4 New Toolbox
for Scheduling Theory

Ziv Scully
Harvard & MIT — Cornell

zivscully@cornell.edu
https://ziv.codes

mailto:zivscully@cornell.edu
https://ziv.codes

Mor Harchol-Balter
CMU, thesis advisor

Alan Scheller-Wolf
CMU

Collaborators

3

Isaac Grosof
CMU

Adam Wierman
Caltech

Onno Boxma
TU/e (Eindhoven)

Jan-Pieter Dorsman
UvA (Amsterdam)

Lucas van Kreveld
UvA (Amsterdam)

Michael Mitzenmacher
Harvard

Sid Banerjee
Cornell

Anupam Gupta
CMU

Sahil Singla
Georgia Tech

Haotian Jiang
University of Washington

Kunhe Yang
UC Berkeley

Performance

Performance

efficiency throughput delay reliability safety value

Performance

efficiency throughput delay reliability safety value

Contention

g

Queueling

<&

Delay

Contention

healthcare @

Queueling

<&

Delay

supply chains Contention

healthcare @

Queueing

<&

Delay

your local supermarket

supply chains Contention

healthcare @

Queueing

<&

Delay

your local supermarket

supply chains Contention call centers

healthcare @

Queueling

<&

Delay

your local supermarket

supply chains Contention call centers

healthcare @) transportation
Queueing

<&

Delay

your local supermarket

supply chains Contention call centers

healthcare @) transportation
Queueing

§ l databases

Delay

your local supermarket

supply chains Contention call centers

healthcare @) transportation
Queueing

§ l databases

Del ay networks

your local supermarket

supply chains Contention call centers

healthcare @) transportation
Queueing

§ l databases

Del ay networks

operating systems

your local supermarket

supply chains Contention call centers

healthcare @) transportation
Queueing

§ l databases

computer architecture Delay networks

operating systems

your local supermarket

supply chains Contention call centers

healthcare @) transportation
Queueing
supercomputing S l databases

computer architecture Delay networks

operating systems

your local supermarket

supply chains Contention call centers

healthcare @) transportation
Queueing
supercomputing 5 l databases

computer architecture Delay networks

operating systems

@ How to reduce delays?

-

your local supermarket

supply chains Contention call centers

healthcare @) transportation
Queueing
supercomputing 5 l databases

computer architecture Delay networks

operating systems

@ How to reduce delays?
Y Scheduling

Good news:
scheduling can reduce delay

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

éévaluation)

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ éévaluation)

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ éévaluation)

We need:
’ rigorous theory of scheduling

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ éévaluation)

We need:
’ rigorous theory of scheduling

Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ éévaluation)

We need:
’ rigorous theory of scheduling

applied math, probability,
control, learning theory

Theory lags behind practice

Theory lags behind practice

Uncertainty:
unknown job sizes, noisy estimates

Theory lags behind practice

Uncertainty:
unknown job sizes, noisy estimates

Multiple servers:
even FCFS hard to understand

Theory lags behind practice

Uncertainty:
unknown job sizes, noisy estimates

Multiple servers:
even FCFS hard to understand

Preemption practicalities:
limitations, overhead

Theory lags behind practice

Uncertainty:
unknown job sizes, noisy estimates

Multiple servers:
even FCFS hard to understand

This talk:
new theoretical tools Preemption practicalities:
limitations, overhead

Outline: two new tools

“F

Outline: two new tools

o

Outline: two new tools

new unifying theory of
single-server scheduling

Outline: two new tools

greatly increases number
of policies we can analyze

new unifying theory of
single-server scheduling

Outline: two new tools

greatly increases number
03, of policies we can analyze

°e S OAP E> unknown sizes

new unifying theory of I:{> preemption limitations
single-server scheduling

O

Outline: two new tools

03,
QDQ S O AP :> unknown sizes

new unifying theory of l:{> preemption limitations
single-server scheduling

Outline: two new tools

03,
QDQ S O AP :> unknown sizes

new unifying theory of I:{> preemption limitations
single-server scheduling

WINE

new queueing identity to
complement Little’s Law

Outline: two new tools

03,
QDQ S O AP C> unknown sizes

new unifying theory of I:> preemption limitations
single-server scheduling

WINE

new queueing identity to
complement Little’s Law

reduces complex systems
to related simple systems

Outline: two new tools

03,
QDQ S O AP C> unknown sizes

new unifying theory of I:{> preemption limitations
single-server scheduling

= reduces complex systems
k to related simple systems

‘ WINE :> multiserver systems

new queueing identity to =) noisy size estimates
complement Little’s Law

Outline: two new tools

03,
QDQ S O AP C> unknown sizes

new unifying theory of I:> preemption limitations
single-server scheduling

WINE :> multiserver systems

new queueing identity to =) noisy size estimates
complement Little’s Law

Single-server queueing system

|0

Single-server queueing system,_
E\M/G/D

|0

Single-server queueing system

E\@/G@

SECIVEY

Single-server queueing system

E\@/G@

queue server

Single-server queueing system

E\@/G@

queue server

Clllll

Single-server queueing system

E\@/G@

queue server

size {

Clllll

Single-server queueing system

E\@/G@

queue server

size {

Clllll

Single-server queueing system

E\@/G@

queue server

size {

Clllll

Single-server queueing system

E\@/G@

queue server

size {

Clllll

Single-server queueing system

E\@/G@

queue server

job

}remaining size

size{ - }age

Single-server queueing system

E\@/G@

stochastic arrivals
@fe

job

queue server

}remaining size

size{ «:H }age

Single-server queueing system

stochastic arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

E\@/G@

Single-server queueing system

&/G@

stochastic arrivals queue server

A = arrival rate (Poisson)

C o
-

}remaining size

size { «EH
)

Single-server queueing system,_
&/G@

stochastic arrivals queue server

A = arrival rate (Poisson)
S = job size distribution

C o
-

}remaining size

size { «EH
)

Single-server queueing system,_
E\M/G/D

stochastic arrivals queue server

A = arrival rate (Poisson)
S = job size distribution
p = AE[S] = load

C o
-

}remaining size

size { «EH
)

Single-server queueing system,_
E\M/G/D

stochastic arrivals queue server

A = arrival rate (Poisson)
S = job size distribution
p = AE[S] = load < 1

C o
-

}remaining size

size { «EH
)

Single-server queueing system

stochastic arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

E\@/G@

Single-server queueing system

stochastic arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

E\@/G@

Single-server queueing system

stochastic arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

E\@/G@

Single-server queueing system

stochastic arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

E\@/G@

Single-server queueing system

stochastic arrivals

size {

C\Lnu

queue

Clllll

}remaining size

} age

SECIVEY

E\@/G@

Cnlnl‘

Single-server queueing system

E\@/G@
queue server
_ \
L I

response time

job

}remaining size

} age

size {

C\Lnu

Single-server queueing system

E\@/G@
queue server
_ \
L I

response time
‘ob a.k.a. delay, latency

}remaining size

} age

size {

C\Lnu

Single-server queueing system

stochastic arrivals

size {

C\Lnu

E\@/G@

queue server

U

Clllll

[

}remaining size

} age

response time

Single-server queueing system

stochastic arrivals

size {

C\Lnu

E\@/G@

queue server

U

Clllll

I

}remaining size

} age

response time

decides which job to serve

Single-server queueing system

stochastic arrivals

e

job

size {

E\@/G@

queue server

U

.

