Uniform Bounds for SChEdllliIlg
wih JOD Size Estimates

Ziv Scully A

Cornell /_KL

Isaac Grosof
Carnegie Mellon — Northwestern

Michael Mitzenmacher
Harvard

algorithms
with
predictions

— g@

scheduling algorithms
with
predictions

— g@

scheduling algorithms
with
job size predictions

:Z

=

\J

Cllll

— g@

scheduling algorithms
with
job size predictions

W

Twist: stochastic setting

GIIIJI\I

How do we schedule
to minimize delay
with noisy size estimates?

How do we schedule
to minimize delay
with noisy size estimates?

@ What are scheduling and delay?

-

How do we schedule
to minimize delay
with noisy size estimates?

What are scheduling and delay?
What job size noise model?

-

How do we schedule
to minimize delay
with noisy size estimates?

What are scheduling and delay?
What job size noise model?

O What can we hope to achieve?

What are scheduling and delay?

|0

What are scheduling and delay?

SECIVEY

|0

What are scheduling and delay?

queue server

|0

What are scheduling and delay?

queue server

job

]

What are scheduling and delay?

queue server

size {

Clllll

What are scheduling and delay?

queue server

size {

Clllll

What are scheduling and delay?

queue server

size {

Clllll

What are scheduling and delay?

queue server

size {

Clllll

What are scheduling and delay?

queue server

job

}remaining size

size{ - }age

What are scheduling and delay?

stochastic arrivals
@fe

job

queue server

}remaining size

size{ «:H }age

What are scheduling and delay?

stochastic arrivals queue server

]
ENN
\%
o
C]

}remaining size

} age

size {

C\Lnu

What are scheduling and delay?

stochastic arrivals queue server

A = arrival rate (Poisson)

C o
-

}remaining size

size { «EH
)

What are scheduling and delay?

stochastic arrivals queue server

A = arrival rate (Poisson)
S = job size distribution

C o
-

}remaining size

size { «EH
)

What are scheduling and delay?

stochastic arrivals queue server

A = arrival rate (Poisson)
S = job size distribution
p = AE[S] = load

C o
-

}remaining size

size { «EH
)

What are scheduling and delay?

stochastic arrivals queue server

A = arrival rate (Poisson)
S = job size distribution
p = AE[S] = load < 1

C o
-

}remaining size

size { «EH
)

What are scheduling and delay?

stochastic arrivals queue server

]
ENN
\%
o
C]

}remaining size

} age

size {

C\Lnu

What are scheduling and delay?

stochastic arrivals queue server

]
ENN
\%
o
C]

}remaining size

} age

size {

C\Lnu

What are scheduling and delay?

stochastic arrivals queue server

]
ENN
\%
o
C]

}remaining size

} age

size {

C\Lnu

What are scheduling and delay?

stochastic arrivals queue server

]
ENN
\%
o
C]

}remaining size

} age

size {

C\Lnu

What are scheduling and delay?

stochastic arrivals queue server

]
ENN
\%
o
C]

}remaining size

} age

size {

C\Lnu

Cnlnl‘

What are scheduling and delay?

queue server

’_—Cllll
{C

“delay” = response time

job

}remaining size

} age

size {

C\Lnu

What are scheduling and delay?

stochastic arrivals
@fe

job

queue server

“delay = response time

Clllll

.

}remaining size

} age

size {

C\Lnu

What are scheduling and delay?

stochastic arrivals
@fe

job

queue server

“delay = response time

Clllll

.

}remaining size
size {

C\Lnu

} decides which job to serve
age

What are scheduling and delay?

stochastic arrivals queue server

£ Ll

“delay” = response time

job

}remaining size :
size | }age decides which job to serve

What are scheduling and delay?

stochastic arrivals queue server

2 LD

“delay” = response time

job

}remaining size :
size | }age decides which job to serve

What are scheduling and delay?

stochastic arrivals queue server

(guunr0g

“delay” = response time

job

}remaining size :
size | }age decides which job to serve

What are scheduling and delay?

stochastic arrivals queue server

SN0

“delay” = response time

job

}remaining size :
size | }age decides which job to serve

What are scheduling and delay?

