule Ordered by Age-based Priority

stochastic arrival process λ , (S, Z)

any rank function

What is *r*-work?

Get *N* from *r*-work?

Bound Scale's E[T]?

Definition:

W(r) = total remaining size of jobs whose remaining size is $\leq r$

W(r) = total remaining size of jobs whose remaining size is $\leq r$

What is *r*-work?

What is *r*-work?

Definition:

W(r) = total remaining size of jobs whose remaining size is $\leq r$

WINE: under any scheduling policy,

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

WINE: under any scheduling policy,

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

$$\mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

WINE: under any scheduling policy,

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

$$\mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

$$\mathbf{E}[T_{\mathbf{Scale}}] \leq \frac{\alpha}{\beta} \mathbf{E}[T_{\mathbf{SRPT}}]$$

also holds in worst case

WINE: under any scheduling policy,

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

Lemma

$$\mathbf{E}[W_{\mathbf{Scale}}(r)] \leq \mathbf{E}[W_{\mathbf{SRPT}}(\frac{\alpha}{\beta}r)]$$

Theorem:

$$\mathbf{E}[T_{\mathbf{Scale}}] \leq \frac{\alpha}{\beta} \mathbf{E}[T_{\mathbf{SRPT}}]$$

also holds in worst case

WINE: under any scheduling policy,

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

Lemma

$$\mathbf{E}[W_{\mathbf{Scale}}(r)] \leq \mathbf{E}[W_{\mathbf{SRPT}}(\frac{\alpha}{\beta}r)]$$

also holds with "noisy scaling"

Theorem:

$$\mathbf{E}[T_{\mathbf{Scale}}] \le \frac{\alpha}{\beta} \mathbf{E}[T_{\mathbf{SRPT}}]$$

Obstacle: natural **rank** functions perform badly

Solution: new policy, **Radical**, with provably bounded E[T]

Obstacle: natural **rank** functions perform badly

Solution: new policy,

Radical, with provably

bounded $\mathbf{E}[T]$

1-consistent,
3.5-graceful

Obstacle: natural **rank** functions perform badly

Solution: new policy,

Radical, with provably

bounded $\mathbf{E}[T]$ 1-consistent,
3.5-graceful

Obstacle: natural **rank** functions perform badly

Method: two new tools from queueing theory

Consistency-robustness tradeoff?

$$C$$
-consistent:
$$\frac{\mathbf{E}[T_P]}{\mathbf{E}[T_{SRPT}]} \to C$$

as
$$\alpha, \beta \to 1$$

$$G$$
-graceful:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le G \cdot \frac{\alpha}{\beta} \qquad \text{for all } \alpha, \beta$$

$$\bigotimes R$$
-robust:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le R$$

for all α , β

Our contribution: first policy P that's consistent and graceful

•
$$G = 3.5$$

•
$$C = 1$$

Consistency-robustness tradeoff?

$$\sqrt{C}$$
-consistent

C-consistent:
$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \to C$$

as
$$\alpha, \beta \to 1$$

$$G$$
-graceful:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le G \cdot \frac{\alpha}{\beta} \qquad \text{for all } \alpha, \beta$$

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le R$$

for all α , β

Our contribution: first policy P that's consistent and graceful

- G = 3.5
- C = 1

Consistency-robustness tradeoff?

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \to C$$

as
$$\alpha, \beta \to 1$$

$$G$$
-graceful:

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le G \cdot \frac{\alpha}{\beta}$$

for all
$$\alpha$$
, β

$$\frac{\mathbf{E}[T_{\mathbf{P}}]}{\mathbf{E}[T_{\mathbf{SRPT}}]} \le R$$

for all α , β

Our contribu

that's consisted

•
$$G = 3.5$$

•
$$C = 1$$

Noisy SRPT (Naive)

Solution: new policy,

Radical, with provably

bounded $\mathbf{E}[T]$ 1-consistent,
3.5-graceful

Obstacle: natural **rank** functions perform badly

Method: two new tools from queueing theory

Lemma:

$$\mathbf{E}[W_{\mathbf{Scale}}(r)] \leq \mathbf{E}[W_{\mathbf{SRPT}}(\frac{\alpha}{\beta}r)]$$

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

Key steps:

1. **SRPT** minimizes mean *r*-work

Lemma: $E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\frac{\alpha}{\beta}r)]$

Key steps:

1. **SRPT** minimizes mean *r*-work

Lemma: $E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\frac{\alpha}{\beta}r)]$

- 1. **SRPT** minimizes mean *r*-work
- 2. Scale minimizes mean noise-scaled-r-work

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

Key steps:

1. **SRPT** minimizes mean *r*-work

2. Scale minimizes mean noise-scaled-r-work

Lemma:

$$E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\frac{\alpha}{\beta}r)]$$

- 1. **SRPT** minimizes mean *r*-work
- 2. Scale minimizes mean noise-scaled-r-work
- 3. Under any policy,

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

- 1. **SRPT** minimizes mean *r*-work
- 2. Scale minimizes mean noise-scaled-r-work
- 3. Under any policy, r-work $\leq \frac{\alpha}{\beta}r$ -work $\leq \frac{\alpha}{\beta}r$ -work

Lemma:

$$E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\frac{\alpha}{\beta}r)]$$

- 1. **SRPT** minimizes mean *r*-work
- 2. Scale minimizes mean noise-scaled-r-work
- 3. Under any policy, r-work $\leq \frac{\alpha}{\beta}r$ -work $\leq \frac{\alpha}{\beta}r$ -work