I

}remaining size

]
)

response time

decides which job to serve

Single-server queueing system

stochastic arrivals

e

job

size {

E\@/G@

queue server

U

.

I

}remaining size

]
)

response time

decides which job to serve

Single-server queueing system

stochastic arrivals

e

job

size {

E\@/G@

queue server

U

.

I

}remaining size

]
)

response time

decides which job to serve

Single-server queueing system

stochastic arrivals

e

job

size {

E\@/G@

queue server

S

.

I

}remaining size

]
)

response time

decides which job to serve

Single-server queueing system

stochastic arrivals

e

job

size {

E\@/G@

queue server

S

.

I

}remaining size

]
)

response time

decides which job to serve

Single-server queueing system

stochastic arrivals

e

job

size {

E\@/G@

queue server

S

.

I

}remaining size

]
)

response time

decides which job to serve

Evaluating performance

10

Evaluating performance

response time

> G

o

N

10

Evaluating performance

stochastic arrival response time
process A, S

> G

%- L g

10

Evaluating performance

stochastic arrival response time
process A, S distribution T =

% = [“@ % [@

II\LW

Evaluating performance

stochastic arrival response time
process A, S distribution T =

% = L@ % [@

II\L\

Evaluating performance

stochastic arrival
process A, S

e

response time
- distribution T

e {0)
Metrics:
* mean E|T]

- tail probability P[T > t]
- percentiles, e.g. Too

10

Evaluating performance

stochastic arrival response time
process A, S - distribution T -

% = L@ % [@

Metrics:

* mean E|T]
- tail probability P[T > t]
- percentiles, e.g. Too

Goals:
* analyze

10

Evaluating performance

stochastic arrival response time
process A, S - distribution T -

% = L@ % [@

Metrics:
Goals:
* analyze * mean E[T]
.y. * tail probability P[T > t]
* optimize

- percentiles, e.g. Too

10

Evaluating performance

stochastic arrival response time
process A, S - distribution T -

% = [“@ % [@

Goals: gour focus) Metrics:
* mean E|T]

: [
dndly=e - tail probability P[T > t]
- percentiles, e.g. Too

* optimize

10

Goal: analyze impact of

- = |

3¢

11

Goal: analyze impact of

%} = @3 [Ea

S 2}

Problem:
& * Theory limited to “simple”

11

Goal: analyze impact of

%} = @3 [Ea

S 2}

Problem:
* Theory limited to “simple”
* In practice, “complex” matter

Goal: analyze impact of

%} = @3 [Ea

S 2}

Problem:
* Theory limited to “simple”
* In practice, “complex” matter

What makes a
“simple” or “complex”?

-

11

Goal: analyze impact of

%} = @3 [Ea

S 2}

Problem:
* Theory limited to “simple”
* In practice, “complex” matter

What makes a
“simple” or “complex”?

-

What makes “complex”
hard to analyze?

11

Goal: analyze

e

impact of

@j o @j
lll - -

BE 2

Problem:
* Theory limited to “simple”
* In practice, “complex” matter

SOAP mindset:
unifying language to {
describe

-
What makes a

= “simple” or “complex”?

What makes “complex”

hard to analyze?
L O

11

Unifying language:

functions

> dge

12

Unifying language:

Gariorit;?

A

functions

> dge

12

Unifying language:

Gariorit;?

A

functions

12

Unifying language:

(priority ?

A

lower is
better

functions

12

Unifying language:
LAS

(priority ? least attained service

A

lower is
better

functions

12

Unifying language:
LAS

(priority ? least attained service

A

lower is
better

functions

12

Unifying language: functions

(priority ?

A

lower is ' -
better JE
A,
> dge
LAS

-> dge
12

Unifying language: functions

SRPT
(priority ? shortest remaining processing time
A
lower is ' - |
better =
A,
> dge

LAS

-> dge
12

Unifying language: functions

(priority ? shortest remaining processing time
A
size 11

lower is ' =

better SIZE15 «E
size 2 { \U
\
N age é_J
LAS

-> dge
12

Unifying language: rank functions

priority

rank

lower is
better

raglk LAS rank SRPT

/ . g;\ > age

12

Unifying language: functions

P-Prio
(priority ? preemptive priority classes
A
lower is N
better -
A,
> dge
LAS 2 SRPT

> age > age

Unifying language: rank functions
P-Prio

preemptive priority classes

priority

rank
A

lower is | -
better -
urgent L { -

1\,

rank LAS rank SRPT

4

/ . g;\ > age

12

Unifying language:

LAS

-> dge

SRPT

-> age

functions

P-Prio

> age
12

Unifying language: functions

=
&
A,
lé £ /0 ’l\é
U - -
(

3¢

response time T known

P

LLAS] SRPT : P-Prio

-> age > dgc -> age
12

Unifying language: functions

“Simple” = ? function

response time T known

P

LLAS] SRPT : P-Prio

-> age > dgc -> age
12

Unifying language: functions

“Simple” = monotonic function

=
Y d
A,
[é YA) ’I\é
U - -
(

3¢

response time T known

P

LLAS] SRPT : P-Prio

> age > age > age
12

rank
4\

LAS rank SRPT rank P-Prio

> age g\— > age

“Simple” = monotonic rank function

> dge

13

rank
4\

LAS rank SRPT rank P-Prio

> age g\— > age

“Simple” = monotonic rank function

tractable before SOAP

> dge

13

LAS

> dgc

“Simple” = monotonic

tractable before SOAP

SRPT

> dge

“Complex” = nonmonotonic

P-Prio

function

function

> dge

13

raPk LAS rank SRPT raﬂpk P-Prio

» age g;\— > age > age

“Simple” = monotonic rank function

tractable before SOAP

“Complex” = nonmonotonic rank function

intractable before SOAP

13

“Complex” = nonmonotonic

14

“Complex” = nonmonotonic

Motivation:
unknown job si

Z;

14

“Complex” = nonmonotonic

Motivation:
unknown job si

Z;;)

-LJ_L.

J-

size unknown 8@{

S

14

“Complex” = nonmonotonic

Motivation:
unknown job si

Z;;)

-LJ_L.