stochastic arrivals queue server

NN

“delay” = response time

job

}remaining size :
size | }age decides which job to serve

What are scheduling and delay?

stochastic arrivals queue server

NN

“delay” = response time

job

}remaining size :
size | }age decides which job to serve

Optimizing delay

Optimizing delay

response time

> G

o

N

Optimizing delay

stochastic arrival
process A, S

e

response time

\ ',
N -
= -
rd ~

> G

N

Optimizing delay

stochastic arrival response time
process A, S - distribution T -

% = [“@ % [@

Optimizing delay

stochastic arrival
process A, S

e

L

response time

distribution T

rm—

I}

N

Optimizing delay

stochastic arrival response time
process A, S - distribution T -

% = L@ % [@

Goal: minimize mean response time E[T]

Optimizing delay

stochastic arrival response time
process A, S - distribution T -

% = L@ % [@

Goal: minimize mean response time E[T]

Warmup: if sizes known?

Optimizing delay

stochastic arrival response time
process A, S - distribution T -

% = [“@ % [@

Goal: minimize mean response time E[T]

Warmup: if sizes known? SRPT

Optimizing delay

stochastic arrival response time
process A, S - distribution T -

% = [“@ % [@

Goal: minimize mean response time E[T]

Warmup: if sizes known? SRPT

always serves job of
least remaining size

What job size noise model?

What job size noise model?

— Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

What job size noise model?

@elo@ gbovej
— Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

D5+

L

What job size noise model?

bel b
2B (be o@ g ove) |
— Model: (3, a)-bounded noise

— 2

-———

z/a true sizes = estimated size z € [s, as]

D5+

L

What job size noise model?
@elo@ gbovej

z/p .
— Model: (3, a)-bounded noise
— 2
_ z/a true sizes = estimated size z € [f3s, as]

N/

Generated by joint distribution (S, Z)

What job size noise model?
@elo@ gbovej

o 2/P .
— Model: (3, a)-bounded noise
— 2
] z/a true sizes = estimated size z € [s, as]

N/

Generated by joint distribution (S, Z)

Goal: design a policy with “good” E[T] for
* any joint distribution (S, Z)
. any values of a, f3

What job size noise model?
@elo@ gbovej

o 2/P .
— Model: (3, a)-bounded noise
— 2
] z/a true sizes = estimated size z € [s, as]

N/

Generated by joint distribution (S, Z)

Goal: design a policy with “good” E[T] for
* any joint distribution (S, Z)

. any values of a, . .
semi-adversarial

What job size noise model?

@GIO‘Q gbOV@ Related: worst case
[2 / /3 Azar, Leonardi, & Touitou

— Model: (5, a)-bounded n¢ stoc 2021, sopa 2022)
— 2

-———

L z/a true sizes = estimated size z € [s, as]

N/

Generated by joint distribution (S, Z)

Goal: design a policy with “good” E[T] for
* any joint distribution (S, Z)

. any values of a, . .
semi-adversarial

What can we hope to achieve?

What can we hope to achieve?

. E[T),]
C-consistent: > C asa, 3 — 1
E[Tsgpr]

What can we hope to achieve?

. E[T),]
C-consistent: > C asa, 3 — 1
E[Tsgpr]

E[T,]
R-robust: <R for all a, f3
E[Tsppr]

What can we hope to achieve?

. E[T),]
C-consistent: > C asa, 3 — 1
E[Tsgpr]

E|T
ggR-robust: LT7] <R for all a, f3

What can we hope to achieve?

C -consistent:

G-graceful:

8@ R-robust:

E[T;]

> C as o, 5 — 1
E[Tsppr]
E[T,] a
<G-— for all a,
E[Tsgpr] p
E[T),]
<R for all a,

E[Tsrpr]

What can we hope to achieve?

. E[T;]
Qf C-consistent: > C as a,ff — 1
E[Tsgpr]
E[T,] a
Qf G-graceful: <G:— for all a, f3
E| Tsrpr] f3
ElT
8@ R-robust: LT7] <R for all a,
E| Tsgrpr]

Our contribution: first policy
that’s consistent and graceful
+ G =3.5

- C=1

What can we hope to achieve?

