WINE,

A New Queueing Identity
for Analyzing Scheduling Policies
in Multiserver Systems

Ziv Scully
CMU (now) — UC Berkeley — MIT/Harvard — Cornell (Fall 2023)

A New Queueing Identity
for Analyzing Scheduling Policies
in Multiserver Systems

Ziv Scully
CMU (now) — UC Berkeley — MIT/Harvard — Cornell (Fall 2023)

QQ SRPT minimizes mean response
time in single-server systems

@ How good is SRPT in
multiserver systems?

Multiserver queueing system

% 111K

Multiserver queueing system

E\E/I/G/E

% 111K

Multiserver queueing system& .
M/G/k

k servers,
g ~ (speed 1/k é;
AN
/4 O
R N0

Multiserver queueing system

A = arrival rate \

S = size distribution

E\E/I/G@

k servers,
speed 1/k

p = AE[S] = load

e

4

Multiserver queueing system

A = arrival rate \

S = size distribution
p = AE[S] = load

e

E\E/I/G/E

k servers,
speed 1/k

—(r
— 0 4

response time distribution T

Multiserver queueing system

A = arrival rate \

S = size distribution
p = AE[S] = load

e

E\E/I/G@

k servers,
speed 1/k

—(r
B NO 4

response time distribution T

SRPT: = remaining size

Multiserver queueing system

A = arrival rate \

S = size distribution
p = AE[S] = load

e

E\E/I/G@

k servers,
speed 1/k

—(r
B NO 4

response time distribution T
= priority,
lower is better

SRPT: = remaining size

Multiserver queueing system

A = arrival rate \

S = size distribution
p = AE[S] = load

e

E\E/I/G@

k servers,
speed 1/k

—(r
— 0 4

response time distribution T
= priority,
lower is better

/ SRPT: = remaining size

SRPT-1 (single-server): serves the job of least

Multiserver queueing system

A = arrival rate \

S = size distribution

p = AE[S] = load
—(
| *\O* N

@%; =
response time distribution T

SRPT-k (multiserver): serves the k jobs of least

\ SRPT:
/ ;

SRPT-1 (single-server): serves the job of least

E\E/I/G@

k servers,
speed 1/k

= remaining size

Multiserver queueing system

A = arrival rate \

S = size distribution

p = AE[S] = load
—(
| *\O* N

@%; =
response time distribution T

SRPT-k (multiserver): serves the k jobs of least

> SRPT: = remaining size

SRPT-1 (single-server): serves the job of least

E\E/I/G@

k servers,
speed 1/k

Multiserver queueing system

A = arrival rate \

S = size distribution
p = AE[S] = load

)%
A 9

E[T] unknown : L
“ response time distribution T

SRPT-k (multiserver): serves the k jobs of least

> SRPT: = remaining size

SRPT-1 (single-server): serves the job of least

E\E/I/G@

k servers,
speed 1/k

SRPT-1: tagged job analysis

e

random system state

SRPT-1: tagged job analysis

(Cme”

ne!

random system state

SRPT-1: tagged job analysis

(Cme”

e

random system state

SRPT-1: tagged job analysis

|0;

random system state

(Cme”

SRPT-1: tagged job analysis

S
™
[

random system state

Key quantity:
W(r) = work relevant to job of r

G‘-WOI‘Ej

SRPT-1: tagged job analysis

S
™
[

random system state

Key quantity: /CO\

W(r) = work relevant to job of r

G‘-WOI‘Ej

SRPT-1: tagged job analysis

Key quantity:
W(r) = work relevant to job of

C -WOl'lzj

SRPT-1: tagged job analysis

3

Key quantity:
W(r) = work relevant to job of

C -WOl'lzj

SRPT-1: tagged job analysis

3

Key quantity:
W(r) = work relevant to job of

C -WOl'lzj

SRPT-1: tagged job analysis

3

Key quantity:
W(r) = work relevant to job of

C -WOl'lzj

SRPT-1: tagged job analysis

3

Key quantity:
W(r) = work relevant to job of

C -WOl'lzj

SRPT-1: tagged job analysis

1

Key quantity:
W(r) = work relevant to job of

C -WOl'lzj

Single-server system

lInAe

Multiserver system

So00

Single-server system
server is “choke point”

Multiserver system

i \ ®

Single-server system
server is “choke point”

<4

} | O rank ordering absolute

Multiserver system

So00

Single-server system
server is “choke point”

<4

) | O rank ordering absolute

\ observed r-work determines T

Multiserver system

o000

Single-server system
server is “choke point”

<4

) | O rank ordering absolute

\ observed r-work determines T

Multiserver system
no single “choke point”

o000

Single-server system
server is “choke point”

<4

) | O rank ordering absolute

\ observed r-work determines T

Multiserver system
no single “choke point”

rank ordering not absolute

o000

Single-server system
server is “choke point”

<4

B ordering absolute
56-/“ =

\J\ observed r-work determines T

Multiserver system
no single “choke point”

—

%@\

ordering not absolute

&

observed r-work not enough!