J-

_J

size unknown 8@{

age known %

S

14

“Complex” = nonmonotonic

Motivation:
unknown job sizes

tE g
size unknown 8@{ ij f@ —>
| rage knownw distribution
L\ S knoanf

14

“Complex” = nonmonotonic

Motivation:
unknown job sizes
SERPT

shortest expected remaining processing time

tE g
size unknown 8@{ ij %@ —>
| rage knownw distribution
L\ S knoanf

14

“Complex” = nonmonotonic

Z;

Motivation:
unknown job si
SERPT

shortest expected remaining processing time

age

14

“Complex” = nonmonotonic

Z;

Motivation:
unknown job si
SERPT

shortest expected remaining processing time

(a)=E[S—a|S>a]

age

14

“Complex” = nonmonotonic

Motivation:
unknown job sizes

SERPT
shortest expected remaining processing time
(a)=E[S—a S >d] Job size distribution:
1 wp. %
S=46 wp. %
14 w.p. %

age

14

“Complex” = nonmonotonic

Motivation:
unknown job sizes

SERPT
shortest expected remaining processing time
(a)=E[S—a S >d] Job size distribution:
1 wp. %
S=46 wp. %
14 w.p. %

age

14

“Complex” = nonmonotonic

Motivation:
unknown job sizes

SERPT
shortest expected remaining processing time

(a)=E[S—a S >d] Job size distribution:
1 wp. %

/N 1
14 w.p. %

age
1 6 14 °

14

“Complex” = nonmonotonic

Motivation:
unknown job sizes

SERPT
shortest expected remaining processing time
(a)=E[S—a S >d] Job size distribution:
1 wp. %
/N 1
14 w.p. %

age

14

“Complex” = nonmonotonic

Motivation:
unknown job sizes

SERPT
shortest expected remaining processing time
(a)=E[S—a|S >a] Job size distribution:
. 1 wp. %
A nonmonotonic!]
C 14 w.p. %

age

14

Nonmonotonic

is hard

S
STV

15

(44

Nonmonotonic

A S T N T Y O T I

is hard

S
STV

7

me

15

(44

Nonmonotonic

is hard

7

me

15

Nonmonotonic is hard

(44 7

me

Key quantity: observed r-work W(r)

W(r) = work relevant to job of r

15

Nonmonotonic is hard

(44 7

me —

SO

Key quantity: observed r-work W(r)

W(r) = work relevant to job of r

15

Nonmonotonic is hard

Key quantity: observed r-work W(r)

W(r) = work relevant to job of

15

Nonmonotonic is hard

Key quantity: observed r-work W(r)

W(r) = work relevant to job of

15

Nonmonotonic is hard

Key quantity: observed r-work W(r)

W(r) = work relevant to job of

15

Nonmonotonic is hard

Key quantity: observed r-work W(r)

W(r) = work relevant to job of

15

Nonmonotonic is hard

My rank goes
up and down

Key quantity: observed r-work W(r)

W(r) = work relevant to job of

15

Nonmonotonic is hard

My rank goes
up and down

Key quantity: observed r-work W(r)

W(r) = work relevant to job of

15

Nonmonotonic is hard

My rank goes
up and down

Key quantity: observed r-work W(r)

W(r) = work relevant to job of

15

Nonmonotonic is hard

My rank goes
up and down

Key quantity: observed r-work W(r)

W(r) = work relevant to job of

15

Nonmonotonic is hard

My rank goes
up and down

Key quantity: observed r-work W(r)

W(r) = work relevant to job of

15

Nonmonotonic is hard

My rank goes
up and down

Others’ ranks go
up and down

Key quantity: observed r-work W(r)

W(r) = work relevant to job of r

15

Nonmonotonic is hard

My rank goes
up and down

Others’ ranks go
up and down

Key quantity: observed r-work W(r)

W(r) = work relevant to job of r

15

Nonmonotonic is hard

My rank goes
up and down

Others’ ranks go
up and down

Key quantity: observed r-work W(r)

W(r) = work relevant to job of r

15

L _JSOAP

Schedule Ordered by Age-based Priority

stochastic arrival response time
process 1, S distribution T =

% @

Il\j

S

16

L _JSOAP

Schedule Ordered by Age-based Priority

stochastic arrival response time
process 1, S distribution T =

fﬁj rank function § LG

S

ll\j

S

16

L _JSOAP

Schedule Ordered by Age-based Priority

NEW!

stochastic arrival response time
process 1, S distribution T =

fﬁj rank function § LG

S

ll\j

S

16

L _JSOAP

Schedule Ordered by Age-based Priority

NEW!

stochastic arrival response time
process 1, S distribution T =

fﬁj rank function § LG

neWiSh i ! I/I

ll\j

S

16

Key SOAP insight

|

10;

U = rank

((me”

Key SOAP insight

|

10;

U = rank

Key SOAP insight

—

“me” U = rank

Pessimism Priniciple: compute W(r)
with r = my worst future rank

17

Key SOAP insight

—

U = rank

SO\

Pessimism Priniciple: compute W(r)
with r = my worst future rank

17

Key insight

Priniciple: compute W(r)
with r = my future

17

Key insight

3

Priniciple: compute W(r)

with r = my future

17

Key insight

3

Priniciple: compute W(r)

with r = my future

17

Key insight

1

Priniciple: compute W(r)

with r = my future

17

Key insight

1

Priniciple: compute W(r)

with r = my future

17

Key SOAP insight

3

already visible

Pessimism Priniciple: compute W(r)
with r = my worst future

17

Key SOAP insight

s

.
already visible

Pessimism Priniciple: compute W(r)
with r = my worst future

17

Key SOAP insight

Worst future
only decreases

already visible

Pessimism Priniciple: compute W(r)
with r = my worst future

17

Key SOAP insight

Worst future
only decreases

already visible

CexactQ

Pessimism Priniciple: compute W(r)
with r = my worst future

17

/() Impact of SOAP

/() Impact of SOAP

Y

unknown sizes

First analyses via SOAP

SERPT (1 wp.
S=1{6 wp.

ﬂ &14 W.D.
N\

age

W= W= W=

19

First analyses via SOAP

SERPT (1 wp.
S=1{6 wp.

ﬂ &14 W.D.
N\

age

NEWL Grst analysis of SERPT

W= W= W=

19

First analyses via SOAP

SERPT 1 wp. 2 Gittins
S={6 wp 1 minimizes E[T]
rapk Rl :1)’ raﬂpk
3

ﬂ 14 w.p.
N\

NEWL st analysis of SERPT

First analyses via SOAP

SERPT 1 wp. 2 Gittins
S={6 wp 1 minimizes E[T]
rapk Rl :1)’ raﬂpk
3

ﬂ \ 14 w.p.
N\

NEW! first analysis of SERPT NEW! first analysis of Gittins

19

First analyses via SOAP

SERPT 1 wp. 2 Gittins
S — { 6 wp 1 minimizes E[T]
rapk o ? raﬂpk
3

ﬂ |14 wp.
N\

NEW! first analysis of SERPT NEW! first analysis of Gittins

. Sample result: for heavy-tailed S, SERPT and
Gittins have optimal tail decay in large-t limit:

PIT>t]~P[S>(1—p)t]

NEW

19

First analyses via SOAP

SERPT 1 wp. 2 Gittins
S={6 wp 1 minimizes E[T]
rapk Rl :1)’ raﬂpk
3

ﬂ \ 14 w.p.
N\

NEW! first analysis of SERPT NEW! first analysis of Gittins

19

First analyses via SOAP

SERPT 1 wp. 2 Gittins
S={6 wp 1 minimizes E[T]
rapk Rl :1)’ raﬂpk
3

ﬂ 14 w.p.
N\

NEW! first analysis of SERPT NEW! first analysis of Gittins

Observation: SERPT’s E[T] “usually” within 10% of Gittins’s

19

First analyses via SOAP

SERPT 1 wp. 2 Gittins
S — { 6 wp 1 minimizes E[T]
rapk o :1)’ raﬂpk
3

ﬂ 14 w.p.
N\

NEW! first analysis of SERPT NEW! first analysis of Gittins

Observation: SERPT’s E[T] “usually” within 10% of Gittins’s

Ano proof yet

19

First analyses via SOAP

M-SERPT 1 wp. 2 Gittins
S — { 6 w.p. % minimizes E[T]
rank 4w 1 raﬂpk
: \ .p. 3
age & g age
EW! . . EW! . o e
NET first analysis of SERPT NET first analysis of Gittins