. E[T;]
Qf C-consistent: > C as a,ff — 1
E[Tsgpr]
E[T,] a
Qf G-graceful: <G:— for all a, f3
E| Tsrpr] f3
ElT
8@ R-robust: LT7] <R for all a,
E| Tsgrpr]

Our contribution: first policy P new!
that’s consistent and graceful
+ G =3.5

NEW e C =1

What can we hope to achieve?

. E[T;]
Qf C-consistent: > C as a,ff — 1
E[Tsgpr]
E[T,] a
Qf G-graceful: <G:— for all a, f3
E| Tsrpr] f3
E[T;]
8@ R-robust: <R for all a,
E| Tsgrpr]
Our po=st Qrst policy P wew!
impossible in worst case
tha Azar, Leonardi, & Touitou graCEfUI

(STOC 2021)

Our contribution: first policy
that’s consistent and graceful

&

Our contribution: first policy P
that’s consistent and graceful

@ What is the new policy?

-

Our contribution: first policy P
that’s consistent and graceful

@ What is the new policy?

O How do we bound its performance?

Our contribution: first policy P
that’s consistent and graceful

(=x

What does “policy” mean?
What is the new policy?

O How do we bound its performance?

Scheduling with functions

age a

Scheduling with functions

=)

e adY

Scheduling with functions

@riorit@

lower is
better

=)

e adY

Scheduling with functions

@riorit@
5,2 (a)

lower is
better

=)

e adY

Scheduling with rank functions

(priority? SRPT

rank,(a)=s—a

size s

lower is
better

=)

e adY

size s

Scheduling with rank functions

@riori@ Naive

rank,,(a)=2—a

estimate g

lower is
better

=)

e adY

[

Policy design space:
functions

10

What'’s the right

s,z(a)

estimate g

function?

age a

11

What’s the right rank function?

Naive

rank,,(a)=2—a

estimate g

age a

11

What’s the right rank function?

Naive

rank,,(a)=2—a

estimate g

negative rank =
nonpreemptible

age a

11

What’s the right rank function?

Not these...

) Naive
rank; ,(a)
\ {@
estimate g

age a

11

What’s the right rank function?

Not these...

Naive

Checkmark

rank; ,(a) = |z —a]

7

A
AN

estimate g

age a

11

What’s the right rank function?

Not these...

Naive

Checkmark

rank; ,(a) = |z —a]

7

A
AN

estimate g

age a

What if § < 5?

11

What’s the right rank function?

Not these...

Naive

Checkmark

rank; ,(a) = |z —a]

7

A
AN

estimate g

: dge€ d
S1Z€ S g

What if § < 5?

11

What’s the right rank function?

Not these...

Naive

Checkmark

rank; ,(a) = |z —a]

7

A
AN

estimate g —

: dge€ d
S1Z€ S g

What if § < 5?

11

What’s the right rank function?

Not these...

Naive

———=

Checkmark

7

A
AN

new worst rank =
preemption likely

estimate g

age a

size S

What if § < 5?

11

What’s the right rank function?

Not these...

Naive

rank; ,(a)

A
AN

~ Checkmark

estimate g —

age a

11

What’s the right rank function?

Not these...

Naive

Radical

rank; ,(a) = min{|z —al, 2}

A
AN

~ Checkmark

estimate g

age a

11

What’s the right rank function?

Not these...

Naive

Radical

rank; ,(a) = min{|z —al, 2}

A
AN

~ Checkmark

estimate g

age a

11

What’s the right rank function?

Not these...

Naive

Radical

rank; ,(a) = min{|z —al, 2}

A
AN

~ Checkmark

estimate g

age a

11

What’s the right rank function?

Not these...