SO0%

tagged job

approach @; [%
bd A==

r-work W(r) response time T

(single-server only (mostly))
bd [‘% e [Eﬁ

r-work W(r) response time T

(single-server only (mostly))
bd @; e [Eﬁ

oYV

r-work W(r) response time T

Little’s law

U

number of jobs N

Cllll

(single-server only (mostly))
b-d l ,\‘<f d)

r-work W(r) response time T

Little’s law

JU L
number of jobs N

(single-server only (mostly))
@3 W E%

r-work W(r) response time T

Little’s law

any number
of servers

U

number of jobs N

Cllll

(single-server only (mostly))

r-work W(r) response time T

JU L
number of jobs N

(single-server only (mostly))

S\

r-work W(r)

JU L
number of jobs N

WINE

Work Integral Number Equality

JUC
number of jobs N

r-work W(r)

WINE

Work Integral Number Equality

S\

r-work W(r)

L

JU

U

number of jobs N

.

TN

=
j'j L0
_\\"
Ls L)
li _<..
N

mean response time E[T]

WINE

Work Integral Number Equality

\f

JUC
number of jobs N

U

.

TN

r-work W(r) @j
N 2N
. S

mean response time E[T]

nw! E[T] bounds for SRPT-k, Gittins-k, noisy size estimates

WINE

Work Integral Number Equality

L

e

JU
number of jobs N

r-work W(r) @;
¥ A
i S

U

.

when sizes unknown

Gittins-1 minimizes E[T] \ mean response time E[T]

new! E[T] bounds for SRPT-k, Gittins-k, noisy size estimates

b@ tels

r-work W(r) number of jobs N

WINE

b@ tels

r-work W(r) number of jobs N

b@ tels

r-work W(r) number of jobs N

@ How do we get number of
jobs from r-work?

b@ tels

r-work W(r) number of jobs N

WINE

What is r-work?

How do we get number of
jobs from r-work?

How do we analyze r-work?

) Y 1)

b@ tels

r-work W(r) number of jobs N

This talk: @ How do we get number of

SRPT-k = jobs from r-work?

@ How do we analyze r-work?

-

Defining r-work
gfz)r SRPD

W(r) = work relevant to r

Defining r-work
&z)r SRPD

W(r) = work relevant to r

wx(r) = r-work of single job of rem. size x = {

Defining r-work
&)r SRPD

W(r) = work relevant to r

wx(r) = r-work of single job of rem. size x = {

Defining r-work
&)r SRPD

W(r) = work relevant to r

wx(r) = r-work of single job of rem. size x = {

~ 5

Defining r-work
&)r SRPD

W(r) = work relevant to r

. . , 0 ifr<
wx(r) = r-work of single job of rem. size x = {

~ 5

Defining r-work
&)r SRPD

W(r) = work relevant to r

. . , 0 ifr<
wx(r) = r-work of single job of rem. size x = {

~ 5

Defining r-work
&)r SRPD

W(r) = work relevant to r

. . , 0 ifr<
wx(r) = r-work of single job of rem. size x = {

~ 5

T

Defining r-work
&)r SRPD

W(r) = work relevant to r

. . , 0 ifr<
wx(r) = r-work of single job of rem. size x = {

ifr>
~ 5

T

Defining r-work
gfz)r SRPD

W(r) = work relevant to r

if r <
if r>

0
wx(r) = r-work of single job of rem. size x = {

Defining r-work
&z)r SRPD

W(r) = work relevant to r
= total r-work of all jobs

: : . 0 ifr<
w.(r) = r-work of single job of rem. size x = { |
if r >

From r-work to number of jobs N

From r-work to number of jobs N

(‘ Goal: integral = N |

W(r)

10

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A

0 ifr<

w.(r) = r-work of job of rem. size x = < ,
if r >

10

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)

w.(r) = r-work of job of rem. size

A

= 5

>1/r

0 ifr<

if r >

10

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A A
1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

10

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
. ,
> 1/ 1/r
0 ifr<
w.(r) = r-work of job of rem. size x = < ,
x ifr=

10

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
A
>1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r>

10

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)
iL‘
1/r 1/ 1/r
(.
w.(r) = r-work of job of rem. size x = « 0 Tfr =
L if r >

10

From r-work to number of jobs N

(‘ Goal: integral = N | (Suffices: integral = 1'

W(r) Wi (1)

1
]
! 1/r

w.(r) = r-work of job of rem. size

1/r

1/

= <

10

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

10

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

10

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wi (1‘)
| X
1
1
1/r i 1/r
NEW Theorem:

©.@

C

W(r)
5 I”
r uses rank = rem. size

.