Observation: SERPT’s E[T] “usually” within 10% of Gittins’s

Ano proof yet

19

First analyses via SOAP

M-SERPT 1 wp. 2 Gittins
S — { 6 w.p. % minimizes E[T]
rank 4w 1 raﬂpk
: \ .p. 3
age & g age
EW! . . EW! . o e
NET first analysis of SERPT NET first analysis of Gittins

Observation: SERPT’s E[T] “usually” within 10% of Gittins’s
Theorem: M-SERPT is a 5-approximation for E[T]

19

First analyses via SOAP

M-SERPT 1 wp. 2 Gittins
s={6 wp. % minimizes E[T]
rank 14 1 raﬂpk
? & W.D. 3
age & -, age
EW! . - EW! . ¢, 4
NET first analysis of SERPT NET first analysis of Gittins

Lesson: carefully plan
how rank gets worse

Obs
Theorem: M-SERPT is a 5-approximation for E[T]

sually” within 10% of Gittins’s

19

/() Impact of SOAP

Y

unknown sizes

/) Impact of SOAP

Y

unknown sizes

NEW! First analysis of
° mean
- tail decay

20

/[Impact of SOAP

Y Sy

unknown sizes preemption limitations

nEW! First analysis of
* mean
- tail decay

20

lower is
better

Preemption checkpoints

Can only preempt only at checkpoint ages a;

rank

age

21

lower is
better

Preemption checkpoints

Can only preempt only at checkpoint ages a;

rank

age

21

Preemption checkpoints

Can only preempt only at checkpoint ages a;

rank

O

. [
xly ®

—

J @ ®

0 ai a:

age

21

Preemption checkpoints

Can only preempt only at checkpoint ages a;

rank

Anonmonotonic!

lower is
better O
a Q ¥
O o 0
0 ai a:

age

21

/[Impact of SOAP

Y Sy

unknown sizes preemption limitations

nEW! First analysis of
* mean
- tail decay

2

/() Impact of SOAP

Y Sy

unknown sizes preemption limitations
NEW! First analysis of NEW! First analysis of
° mean ° mean

- tail decay - tail decay

2

SOAP References

[1] Scully, Harchol-Balter, and Scheller-Wolf (2018). “SOAP: One Clean Analysis of
All Age-Based Scheduling Policies.” Proc. ACM Meas. Anal. Comput. Syst.
(SIGMETRICS 2018). Finalist: 2019 INFORMS APS Best Student Paper Prize.

[2] Scully and Harchol-Balter (2018). “SOAP Bubbles: Robust Scheduling Under
Adversarial Noise.” 56th Annual Allerton Conference on Communication, Control, and

Computing.

[3] Scully, Harchol-Balter, and Scheller-Wolf (2020). “Simple Near-Optimal
Scheduling for the M/G/1.” Proc. ACM Meas. Anal. Comput. Syst. (SIGMETRICS
2018). Winner: SIGMETRICS 2020 Best Video Award.

[4] Scully, Keveld, Boxma, Dorsman, and Wierman (2020). “Characterizing policies
with optimal response time tails under heavy-tailed job sizes.” Proc. ACM Meas.
Anal. Comput. Syst. (SIGMETRICS 2018).

[5] Scully and Kreveld (2021). “When Does the Gittins Policy Have Asymptotically
Optimal Response Time Tail?” SIGMETRICS Perform. Eval. Rev. (MAMA 2021), arXiv.

[6] Scully and Harchol-Balter (2021). “How to Schedule Near-Optimally under
Real-World Constraints.” arXiv.

23

SOAP References

1] Scully, Harchol-Balter, and Scheller-Wolf (2018). “SOAP: One Clean Analysis of
11 Age-Based Scheduling Policies.” Proc. ACM Meas. Anal. Comput. Syst.

%, _\SIGMETRICS 2018). Finalist: 2019 INFORMS APS Best Student Paper Prize.
((jsoap i

2] Scully and Harchol-Balter (2018). “SOAP Bubbles: Robust Scheduling Under
Adversarial Noise.” 56th Annual Allerton Conference on Communication, Control, and

Computing.

[3] Scully, Harchol-Balter, and Scheller-Wolf (2020). “Simple Near-Optimal
Scheduling for the M/G/1.” Proc. ACM Meas. Anal. Comput. Syst. (SIGMETRICS
2018). Winner: SIGMETRICS 2020 Best Video Award.

[4] Scully, Keveld, Boxma, Dorsman, and Wierman (2020). “Characterizing policies
with optimal response time tails under heavy-tailed job sizes.” Proc. ACM Meas.
Anal. Comput. Syst. (SIGMETRICS 2018).

[5] Scully and Kreveld (2021). “When Does the Gittins Policy Have Asymptotically
Optimal Response Time Tail?” SIGMETRICS Perform. Eval. Rev. (MAMA 2021), arXiv.

[6] Scully and Harchol-Balter (2021). “How to Schedule Near-Optimally under
Real-World Constraints.” arXiv.

23

SOAP References

1] Scully, Harchol-Balter, and Scheller-Wolf (2018). “SOAP: One Clean Analysis of
11 Age-Based Scheduling Policies.” Proc. ACM Meas. Anal. Comput. Syst.

%, _\SIGMETRICS 2018). Finalist: 2019 INFORMS APS Best Student Paper Prize.
((jsoap i

case
studies

2] Scully and Harchol-Balter (2018). “SOAP Bubbles: Robust Scheduling Under
Adversarial Noise.” 56th Annual Allerton Conference on Communication, Control, and
Computing.

[3] Scully, Harchol-Balter, and Scheller-Wolf (2020). “Simple Near-Optimal
Scheduling for the M/G/1.” Proc. ACM Meas. Anal. Comput. Syst. (SIGMETRICS
2018). Winner: SIGMETRICS 2020 Best Video Award.

[4] Scully, Keveld, Boxma, Dorsman, and Wierman (2020). “Characterizing policies
with optimal response time tails under heavy-tailed job sizes.” Proc. ACM Meas.
Anal. Comput. Syst. (SIGMETRICS 2018).

[5] Scully and Kreveld (2021). “When Does the Gittins Policy Have Asymptotically
Optimal Response Time Tail?” SIGMETRICS Perform. Eval. Rev. (MAMA 2021), arXiv.

6] Scully and Harchol-Balter (2021). “How to Schedule Near-Optimally under
eal-World Constraints.” arXiv.