Naive

———=

Radical

rank; ,(a) = min{|z —al, 2}

A
AN

~ Checkmark

estimate g

age a

Theorem: Radical is 1-consistent, 3.5-graceful

11

rank
A

Radical

>age

rank

S

SRPT

>age

12

ra41\1k Radical l‘a%lk SRPT
S

z
>age >age

12

rank Radical rank SRPT

1 0\
S
z 6
> - S
pe age S age
raf{lk Scale
p4
>age

rank Radical rank SRPT

o~ 2\
PO

rank Scale

Z\
>age

S 12

rank Radical rank SRPT

e AN
PO

‘>

S8 rank Scale
{_JSOAP

Scully, Harchol-Balter,
& Scheller-Wolf
(SIGMETRICS 2018) Z

>age

rank Radical rank SRPT

1 0\
S
-
pe >age S >age

- 2S5 rank Scale k
{_JSOAP '} O WINE

Scully, Harchol-Balter, Scully, Grosof,

& Scheller-Wolf & Harchol-Balter
(SIGMETRICS 2018) Z (SIGMETRICS 2021)
>age

_JSOAP

Schedule Ordered by Age-based Priority

13

(_JSOAP

Schedule Ordered by Age-based Priority

stochastic arrival
process A, (S, Z)

e

any rank function

[

13

(_JSOAP

Schedule Ordered by Age-based Priority

stochastic arrival
process A, (S, Z)

@ response time
% - q distribution T
any rank function ‘@ {{ < ’“%\[2

IS

13

rank Radical rank SRPT

o~ 2\
3

Q SOAP rank Scale

Z\
>age

S 14

WINE

-

ra41\1k Radical rank SRPT
S

z 6
\/ D
>age >age
rank functions Y
close enough ’

Q SOAP rank Scale WINE

2?\\\\\\\\\\\\L
>age

S 14

</

WINE

Work Integral Number Equality

15

WINE

Work Integral Number Equality

JU

number of jobs N

"

U

15

WINE

Work Integral Number Equality

JUC

number of jobs N

Little’s Law:
E[T] = E[N]/A

WINE

Work Integral Number Equality

JUC

-work W(r) number of jobs N

Little’s Law:
E[T] = E[N]/A

WINE

Work Integral Number Equality

JUC

-work W(r) number of jobs N

: > Little’s Law:
What is r-work: E[T] = E[N]/A
Get N from r-work?

0O Bound Scale’s E[T]?

What is r-work?

16

What is r-work?

iy

16

What is r-work?

iy

Definition:
W(r) = total remaining size of jobs
— whose remaining size is < r
G‘—work

16

What is r-work?

iy

Definition: m

W(r) = total remaining size of jobs
— whose remaining size is < r
G‘—work

16

What is r-work?

iy

Definition: m

W(r) = total remaining size of jobs
— whose remaining size is < r
G‘—work

16

What is r-work?

- N
&

Definition:
W(r) = total remaining size of jobs
~ whose remaining size is <
C-work

16

‘WINE under any scheduling policy,

(o),
N—L ¢

17

WINE: under any scheduling policy,
W
N = J (r) dr
0

E[WScale(r)] < EI:WSRPT(%1‘)]

17

WINE: under any scheduling policy,
W
N = J (r) dr
0

E[WScale(r)] < EI:WSRPT(%1‘)]

Ww!
Theorem:

E[TScale] < %E[TSRPT]

17

also holds in
worst case

WINE: under any scheduling policy,

E[WScale(r)] < EI:WSRPT(%1‘)]

Ww!
Theorem:

E[TScale] < %E[TSRPT]

17

also holds in
worst case

WINE: under any scheduling policy,

NEW! Lemma
E[WScale(r)] < E[WSRPT(%1‘)]
%lso holds witB
NEW! Theorem: “noisy scaling”

E[TScale] < %E[TSRPT]

17

rank Radical rank SRPT

o~ 2\
3

Q SOAP rank Scale

Z\
>age

S 18

WINE

-

ra41\1k Radical

N7
&Y

Q SOAP rank Scale

2

™~

rank SRPT

S

>age

Yr- work amounts
l close enough

QWINE

S

>age
18

rank Radical rank SRPT

AN
3

Q SOAP rank Scale

)

WINE

-

18

Problem: minimize E[T]
with noisy information

[Ej LN @1\@

i)

z €| Ps, as]

TS

19

Problem: minimize E[T] Obstacle: natural

with noisy information functions perform badly
@ @; . Naive . Checkmark
G _(/ 2y

Vs z €[Ps,as] z\ AN ;z
{ S

19

Problem: minimize E[T] Obstacle: natural

with noisy information functions perform badly
@ | @j . Naive . Checkmark
b _</ 1
2 2
?s{ -z €[PBs,as] \ AN)—
U
Solution: new policy,
, with provably

bounded E[T]