WINE N=f
0

10

From r-work to number of jobs N

(‘ Goal: integral = N } (Suffices: integral = 1'

W(r) Wy (1)

; X
1
! 1/r 1/r

1/x

10

Impact of WINE

Impact of WINE

Y

multiserver systems

Impact of WINE

A Sy

multiserver systems Nnoisy size estimates

SRPT-k SRPT-1

000

SRPT-k

\

k

servers,
speed 1/k

bor il

SRPT-1

12

SRPT-k

k

servers,
speed 1/k

bor il

12

pr—

SRPT-k

\

k servers,
speed 1/k

E[Tx]

bor il

SRPT-1

|

0

? (13 E[T1]

12

pr—

SRPT-k

|

k servers,
speed 1/k

bor il

E[Tx]

AN
N

E[Wi(r)] :‘l > E[W1i(r)]

SRPT-1

|

0

? (13 E[T1]

L
NS

12

k servers,
SRPT-k speed 1/k
Nt

12

k servers,
SRPT-k speed 1/k
s

SRPT-1

\

Lemma: r-work
decomposition

> ‘ E[Wi(r)] '

12

k servers,
SRPT-k Z%Deed 1/D SRPT-1
2 HR;

> ‘ E[Wi(r)] '
. Lemma: r-work
decomposition

SRPT-k

servers,
k

k
speed 1/

Lemma: r-work
decomposition

> ‘ E[Wi(r)] '

12

Impact of WINE

A Sy

multiserver systems Nnoisy size estimates

Impact of WINE

A Sy

multiserver systems Nnoisy size estimates

E[T] bounds for
 SRPT-k
» Gittins-k

13

Impact of WINE

A Sy

multiserver systems Nnoisy size estimates

E[T] bounds for .
compare noisy-info r-work
to perfect-info r-work

 SRPT-k
» Gittins-k

13

Impact of WINE

A Sy

multiserver systems Nnoisy size estimates

E[T] bounds for .
compare noisy-info r-work
to perfect-info r-work

 SRPT-k
» Gittins-k

Theorem:

13

Impact of WINE

A Sy

multiserver systems Nnoisy size estimates

E[T] bounds for .

compare noisy-info r-work
* SRPT-k to perfect-info r-work
* Gittins-k

Theorem: References:

* Scully, Grosof, & Harchol-Balter

(POMACS 2020 / SIGMETRICS 2021)
* Scully & Harchol-Balter (WiOpt 2021)
* Scully, Grosof, & Mitzenmacher,

(ITCS 2022)

13

Impact of WINE

A Sy

multiserver systems Nnoisy size estimates

E[T] bounds for .

compare noisy-info r-work
* SRPT-k to perfect-info r-work
* Gittins-k

Theorem: r-work decomposition

SRPT-k and Gittins-k
E[T] bounds

noisy size estimates

14

Work (and r-work) decomposition

work W

4\
Mtime

15

Work (and r-work) decomposition

o

work W

4\
In steady-state system, for any f,

E[f(W)] constant w.r.t. time

M .

15

Work (and r-work) decomposition

o

work W

4\
In steady-state system, for any f,

E[f(W)] constant w.r.t. time

M .

15

Work (and r-work) decomposition

E[W? decrease rate’

E[W? increase rate’

= 2E[BW]
= AE[(W + S)? —W?]

work W

/{\

M .

15

Work (and r-work) decomposition

B = service rate, a.k.a.
fraction of servers busy

E[W? decrease rate’

E[W? increase rate’

= 2E[BW]
= AE[(W + S)? —W?]

work W

/{\

M .

15

Work (and r-work) decomposition

B = service rate, a.k.a.
fraction of servers busy
E[W? decrease rate] = 2E[BW]
E[W? increase rate] = AE[(W + S)? — W?]

LE[S?] E[(1-B)W]

—p 1-p

work W

/{\

M .