23

Outline: two new tools

03,
QDQ S O AP C> unknown sizes

new unifying theory of I:> preemption limitations
single-server scheduling

WINE :> multiserver systems

new queueing identity to =) noisy size estimates
complement Little’s Law

24

Part 2

Multiserver queueing system

% 111K

Multiserver queueing system

E\E/I/G/E

% 111K

Multiserver queueing system,
A ival rat \ E\M/G/E
— drITrivadl rate

S = size distribution

%;—;ESoa %

26

Multiserver queueing system,
A ival rat \ E\M/G/E
— drITrivadl rate

S = size distribution

@ o = AE[S] = load K%:
2 : NS

response time distribution T

26

Multiserver queueing system

e

E\E/I/G/E

A = arrival rate \
S = size distribution '

p = AE[S] = load

— 0 4

response time distribution T

26

Multiserver queueing systemt

M/G/k)

%g

o

Multiserver queueing system

tm'
> =3

E\E/I/G@

SRPT: = remaining size

26

Multiserver queueing system

@,
> =2

SRPT-1 (single-server): serves the job of least

\ SRPT:

E\E/I/G@

= remaining size

26

Multiserver queueing system

@,
> =2

SRPT-1 (single-server): serves the job of least

AN

/ SRPT: = remaining size

E\E/I/G@

SRPT-k (multiserver): serves the k jobs of least

26

Multiserver queueing system

@,
> =2

SRPT-1 (single-server): serves the job of least

E\E/I/G@

similarly for

Gittins-k, etc. I — I€mdining s1z¢€

SRPT-k (multiserver): serves the k jobs of least

26

Multiserver queueing system

@,
> =2

g;;»nalyze@
SRPT-1 (single-server): serves the job of least

AN

/ SRPT: = remaining size

E\E/I/G@

SRPT-k (multiserver): serves the k jobs of least

26

Multiserver queueing system

@,
> =2

g;;»nalyze@

SRPT-1 (single-server): serves the job of least

Aaﬂalym Openl = remaining size

SRPT-k (multiserver): serves the k jobs of least

E\E/I/G@

26

Single-server system

lInAe

Multiserver system

So00

27

Single-server system

server is “choke point”

Multiserver system

i \ ®

27

Single-server system

0

Multiserver system

So00

server is “choke point”

<4

rank ordering absolute

27

Single-server system

0

Multiserver system

o000

server is “choke point”

<4

rank ordering absolute

&L

observed r-work determines T

27

Single-server system
server is “choke point”

<4

) | O rank ordering absolute

\ observed r-work determines T

Multiserver system
no single “choke point”

o000

27

Single-server system

BIIAS,

Multiserver system

o000

server is “choke point”

<4

rank ordering absolute

&L

observed r-work determines T

no single “choke point”

rank ordering not absolute

27

Single-server system
server is “choke point”

<4

B ordering absolute
56-/“ =

\J\ observed r-work determines T

Multiserver system
no single “choke point”

—

%@\

ordering not absolute

&

observed r-work not enough!

SO0%

27

r-work W(r)

@ e Q\@

TN

response time T

28

r-work W(r)

.

A
-f> \"
4 g < T
-

response time T

28

(‘ single-server only)

0 IR

r-work W(r)

@ Q\@

U

TN

3y

response time T

(

28

(‘ single-server only)

r-work W(r)

o

v

number of jobs N

U

e

o

U

@; Q\@

. - (n
response time T

Little’s law

28

(‘ single-server only)

o) &8

r-work W(r)

iE

number of jobs N

e

U

~
A
A .
l% (L) ’I‘%
li - -

3y

response time T

Little’s law

28

(‘ single-server only)

r-work W(r)

v

number of jobs N

U

Little’s law

any number
of servers

28

(‘ single-server only)

o) &8

r-work W(r)

iE

number of jobs N

e

U

~ \'
;l_j A .
l|l -_\ Is 4\
i - <: i)
l|\

response time T

Little’s law

any number
of servers

28

(‘ single-server only)

r-work W(r)

v

number of jobs N

U

Little’s law

any number
of servers

28

WINE

Work Integral Number Equality

S\

r-work W(r)

te

number of jobs N

\/-

U

29

WINE

Work Integral Number Equality

S\

r-work W(r)

te

\—/-

U

number of jobs N

lé
U
\

<]
A
- \ ' 4
-f> <
= -
td ~
’ \

.

In

mean response time E[T]

29

WINE

Work Integral Number Equality

S\

r-work W(r)

30

lé
U
\

reduces E[T]
to r-work

\—/-

<]
A
- \ ' 4
-f> <
= -
td ~
’ \

U

number of jobs N

.

In

mean response time E[T]

29

WINE

Work Integral Number Equality

S\

r-work W(r)

30

lé
U
\

reduces E[T]
to r-work

\./-

<]
A
- \ ',
-f> <
= -
- ~
’ \

U

number of jobs N

.

In

mean response time E[T]

nEwW! First analysis of SRPT-k, Gittins-k, noisy size estimates

29

S\

r-work W(r)

WINE

JU

number of jobs N

‘./-

U

30

S\

r-work W(r)

JU

L

U

number of jobs N

30

b@ tels

r-work W(r) N\ number of jobs N
WINE
@ What is r-work?
=

@ How do we get number of
jobs from r-work?

b@ tels

r-work W(r) number of jobs N

WINE

What is r-work?

How do we get number of
jobs from r-work?

How do we analyze r-work?

) Y 1)

b@ tels

r-work W(r) number of jobs N

This talk: @ How do we get number of

SRPT-k = jobs from r-work?

@ How do we analyze r-work?

-

Defining r-work
gfz)r SRPD

W(r) = work relevant to r

31

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

&z)r SRPD

|

31

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

&)r SRPD

|

31

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

&)r SRPD

|

31

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

&)r SRPD

_{O if r <

31

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

&)r SRPD

_{O if r <

31

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

T

&)r SRPD

_{O if r <

31

Defining r-work

W(r) = work relevant to r

w.(r) = r-work of single job of rem. size

~ 5

T

&)r SRPD

:{0

if r <
if r >

31

Defining r-work
gfz)r SRPD

W(r) = work relevant to r

0
wx(r) = r-work of single job of rem. size x = {

if r <
if r>

31

Defining r-work

W(r) = work relevant to r
= total r-work of all jobs

w.(r) = r-work of single job of rem. size

&z)r SRPD

:{0

if r <
if r >

31

From r-work to number of jobs N

From r-work to number of jobs N

(‘ Goal: integral = N |

W(r)

32

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A

0 ifr<

w.(r) = r-work of job of rem. size x = < ,
if r >

32

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)

w.(r) = r-work of job of rem. size

A

= 5

>1/r

0 ifr<

if r >

32

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A
1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

32

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
. ,
> 1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

32

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
>1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r>

32

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
iL‘
1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r >

32

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)

1
]
! 1/r

w.(r) = r-work of job of rem. size

1/r

1/

= <

32

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

32

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

32

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wi (1‘)
| X
1
1
1/r i 1/r
NEW Theorem:

©.@

C

W(r)
5 I”
r uses rank = rem. size

.

WINE N=f
0

32

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

; X
1
! 1/r 1/r

1/x

32

Impact of WINE

Impact of WINE

Y

multiserver systems

SRPT-k SRPT-1

000

SRPT-k

\

k

servers,
speed 1/k

bor il

SRPT-1

34

SRPT-k

k

servers,
speed 1/k

bor il

34

pr—

SRPT-k

\

k servers,
speed 1/k

E[Tx]

bor il

SRPT-1

|

0

? (13 E[T1]

34

pr—

SRPT-k

|

k servers,
speed 1/k

bor il

E[Tx]

AN
N

E[Wi(r)] :‘l > E[W1i(r)]

SRPT-1

|

0

? (13 E[T1]

L
NS

34

k servers,
SRPT-k speed 1/k
Nt

34

k servers,
SRPT-k speed 1/k
s

SRPT-1

\

Lemma: r-work
decomposition

> ‘ E[Wi(r)] '

34

k servers,
SRPT-k Z%Deed 1/D SRPT-1
2 HR;

> ‘ E[Wi(r)] '
. Lemma: r-work
decomposition

SRPT-k

servers,
k

k
speed 1/

Lemma: r-work
decomposition

> ‘ E[Wi(r)] '

34

Impact of WINE

Y

multiserver systems

Impact of WINE

Y

multiserver systems

nEW! First analysis of
* SRPT-k
* Gittins-k

35

Impact of WINE

A Sy

multiserver systems Nnoisy size estimates

nEW! First analysis of
* SRPT-k
* Gittins-k

35

Impact of WINE

A Sy

multiserver systems Nnoisy size estimates

nEW! First analysis of
* SRPT-k
* Gittins-k

compare noisy-info r-work
to perfect-info r-work

35

WINE References

[7] Grosof, Scully, and Harchol-Balter (2018). “SRPT for Multiserver Systems.”
Perform. Eval. (PERFORMANCE 2018). Winner: PERFORMANCE 2018 Best
Student Paper Award.