P4

19

Problem: minimize E[T] Obstacle: natural

with noisy information functions perform badly
@ @j . Naive . Checkmark
G _(/ 2y

a

Vs z €[Ps,as] z\ AN ;z
{ NS

TS

Solution: new policy,
, with provably

bOllIld\Ed E [T] 1-consistent,
[3.5-graceful

P4

19

Problem: minimize E[T] Obstacle: natural

with noisy information functions perform badly
@ | @; . Naive . Checkmark
G (2y
?s{ -z €[PBs,as] \@ ;
U
Solution: new policy, Method: two new tools
Radical, with provably from queueing theory

bounded E[T] 1-consistent 7
4\ CS—graceﬁD ¥ S OAP
WINE

Z\/“

19

Consistency-robustness tradeoff?

. E[T;]
Qf C-consistent: > C as a,ff — 1
E[Tsgpr]
E[T,] a
Qf G-graceful: <G:— for all a, f3
E| Tsrpr] f3
ElT
8@ R-robust: LT7] <R for all a,
E| Tsgrpr]

Our contribution: first policy
that’s consistent and graceful

+ G =35
+ C=1

20

Consistency-robustness tradeoff?

. E[T;]
Qf C-consistent: > C as a,ff — 1
E[Tsgpr |
E[T,] a
Qf G-graceful: <G:— for all a, f3
E| Tsgpr] f3
ElT
8@ R-robust: LT7] <R for all a, f3

E[Tsrpr]

@ Our contribution: first policy

that’s consistent and graceful
- G =35
- C=1

20

Consistency-robustness tradeoff?

. E[T;]
Qf C-consistent: > C as a,ff — 1
E[Tsgpr]
ElT
Qf G-graceful: LT7] < G- ¢ for all a, f3
E| Tsrpr] f3
ElT
ggR-robust: E[’.IE]] <R for all a,
SRPT
Our contribu
that’s consiste ASCHNE
« G=3.5

=1

20

k=0.250=0.5

E[T]/E[Tsrpr]

3.0}
2.5
2.0
1.5}
1.0}

0.5

0.0°
0.0

k=0.25,0=1.0

E[T]/E[Tsrpr]

3.0f
2.5
2.0
1.5}
1.0
0.5

0.0

0.

k=0.250=1.5

E[T]/E[Tsrpr]

3.0}
2.5
2.0
1.5}
1.0
0.5F

0.0

0.

21

k=0.250=0.5 k=0.25,0=1.0 k=0.250=1.5

E[T]/E[Tsrpr] E[T]/E[Tsrpr] E[T]/E[Tsrpr]

3.0¢ 3.0f 3.0}

2.5¢ 2.5 2.5}

2.0¢ 2.0 2.0F

1.5 1.5} 1.5

1.0 1.0 1.0

0.5F 0.5F 0.5F

0.0 s p 00— p 00—

00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
SRPT
Noisy SRPT

Noisy SRPT (Naive)

ran
4\

2

> age

k=0.25,0 =0.5 k=0.25,0=1.0 k=0.250=1.5

E[T]/E[Tsrpr] E[T]/E[Tsrpr] E[T]/E[Tsrpr]

3.0¢ 3.0f 3.0}

2.5¢ 2.5 , 2.5}

2.0F 2.0F 2.0F

1.5F __-=mmTTTTTTTTTS 158 27 e ' 15F 7 e

1.02 1.0; ______________________ 1.0; _____________________

0.5F 0.5F 0.5F

0.0 s p 00— p 00—

00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
SRPT ~ seeeeeeees Opt. w/ estimates
Noisy SRPT

Noisy SRPT (Naive)

ran
4\

2

> age

k=0.25,0=0.5

E[T]/E[Tsrpr] E[T]/E[Tsrpr]

3.0f 3.0f

2.5 2.5 y

2.0 2.0 v

C C PO

1.5¢F L 1.5¢ et

1.05 mememrmr DT 1.0; —-.nl:----nlrllr‘""

0.5F 0.5F

0.0—4—————————————— Je 0.0—4——————————————— Je

0. 0.2 04 06 08 1.0 00 02 04 06 08 1.0

SRPT seeeeeeees Opt. w/ estimates
Noisy SRPT = =-=-=-- Noisy PSJF

Noisy SRPT (Naive)

ran
4\

2

k=0.25,0=1.0

- age

ran
4\

2

k=0.25,0=1.5

E[T]/E[Tsrpr]

3.0¢f
2.5}
2.0F
1.5

- [
) a®
—-—l ------Il
- mumn®

1.0 ;—-:n.—.