15

Work (and r-work) decomposition

B = service rate, a.k.a.
fraction of servers busy
E[W? decrease rate] = 2E[BW]
E[W? increase rate] = AE[(W + S)? — W?]

if single server:
(1-BDBW =0

LE[S?] E[(1-B)W]
1—p | 1—p

E[W]=

work W

4\

FJ\J\\D\\eﬁme

15

Work (and r-work) decomposition

work W

B = service rate, a.k.a. A
fraction of servers busy

S —

E[W# decrease rate] = 2E[BW] /\N .
time

E[W? increase rate] = AE[(W + S)? — W?]

if single server:
(1-BDBW =0
Lemma:

LE[S?] E[(1-B)W]

— E[(1 — B)W,]

| EIW,.|=E| W,]|+
i B (W) = E[W,]+ = —

15

Work (and r-work) decomposition

S —

B = service rate, a.k.a.
fraction of servers busy
E[W? decrease rate] = 2E[BW]
E[W? increase rate] = AE[(W + S)? — W?]

if single server:
(1-B)W =0 newish

LE[S?] E[(1-B)W]
1—p | 1—p

E[W]=

work W

4\

FJ\J\\P\xaﬁme

15

Work (and r-work) decomposition

work W

B = service rate, a.k.a. A
fraction of servers busy

I

E[W# decrease rate] = 2E[BW] /\N .
time

E[W? increase rate] = AE[(W + S)? — W?]

if single server:
(1-BDBW =0

2E[S*] E[(1-B)W]

newt

Lemma:
E[W,] =E[W;]+

E[(1— By)W
1—p | 1—p 1—0p

b’d Similar story with r-work —NEW!

- 15

E(W,] =E[W,]

E[(1— By)W,]

1—p

16

Suppose S < smax With probability 1

E[W,] = E[W,] E[(1— By)W,]

1—p

16

Suppose S < smax With probability 1

9; (k = 1)Smax)
E[(1—B;)W,]

E(W,] =E[W,] -

16

Suppose S < smax With probability 1
(EB] =}Q g; (k - 1)5max)
E[(1—B;)W;]
1—p

E(W,] =E[W,]

16

Suppose S < smax With probability 1

(EB] =}Q g; (F - 1smax)
E[(1 — By)W,]

1—p
< E[Wl] + (k T 1)5max

E(W,] =E[W,]

16

Suppose S < smax With probability 1

(EB] =§\2 g; (F - 1smax)
E[(1 — By)W,]

1—p
< E[Wl] + (k T 1)5max

; “work of < k-1 jobs”)

E(W,] =E[W,]

16

Suppose S < smax With probability 1
(EB] =§\2 g; (k — 1smax)
E[(1— B)W]

1—p
< E[Wl] + (k B 1)5max

; “work of < k-1 jobs”)

E[W.(r)] =E[W,(r)] + “r-work of k — 1 jobs”

E(W,] =E[W,]

16

Suppose S < smax With probability 1
(EB] =§\2 g; (k — 1smax)
E[(1— B)W]

1—p
< E[Wl] + (k B 1)5max

; “work of < k-1 jobs”)

E[W.(r)] =E[W,(r)] + “r-work of k — 1 jobs”

E(W,] =E[W,]

@ Single job’s r-work is at most r

16

Suppose S < smax With probability 1

(EB] =§\2 g; (F - 1smax)
E[(1 — By)W,]

1—p
< E[Wl] + (k T 1)5max

; “work of < k-1 jobs”)

E[W.(r)] =E[W,(r)] + “r-work of k — 1 jobs”

E(W,] =E[W,]

@ Single job’s r-work is at most r

16

Suppose S < smax With probability 1

(EB] =§\2 g; (F - 1smax)
E[(1 — By)W,]

1—p
< E[Wl] + (k T 1)5max

; “work of < k-1 jobs”)

E[W.(r)] =E[W,(r)] + “r-work of k — 1 jobs”

éan improve)

E(W,] =E[W,]

@ Single job’s r-work is at most r

SRPT-k and

Theorem: for SRPT and

-k E[T] bounds

E[T,] <E[T,]+(k—1)- O(log 1 ip)

17

SRPT-k and Gittins-k E[T] bounds

Theorem: for SRPT and Gittins,

E[T,.] <E[T;]+
_w T
o(E[T;])

17

SRPT-k and -k E[T] bounds

Theorem: for SRPT and ,

E[T,.] <E[T;]+

—— ==
o(E[T,])
Corollary: SRPT and minimize E[T]

in heavy traffic (in their respective settings)

17

Noisy size estimates

18

Noisy size estimates

Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

18

Noisy size estimates

@elo@ gbovej
Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

18

D5+

SRZL:
— 2
- ~z/oc

Noisy size estimates

@elo@ gbovej
Model: (3, a)-bounded noise

true sizes = estimated size z € [f3s, as]