[8] Grosof, Scully, and Harchol-Balter (2019). “Load Balancing Guardrails: Keeping
Your Heavy Traffic on the Road to Low Response Times.” Proc. ACM Meas. Anal.
Comput. Syst. (SIGMETRICS 2019). Winner: SIGMETRICS 2018 Outstanding
Student Paper Award.

[9] Scully, Grosof, and Harchol-Balter (2021). “Optimal Multiserver Scheduling with
Unknown Job Sizes in Heavy Traffic.” Perform. Eval. (PERFORMANCE 2020 issue).

[10] Scully, Grosof, and Harchol-Balter (2020). “The Gittins Policy is Nearly
Optimal in the M/G/k under Extremely General Conditions.” Proc. ACM Meas. Anal.
Comput. Syst. (SIGMETRICS 2021). Winner: 2022 INFORMS George Nicholson
Student Paper Competition.

[11] Scully (2021). “Bounding Mean Slowdown in Multiserver Systems.”
SIGMETRICS Perform. Eval. Rev. (MAMA 2021).

[12] Scully, Grosof, and Mitzenmacher (2022). “Uniform Bounds for Scheduling

with Job Size Estimates.” 13th Innovations in Theoretical Computer Science
Conference (ITCS 2022).

36

WINE References

[7] Grosof, Scully, and Harchol-Balter (2018). “SRPT for Multiserver Systems.”

Perform. Eval. (PERFORMANCE 2018). Winner: PERFORMANCE 2018 Best
Student Paper Award.

[8] Grosof, Scully, and Harchol-Balter (2019). “Load Balancing Guardrails: Keeping
Your Heavy Traffic on the Road to Low Response Times.” Proc. ACM Meas. Anal.

Comput. Syst. (SIGMETRICS 2019). Winner: SIGMETRICS 2018 Outstanding
Student Paper Award.

[9] Scully, Grosof, and Harchol-Balter (2021). “Optimal Multiserver Scheduling with
Unknown Job Sizes in Heavy Traffic.” Perform. Eval. (PERFORMANCE 2020 issue).

10] Scully, Grosof, and Harchol-Balter (2020). “The Gittins Policy is Nearly
Optimal in the M/G/k under Extremely General Conditions.” Proc. ACM Meas. Anal.

omput. Syst. (SIGMETRICS 2021). Winner: 2022 INFORMS George Nicholson
student Paper Competition.

[11] Scully (2021). “Bounding Mean Slowdown in Multiserver Systems.”
SIGMETRICS Perform. Eval. Rev. (MAMA 2021).

[12] Scully, Grosof, and Mitzenmacher (2022). “Uniform Bounds for Scheduling

with Job Size Estimates.” 13th Innovations in Theoretical Computer Science
Conference (ITCS 2022).

36

Outline: two new tools

03,
QDQ S O AP C> unknown sizes

new unifying theory of I:> preemption limitations
single-server scheduling

WINE :> multiserver systems

new queueing identity to =) noisy size estimates
complement Little’s Law

37

Outline: two new tools

03,
QDQ S O AP :> unknown sizes

new unifying theory of I:{> preemption limitations
single-server scheduling

WINE :> multiserver systems

new queueing identity to =) noisy size estimates
complement Little’s Law

37

Thesis statement?

<. SOAP
WINE

Thesis statement?

Yes, queueing theory can!

Past:
Analyze policies one-by-one

39

Past:
Analyze policies one-by-one

OQ SOAP

Present:
Analyze all rank-function-based policies at once

39

gl\ilLPS, SMART)

Past:

Analyze policies one-by-one

Analyze all

OQ SOAP

Present:
-function-based policies at once

39

g\ilLPS, SMART)
Past:

Analyze policies one-by-one
OQ SOAP

Present:
Analyze all rank-function-based policies at once

Future:
Other policy classes?

39

Past:
Scheduling in M/G/1, only FCES in M/G/k

40

Past:
Scheduling in M/G/1, only FCES in M/G/k

WINE

Present:
Scheduling in M/G/k

40

Past:
Scheduling in M/G/1, only FCES in M/G/k

WINE

Present:
Scheduling in M/G/k

Future:
Scheduling in complex multiserver architectures?

40

Past:
Scheduling in M/G/1, only FCES in M/G/k

‘WINE

ad balancmg,

parallel JOb
Present:
Scheduling in M/G/k
Future:

Scheduling in complex multiserver architectures?

40

Past:
for specific uncertainty models, one-by-one

41

Past:
Gittins for specific uncertainty models, one-by-one

WINE

Present:
Gittins for any service-based uncertainty model

41

Past:
Gittins for specific uncertainty models, one-by-one

WINE

Present:
Gittins for any service-based uncertainty model

Future:
Underspecified models? “Restless” models?

41

Yes, queueing theory can!

03,
QDQ S O AP C> unknown sizes

new unifying theory of I:{> preemption limitations
single-server scheduling

WINE :> multiserver systems

new queueing identity to =) noisy size estimates
complement Little’s Law

42

SOAP def. and non-examples

Preemption checkpoints

Limited priority levels

Tail decay: heavy vs. light

r-work decomposition

SRPT-k and Gittins-k E[T]

43

| back

{_JSOAP

Schedule Ordered by Age-based Priority

stochastic arrival
process A, S

-
Q rank function

S

ll\j

¥

response time
distribution T

W

(

_>
_é%cﬂnln\

44

back

_JSOAP

Schedule Ordered by Age-based Priority

stochastic arrival response time
process A, S E distribution T -

@ - [k@ 1708 E@
% rank function LG 2)

where labels are static

44

back

{_JSOAP

Schedule Ordered by Age-based Priority

label dist. L,
(L, S) pairs i.i.d.
1C anyival response time
process A, S B distribution T E

@ - L@ 170N E@
% rank function LG 2)

where labels are static

44

2 What’s not a SOAP policy?

=« What’s not a SOAP policy?

Scheduling not based on each job having a

45

=« What’s not a SOAP policy?

Scheduling not based on each job having a
Nudge: can’t use arrival sequence adjacency

45

=« What’s not a SOAP policy?

Scheduling not based on each job having a
Nudge: can’t use arrival sequence adjacency

Job’s changes while it’s not in service

45

=« What’s not a SOAP policy?