0.5F

0.0¢
0.0

Noisy PSJF (1.5-graceful)

- age

21

k=0.25,0=0.5

E[T]/E[Tsrpr] E[T]/E[Tsrpr]
3.0} 3.0}
2.5F 2.5F .
2.0 /! 2.0 &
0 P y: P
1.5¢ T 1.5¢ m/’
1.0; it —— 1 o n e e e 1.024"—-—""“'
0.5F 0.5F
0.0—4—m—m——m——————— 0 0.0 —4—m——————————— 0
0. 0.2 04 06 08 1.0 0.0 02 04 06 08 1.0
SRPT seeeeeeees Opt. w/ estimates
Noisy SRPT = =-=-=-- Noisy PSJF

Noisy SRPT (Naive)

ran
4\

2

k=0.25,0=1.0

- age

ran
4\

2

k=0.25,0=1.5

E[T]/E[Tsrpr]

3.0f
2.5}
2.0F
1.5

1002_..-1-‘-_-—-

0.5F

-

0.0¢
0.0

— —— (Opt. W/out estimates

Noisy PSJF (1.5-graceful)

- age

21

k=0.25,0=0.5 k=0.25,0=1.0 k=0.25,0=1.5

E[T]/E[Tsrer] E[T]/E[Tsrpr] E[T]/E[Tsrpr]
3.0 3.0} 3.0 7
2.5} 2.5}) 2.5} i
a / a 4 :_ R4
2.0| 7 2.0¢ P 2.0 T
1.5F ”,//____,. 1.5F«-——"“", 1.5F ____,.:-_:'__//
10 Sy Tl Ll Ly 104--|=|="""""‘""""""l 10 e =
0.5F 0.5F 0.5F
0.0 s p 00— p 00— P
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
SRPT seeeeeeees Opt. w/ estimates —-—— Opt. w/out estimates
. Noisy SRPT =-=-=-- Noisy PSJF
Noisy PSJF
suffices
VO1sy SRPT (Naive) Noisy PSJF (1.5-graceful)
ran ran
M Y\
2 2 ———e—
- age - age

21

k=0.25,0 =0.5 k=0.25,0=1.0 k=0.250=1.5

E[T]/E[Tsrer] E[T]/E[Tsrpr] E[T]/E[Tsrpr]

3.0F 3.0f 3.0F /
2.5F 2.5F) 2.5} s

: / : 4 : T /
2.0F / 2.0F v 2.0F o0/
1.5} > 1.5} .m«y«’ﬁ&a 1.5} -
- ._—”/... - R T e R __-—""-:.—-—"
1.0f———mmmmm e 1.0 1.0 frmsms=—
0.5F 0.5F 0.5F
00b———— g 00— p 00— 0
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

SRPT ~ seeeeeeees Opt. w/ estimates —-—— Opt. w/out estimated

Noisy PSJF Noisy SRPT =:=-=-- Noisy PSJF lgnore the
suffices estimates
VOisy SRPT (Naive) Noisy PSJF (1.5-gracemu
ran ran
A A
2 P4 e —
> age > dgc

21

k=0.25,0 =0.5 k=0.25,0=1.0 k=0.250=1.5

E[T]/E|Tsrpr] E[T]/E[Tsrpr] E[T]/E[Tsrpr]
3.0} 3.0} 3.0} /
2.5F 2.5F) 2.5} P
g “ g # g 2 //
2.0} L/ 2.0} o 2.0} sy
1.5F ”,//___,. 1.5F m/’ 1.5F ____,.::_'__//
1.Qp——emmmmmen 1.0 e 1.0 frmman==—
0.5 0.5 0.5
“00 02 04 06 08 1d 00 02 04 06 08 1 f %00 o0z 04 06 08 1 r
SRPT
. Noisy SRPT .
Noisy PSJF ignore the
suffices estimates
VOisy SRPT (Naive) Noisy PSJF (1.5-gracemu
ran ran
A Y\
2 Z S ———

