4 New Toolbox
for Scheduling Theory

Ziv Scully
Harvard & MIT — Cornell

zivscully@cornell.edu
https://ziv.codes



mailto:zivscully@cornell.edu
https://ziv.codes

Mor Harchol-Balter
CMU, thesis advisor

Alan Scheller-Wolf
CMU

Collaborators

3

Isaac Grosof
CMU

Adam Wierman
Caltech

Onno Boxma
TU/e (Eindhoven)

Jan-Pieter Dorsman
UvA (Amsterdam)

Lucas van Kreveld
UvA (Amsterdam)

Michael Mitzenmacher
Harvard

Sid Banerjee
Cornell

Anupam Gupta
CMU

Sahil Singla
Georgia Tech

Haotian Jiang
University of Washington

Kunhe Yang
UC Berkeley



Performance



Performance

efficiency throughput delay reliability safety value



Performance

efficiency throughput delay reliability safety value



Contention

g

Queueling

<&

Delay



Contention

healthcare @

Queueling

<&

Delay



supply chains  Contention

healthcare @

Queueing

<&

Delay



your local supermarket

supply chains  Contention

healthcare @

Queueing

<&

Delay



your local supermarket

supply chains Contention call centers

healthcare @

Queueling

<&

Delay



your local supermarket

supply chains Contention call centers

healthcare @ ) transportation
Queueing

<&

Delay



your local supermarket

supply chains Contention call centers

healthcare @ ) transportation
Queueing

§ l databases

Delay



your local supermarket

supply chains Contention call centers

healthcare @ ) transportation
Queueing

§ l databases

Del ay networks



your local supermarket

supply chains Contention call centers

healthcare @ ) transportation
Queueing

§ l databases

Del ay networks

operating systems



your local supermarket

supply chains Contention call centers

healthcare @ ) transportation
Queueing

§ l databases

computer architecture Delay networks

operating systems



your local supermarket

supply chains Contention call centers

healthcare @ ) transportation
Queueing
supercomputing S l databases

computer architecture Delay networks

operating systems



your local supermarket

supply chains Contention call centers

healthcare @ ) transportation
Queueing
supercomputing 5 l databases

computer architecture Delay networks

operating systems

@ How to reduce delays?

-



your local supermarket

supply chains Contention call centers

healthcare @ ) transportation
Queueing
supercomputing 5 l databases

computer architecture Delay networks

operating systems

@ How to reduce delays?
Y Scheduling



Good news:
scheduling can reduce delay



Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling



Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

éévaluation)




Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ éévaluation)




Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ éévaluation)

We need:
’ rigorous theory of scheduling




Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ éévaluation)

We need:
’ rigorous theory of scheduling




Good news:
scheduling can reduce delay

Bad news:
limited understanding of scheduling

@esigrﬁ éévaluation)

We need:
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applied math, probability,
control, learning theory
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= Checkpoint frequency?

Suppose each checkpoint incurs an overhead y

What is the optimal gap 0 between checkpoints?

gﬁtimal packet sizeD

» large 0: less overhead

 small 0: more precise scheduling

Safe heuristic:

1 | vELS]
5heuristic — E T

(if y < E[S])

0
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LPL-SRPT questions

> age

Balancing load is
a good heuristic

@igh var: 5—i54? ggw var: 2—ile
- How many levels do we need?

 How do we choose size cutoffs?
* Can we do better than LPL-SRPT?

1 Yes! Constant rank better)
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s Work decomposition

work W

B = service rate, a.k.a. A
fraction of servers busy

S —

E[W# decrease rate] = 2E[BW ] /\N .
time

E[W? increase rate] = AE[(W + S)? — W?]

if single server:

new i.sh

AE[S?] Lemma:
B[W]=2——- ELAZBW] | grw ) = Biw, ]+ 2B
— P l—p 1—p

b’d Similar story with r-work —NEW!
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Corollary: SRPT and Gittins minimize E[T]
in heavy traffic (in their respective settings)
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