Scheduling not based on each job having a
Nudge: can’t use arrival sequence adjacency

Job’s changes while it’s not in service
EDF: can’t have = time until deadline

éa}liest deadline fir@

45

=« What’s not a SOAP policy?

Scheduling not based on each job having a
Nudge: can’t use arrival sequence adjacency

Job’s changes while it’s not in service
EDF: can’t have = time until deadline

Job’s depends on a non-i.i.d. label

45

=« What’s not a SOAP policy?

Scheduling not based on each job having a
Nudge: can’t use arrival sequence adjacency

Job’s changes while it’s not in service
EDF: can’t have = time until deadline
Job’s depends on a non-i.i.d. label

EDF: can’t have = deadline

45

=« What’s not a SOAP policy?

Scheduling not based on each job having a
Nudge: can’t use arrival sequence adjacency

Job’s changes while it’s not in service
EDF: can’t have = time until deadline
Job’s depends on a non-i.i.d. label
EDF: can’t have = deadline

Tiebreaking not FCFS (or LCFS)

45

=« What’s not a SOAP policy?

Scheduling not based on each job having a
Nudge: can’t use arrival sequence adjacency

Job’s changes while it’s not in service
EDF: can’t have = time until deadline
Job’s depends on a non-i.i.d. label
EDF: can’t have = deadline

Tiebreaking not FCFS (or LCFS)
PS: can’t break ties by sharing (or randomizing)

45

back

lower is
better

Preemption checkpoints

Can only preempt only at checkpoint ages

rank

age

46

back

lower is
better

Preemption checkpoints

Can only preempt only at checkpoint ages

rank

30

age

46

= Preemption checkpoints

Can only preempt only at checkpoint ages

rank

O

| [
ovr .

]

< O O

age

30

46

back

Checkpoint frequency?

Suppose each checkpoint incurs an overhead y

47

back

Checkpoint frequency?

Suppose each checkpoint incurs an overhead y

What is the optimal gap 0 between checkpoints?

47

= Checkpoint frequency?

Suppose each checkpoint incurs an overhead y

What is the optimal gap 0 between checkpoints?

gﬁtimal packet sizeD

47

= Checkpoint frequency?

Suppose each checkpoint incurs an overhead y

What is the optimal gap 0 between checkpoints?

gﬁtimal packet sizeD

» large 0: less overhead

47

= Checkpoint frequency?

Suppose each checkpoint incurs an overhead y

What is the optimal gap 0 between checkpoints?

gﬁtimal packet sizeD

» large 0: less overhead

 small 0: more precise scheduling

47

= Checkpoint frequency?

Suppose each checkpoint incurs an overhead y

What is the optimal gap 0 between checkpoints?

éﬁtimal packet sizeD

» large 0: less overhead

 small 0: more precise scheduling

E[T]
N

47

= Checkpoint frequency?

Suppose each checkpoint incurs an overhead y

What is the optimal gap 0 between checkpoints?

éﬁtimal packet sizeD

» large 0: less overhead

 small 0: more precise scheduling

E[AT

0

47

= Checkpoint frequency?

Suppose each checkpoint incurs an overhead y

What is the optimal gap 0 between checkpoints?

gﬁtimal packet sizeD

» large 0: less overhead

 small 0: more precise scheduling

Safe heuristic:

1 | vELS]
5heuristic — E T

(if y < E[S])

0

47

back

lower is
better

Limited priority levels

age

48

back

lower is
better

Limited priority levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

age

48

back

lower is
better

Limited priority levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

age

48

back

lower is
better

Limited priority levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

2 remaining

age

48

back

lower is
better

Limited priority levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

7 remaining

2 remaining

age

48

back

lower is
better

Limited priority levels

SRPT with three priority levels:

« Small: [0, 2), =1
* Medium: [2, 7), = 2
* Large: [7, «), =3

7 remaining

2 remaining

age

48

back

lower is
better

Limited priority levels

SRPT with three priority levels:
° Small: [0, 2), =1

* Medium: [2, 7), = 2

* Large: [7, «), =3

7 remaining

2 remaining

age

48

= LPL-SRPT questions

> age

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

49

= LPL-SRPT questions

> age

@igh var: 5—i54? ggw var: 2—ile

- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

49

back

LPL-SRPT questions

> age

Hi :5-1sh) (L P 2-1
Clgh var: 5 IEQ g Low var: 2 1SID Balancing load i3
+ How many levels do we need?\, 2800d heuristic

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

49

back

LPL-SRPT questions

> age

Balancing load is
a good heuristic

@igh var: 5—i54? ggw var: 2—ile
- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

1 Yes! Constant rank better)

49

back

Heavy-tailed

Light-tailed

Prior work

’

New results

Qf = optimal
? = intermediate
$? = pessimal

S50

back

Heavy-tailed

Light-tailed

Prior work SX FCFS

’