> age > age

21

k=0.25,0 =0.5 k=0.25,0=1.0 k=0.250=1.5

E[T]/E[Tsrpr] E[T]/E|Tsrpr] E[T]/E[Tsrpr]
3.0 3.0 3.0 /
2.5¢F 2.5 . 2.5F /.’

: / : 4 : - /
2.0F / 2.0F v 2.0F 4
1.5 > 1.5 o 1.5¢ e

. —_—_:::::_1_ _________ . .---H‘M . —-—;:::-:_:____..-/
1.0 _..—.u:n...-..= 1.0 :4_:-:-""" 1.0 _..-.ln-_-—-
054 0.5¢ 0.5F
0.0 Fmmt 0.0 Emmt 0.0 Emmt
00 02 04 06 0.8 1.0p : ¢ : ¢
SRPT
Noisy SRPT

Noisy PSJF

suffices
NO1Sy SK

ignore the

estimates
.D-gracetu

ran

4\

Mix Noisy PSJF
with Opt. w/out?

> age > age

21

Problem: minimize E[T] Obstacle: natural

with noisy information functions perform badly
@ | @; . Naive . Checkmark
G (2y
?s{ -z €[PBs,as] \@ ;
U
Solution: new policy, Method: two new tools
Radical, with provably from queueing theory

bounded E[T] 1-consistent 7
4\ CS—graceﬁD ¥ S OAP
WINE

Z\/“

2

Lemma:

Proof sketch

E[Wscae(r)] < E[WSRPT(

@

p

)]

23

Proof sketch

Lemma:

E[Werpr(r)] S E[Wseae(r)] < E[WSRPT(

@

p

)]

23

Proof sketch

Lemma:

E[Werpr(r)] S E[Wseae(r)] < E[WSRPT(

Key steps:

@

p

)]

23

Proof sketch

Lemma:

E[Werpr(r)] S E[Wseae(r)] < E[WSRPT(

Key steps:

1. SRPT minimizes mean r-work

@

p

)]

23

Proof sketch

Lemma:

E[Werpr(r)] S E[Wseae(r)] < E[WSRPT(

Key steps:

1. SRPT minimizes mean r-work

@

p

)]

23

Proof sketch

Lemma:

E[Wsrpr(r)] < E[Wseae(r)] < EI:WSRPT(%r):I

Key steps:
1. SRPT minimizes mean r-work

2. Scale minimizes mean noise-scaled-r-work

23

Proof sketch

Lemma:

E[Wsrpr(r)] < E[Wseae(r)] < EI:WSRPT(%r):I

Re.w

filters using Scale’s
instead of SRPT’s

Key steps:
1. SRPT minimizes mean r-work

2. Scale minimizes mean noise-scaled-r-work

23

Proof sketch

Lemma:

E[Wsrpr(r)] < E[Wseae(r)] < EI:WSRPT(%r):I

Re.w

filters using Scale’s
instead of SRPT’s

Key steps:
1. SRPT minimizes mean r-work
2. Scale minimizes mean noise-scaled-r-work

3. Under any policy,

23

Proof sketch

Lemma:

E[Wsrpr(r)] < E[Wseae(r)] < EI:WSRPT(%r):I

Re.w

filters using Scale’s rank
instead of SRPT’s rank

Key steps:
1. SRPT minimizes mean r-work
2. Scale minimizes mean noise-scaled-r-work

3. Under any policy,
r-work < noise-scaled-ar-work < %r-work

23

Proof sketch

Lemma:

E[Wsrpr(r)] < E[Wseae(r)] < EI:WSRPT(%r):I

Re.w

filters using Scale’s rank
instead of SRPT’s rank

Key steps:
1. SRPT minimizes mean r-work
2. Scale minimizes mean noise-scaled-r-work

3. Under any policy,
r-work < noise-scaled-ar-work < %r-work

23