18

D5+

SRZL:
—4 2
- ~z/oc

Noisy size estimates

@elo@ gbovej
Model: (3, a)-bounded noise

true sizes = estimated size z € [s, as]

N/

Generated by joint distribution (S, Z)

18

[Sm—

-———

Noisy size estimates
@elo@ gbovej

z/p .
Model: (3, a)-bounded noise
%
z/a true sizes = estimated size z € [f3s, as]

N/

Generated by joint distribution (S, Z)

Goal: design a policy with “good” E[T] for
* any joint distribution (S, Z)
. any values of a, f3

18

rank SRPT
S

>age

19

ra41\1k Radical

ZV
>age

2

rank

S

SRPT

>age

19

rank Radical rank SRPT
S

z\/_
>age >age

rank Radical rank SRPT

Z\/_ 0O
>age >age

J 19

ra41\1k Radical rank SRPT
(Ei) S
P .
P4 >age S
raf{lk Scale
P4
S
S age

>age

19

rank Radical rank SRPT

| ¢ \
By Z

rank Scale

Z\
>age

P S 19

rank Radical

raf{lk Scale

>

rank SRPT

>age

S
\/
r-work amounts
!{ close enough

QWINE

] S

>age
19

rank Radical rank SRPT

A 3

2 Q

>age >age

r-work amounts
close enough

rank functions
close enough

(_JSOAP " ¢ QWINE

Scully, Harchol-Balter,
& Scheller-Wolf
(SIGMETRICS 2018) Z

>age

ra41\1k Radical rank SRPT
S

>age >age

r-work amounts
close enough

rank functions
close enough

(_JSOAP §+ e QWINE

Scully, Harchol-Balter,
& Scheller-Wolf
(SIGMETRICS 2018) Z

O

>age

rank Radical rank SRPT

A

>age >age

r-work amounts
close enough

rank functions
close enough

(_JSOAP " ¢ QWINE

Scully, Harchol-Balter,
& Scheller-Wolf
(SIGMETRICS 2018) Z

>age

SRPT vs. Scale proof sketch

Lemma:

E[WScale(r)] < EI:WSRPT(%1‘)]

Key steps:

20

SRPT vs. Scale proof sketch

Lemma:

E[Wppr(r)] S E[Wgeae(r)] < E[WSRPT(%’”):I

Key steps:

20

SRPT vs. Scale proof sketch

Lemma:

E[Wppr(r)] S E[Wgeae(r)] < E[WSRPT(%’”):I

Key steps:

1. SRPT minimizes mean r-work

20

SRPT vs. Scale proof sketch

Lemma:

E[Wppr(r)] S E[Wgeae(r)] < E[WSRPT(%’”):I

Key steps:

1. SRPT minimizes mean r-work

20

SRPT vs. Scale proof sketch

Lemma:

E[Wppr(r)] S E[Wgeae(r)] < EI:WSRPT(%r):I

Key steps:
1. SRPT minimizes mean r-work

2. Scale minimizes mean noise-scaled-r-work

20

SRPT vs. Scale proof sketch

Lemma:

E[Wppr(r)] S E[Wgeae(r)] < E[WSRPT(%’”):I

Re.w

filters using Scale’s rank
instead of SRPT’s rank

Key steps:

1. SRPT minimizes mean r-work

2. Scale minimizes mean noise-scaled-r-work

20

SRPT vs. Scale proof sketch

Lemma:

E[Wppr(r)] S E[Wgeae(r)] < E[WSRPT(%’”):I

Re.w

filters using Scale’s rank
instead of SRPT’s rank

Key steps:

1. SRPT minimizes mean r-work
2. Scale minimizes mean noise-scaled-r-work

3. Under any policy,

20

SRPT vs. Scale proof sketch

Lemma:

E[Wppr(r)] S E[Wgeae(r)] < E[WSRPT(%’”):I

Re.w

filters using Scale’s rank
instead of SRPT’s rank

Key steps:
1. SRPT minimizes mean r-work
2. Scale minimizes mean noise-scaled-r-work

3. Under any policy,
r-work < noise-scaled-ar-work < %r-work

20

SRPT vs. Scale proof sketch

Lemma:

E[Wppr(r)] S E[Wgeae(r)] < E[WSRPT(%’”):I

Re.w

filters using Scale’s rank
instead of SRPT’s rank

Key steps:

1. SRPT minimizes mean r-work
2. Scale minimizes mean noise-scaled-r-work

3. Under any policy,
r-work < noise-scaled-ar-work < %r-work

20