New results

Qf = optimal
? = intermediate
$? = pessimal

S50

back

Heavy-tailed

Prior work SX FCFS

New results

Qf = optimal
? = intermediate
$? = pessimal

Light-tailed

&/ FCFS
&2 SRPT
SRLAS

50

back
Heavy-tailed

Prior work SX FCFS

New results </’ LAS with checkpoints,

constant gap

Qf = optimal
? = intermediate
$2 = pessimal

Light-tailed
&/ FCFS

&2 SRPT
SRLAS

50

back

Heavy-tailed

Prior work SX FCFS

not always optimal
with growing gap

New results </’ LAS with checkpoints,
constant gap

Qf = optimal
? = intermediate
$2 = pessimal

Light-tailed
&/ FCFS

&2 SRPT
SRLAS

50

back

Heavy-tailed

Prior work SX FCFS

/' SRPT
not always optimal
Q7 LAS with growing gap

/4
New results </’ LAS with checkpoints,
constant gap

&/ Gittins, (M-)SERPT

Qf = optimal
? = intermediate
$2 = pessimal

Light-tailed

&/ FCFS
&2 SRPT
SRLAS

50

back

Heavy-tailed

Prior work SX FCFS

New results </’ LAS with checkpoints,

constant gap

&/ Gittins, (M-)SERPT

Qf = optimal
? = intermediate
$2 = pessimal

Light-tailed

&/ FCFS
&2 SRPT
SRLAS

@$2 Non-FCFS SOAP

50

back

Heavy-tailed Light-tailed

Priorwork 3 FCFS Qf FCFES
&/ SRPT $3 SRPT
& LAS $RLAS

New results < LAS with checkpoints, ?8@ Non-FCFS SOAP
constant gap

& Gittins, (M-)SERPT < 8% Gittins, (M-) SERPT

Qf = optimal
? = intermediate
$2 = pessimal

50

back

Heavy-tailed Light-tailed

Prior work 3 FCFS </ FCFS
&/ SRPT $3 SRPT
& LAS $RLAS

New results < LAS with checkpoints, ?8@ Non-FCFS SOAP
constant gap

& Gittins, (M-)SERPT < 8% Gittins, (M-) SERPT

for some S,
Gittins = FCFS
optimal

intermediate

4
?
&3

pessimal

50

back

Heavy-tailed Light-tailed

Prior work 3 FCFS </ FCFS
&/ SRPT $3 SRPT
& LAS $RLAS

New results < LAS with checkpoints, ?8@ Non-FCFS SOAP
constant gap

& Gittins, (M-)SERPT & ¥$R Gittins, (M-) SERPT

for some S, for some S,
Gittins = FCFS Gittins = LAS
optimal

intermediate

4
?
&3

pessimal

50

back

Heavy-tailed Light-tailed

Prior work 3 FCFS </ FCFS
&/ SRPT $3 SRPT
& LAS $RLAS

New results < LAS with checkpoints, ?8@ Non-FCFS SOAP
constant gap

& Gittins, (M-)SERPT < 8% Gittins, (M-) SERPT

& ©Modified Gittins
Qf = optimal
? = intermediate
$? = pessimal

50

back

Heavy-tailed Light-tailed

Prior work 3 FCFS </ FCFS
&/ SRPT $3 SRPT
& LAS $RLAS

New results < LAS with checkpoints, ?8@ Non-FCFS SOAP
constant gap

& Gittins, (M-)SERPT < 8% Gittins, (M-) SERPT
& PModified Gittins

optimal E[T] within 1+¢
intermediate factor of optimal

pessimal

4
?
&3

50

back

Heavy-tailed Light-tailed

Prior work 3 FCFS </ FCFS
&/ SRPT $3 SRPT
& LAS $RLAS

New results < LAS with checkpoints, ?8@ Non-FCFS SOAP
constant gap

& Gittins, (M-)SERPT <« @$R Gittins, (M-)SERPT
& PModified Gittins

optimal E[T] within 1+¢
intermediate factor of optimal

pessimal

4
?
&3

[Scully, Kreveld, Boxma, Dorsman, and Wierman, SIGMETRICS 2020]
[Scully and Kreveld, arXiv 2021] 50

back

Work decomposition

51

back

Work decomposition

work W

4\
Mtime

51

back

o

Work decomposition

WO

In steady-state system, for any f,
E[f(W)] constant w.r.t. time

/{\

K W

M .

51

back

o

Work decomposition

WO

In steady-state system, for any f,
E[f(W)] constant w.r.t. time

/{\

K W

M .

51

E[W? decrease rate’

E[W? increase rate’

= 2E[BW]
= AE[(W + S)? —W?]

s Work decomposition

work W

/{\

M .

51

B = service rate, a.k.a.
fraction of servers busy

E[W? decrease rate’

E[W? increase rate’

= 2E[BW]
= AE[(W + S)? —W?]

L Work decomposition

work W

/{\

M .

51

s Work decomposition

work W
B = service rate, a.k.a. A
fraction of servers busX

E[W# decrease rate] = 2E[BW] I\I\I\N .
time

E[W? increase rate] = AE[(W + S)? — W?]

LE[S?] E[(1-B)W]
1—p | 1—p

E[W]=

s Work decomposition

work W
B = service rate, a.k.a. A
fraction of servers busX

E[W# decrease rate] = 2E[BW] I\I\I\N .
time

E[W? increase rate] = AE[(W + S)? — W?]

if single server:

SE[S°] E[(1-B)W]
1—p | 1—p

s Work decomposition

work W
B = service rate, a.k.a. A
fraction of servers busX

E[W# decrease rate] = 2E[BW] M .
time

E[W? increase rate] = AE[(W + S)? — W?]

if single server:

AE5?) . w1 Lemma:
5 El(1—B)W
1—p | - E[W;] =E[W;] -

E[(1 — B)W]

s Work decomposition

work W
B = service rate, a.k.a. A
fraction of servers busX

E[W# decrease rate] = 2E[BW] M .
time

E[W? increase rate] = AE[(W + S)? — W?]

if single server:

new i.sh

o Lemma:
51 5] E[(1—-B)W] E[W;.] = E[W,;]+
—p I1—p —F

E[(1 — B)W]

s Work decomposition

work W

B = service rate, a.k.a. A
fraction of servers busy

S —

E[W# decrease rate] = 2E[BW] /\N .
time

E[W? increase rate] = AE[(W + S)? — W?]

if single server:

new i.sh

AE[S?] Lemma:
B[W]=2——- ELAZBW] | grw) = Biw,]+ 2B
— P l—p 1—p

b’d Similar story with r-work —NEW!

back

E(W,] =E[W,]

E[(1— By)W,]

1—p

52

back

Suppose S < smax With probability 1

E[W,] = E[W,] E[(1— By)W,]

1—p

52

back

Suppose S < smax With probability 1

9; (k = 1)Smax)
E[(1—B;)W,]

E(W,] =E[W,] -

52

back

Suppose S < smax With probability 1
(EB] =}Q g; (k - 1)5max)
E[(1—B;)W;]
1—p

E(W,] =E[W,]

52

back

Suppose S < smax With probability 1

(EB] =}Q g; (F - 1smax)
E[(1 — By)W,]

1—p
< E[Wl] + (k T 1)5max

E(W,] =E[W,]

52

back

Suppose S < smax With probability 1

(EB] =§\2 g; (F - 1smax)
E[(1 — By)W,]

1—p
< E[Wl] + (k T 1)5max

; “work of < k-1 jobs”)

E(W,] =E[W,]

52

back

Suppose S < smax With probability 1
(EB] =§\2 g; (k — 1smax)
E[(1— B)W]

1—p
< E[Wl] + (k B 1)5max

; “work of < k-1 jobs”)

E[W.(r)] =E[W,(r)] + “r-work of k — 1 jobs”

E(W,] =E[W,]

52

back

Suppose S < smax With probability 1
(EB] =§\2 g; (k — 1smax)
E[(1— B)W]

1—p
< E[Wl] + (k B 1)5max

; “work of < k-1 jobs”)

E[W.(r)] =E[W,(r)] + “r-work of k — 1 jobs”

E(W,] =E[W,]

@ Single job’s r-work is at most r

52

back

Suppose S < smax With probability 1

(EB] =§\2 g; (F - 1smax)
E[(1 — By)W,]

1—p
< E[Wl] + (k T 1)5max

; “work of < k-1 jobs”)

E[W.(r)] =E[W,(r)] + “r-work of k — 1 jobs”

E(W,] =E[W,]

@ Single job’s r-work is at most r

52

back

Suppose S < smax With probability 1

(EB] =§\2 g; (F - 1smax)
E[(1 — By)W,]

1—p
< E[Wl] + (k T 1)5max

; “work of < k-1 jobs”)

E[W.(r)] =E[W,(r)] + “r-work of k — 1 jobs”

éan improve)

E(W,] =E[W,]

@ Single job’s r-work is at most r

back

SRPT-k and Gittins-k E[T]

new! WINE gives first analysis of
- SRPT-k
* Gittins-k

53

back

SRPT-k and Gittins-k E[T]

new! WINE gives first analysis of
* SRPT-k
» Gittins-k

Theorem: for SRPT and Gittins,

E[T,] <E[T,]+(k—1)- O(log 1 ip)

53

back

SRPT-k and Gittins-k E[T]

new! WINE gives first analysis of
- SRPT-k
» Gittins-k

Theorem: for SRPT and Gittins,

E[T,.] <E[T;]+
__N)
o(E[T;])

53

back

SRPT-k and Gittins-k E[T]

new! WINE gives first analysis of
* SRPT-k
» Gittins-k

Theorem: for SRPT and Gittins,

E[T,.] <E[T;]+
__\()
o(E[T;])

Corollary: SRPT and Gittins minimize E[T]
in heavy traffic (in their respective settings)

53

