

A New Queueing Identity for Analyzing Scheduling Policies in Multiserver Systems

Ziv Scully $CMU \text{ (now)} \rightarrow UC \text{ Berkeley} \rightarrow MIT/Harvard \rightarrow Cornell \text{ (Fall 2023)}$

A New Queueing Identity
for Analyzing Scheduling Policies
in Multiserver Systems

Ziv Scully

CMU (now) \rightarrow UC Berkeley \rightarrow MIT/Harvard \rightarrow Cornell (Fall 2023)

SRPT minimizes mean response time in single-server systems

Multiserver queueing system $\lambda = \text{arrival rate}$

response time distribution T

SRPT: rank = remaining size

response time distribution T

Multiserver queueing system $\lambda = \text{arrival rate} \\ S = \text{size distribution} \\ \rho = \lambda E[S] = \text{load}$ $k \text{ servers,} \\ \text{speed } 1/k$

response time distribution *T*

rank = priority, lower is better SRPT: rank = remaining size

SRPT-*k* (multiserver): serves the *k* jobs of least rank

> SRPT: rank = remaining size

SRPT-*k* (multiserver): serves the *k* jobs of least rank

 $\mathbf{E}[T]$ unknown (pre-2018)

response time distribution *T*

SRPT-*k* (multiserver): serves the *k* jobs of least rank

SRPT: rank = remaining size

random system state

Key quantity:

W(r) = work relevant to job of rank r (r-work)

Key quantity:

W(r) = work relevant to job of rank r

Key quantity:

W(r) = work relevant to job of rank rork

Key quantity:

W(r) = work relevant to job of rank rwork)

Key quantity:

W(r) = work relevant to job of rank rork

Key quantity:

W(r) = work relevant to job of rank r V(r)

Key quantity:

W(r) = work relevant to job of rank r work

server is "choke point"

server is "choke point"

rank ordering absolute

server is "choke point"

rank ordering absolute

observed *r*-work determines *T*

server is "choke point"

rank ordering absolute

observed *r*-work determines *T*

Multiserver system

no single "choke point"

server is "choke point"

rank ordering absolute

observed *r*-work determines *T*

Multiserver system

no single "choke point"

rank ordering not absolute

server is "choke point"

rank ordering absolute

observed *r*-work determines *T*

Multiserver system

no single "choke point"

rank ordering not absolute

observed *r*-work not enough!

number of jobs N

mean response time E[T]

mean response time E[T]

 $\mathbf{E}[T]$ bounds for SRPT-k, Gittins-k, noisy size estimates

when sizes unknown

 $\mathbf{E}[T]$ bounds for SRPT-k, Gittins-k, noisy size estimates

How do we get number of jobs from *r*-work?

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 1 & \text{we seed } \\ 1 & \text{we seed } \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 1 & \text{we seed } \\ 1 & \text{we seed } \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of single job of rem. size $\mathbf{x} = \begin{cases} 1 & \text{with } \mathbf{x} \\ 1 & \text{with } \mathbf{x} \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \ge x \end{cases}$

$$w_x(r) = r$$
-work of single job of rem. size $x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \ge x \end{cases}$

- W(r) = work relevant to rank r= total r-work of all jobs
- $w_{\mathbf{x}}(r) = r$ -work of single job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of $\mathbf{j}\mathbf{o}\mathbf{b}$ of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(\mathbf{r}) = \mathbf{r}$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{r} < \mathbf{x} \\ \mathbf{x} & \text{if } \mathbf{r} \ge \mathbf{x} \end{cases}$

$$w_{\mathbf{x}}(r) = r$$
-work of job of rem. size $\mathbf{x} = \begin{cases} 0 & \text{if } r < \mathbf{x} \\ \mathbf{x} & \text{if } r \ge \mathbf{x} \end{cases}$

Theorem:

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

noisy size estimates

SRPT-k

SRPT-1

noisy size estimates

noisy size estimates

E[*T*] bounds for

- SRPT-**k**
- Gittins-k

E[*T*] bounds for

- SRPT-k
- Gittins-k

Impact of WINE

E[*T*] bounds for

- SRPT-*k*
- Gittins-k

noisy size estimates

compare **noisy-info** *r*-work to **perfect-info** *r*-work

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

 $\mathbf{E}[T]$ bounds for

- SRPT-k
- Gittins-k

noisy size estimates

compare **noisy-info** *r*-work to **perfect-info** *r*-work

Theorem:

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

References:

- Scully, Grosof, & Harchol-Balter (POMACS 2020 / SIGMETRICS 2021)
- Scully & Harchol-Balter (WiOpt 2021)
- · Scully, Grosof, & Mitzenmacher, (ITCS 2022)

Impact of WINE

multiserver systems

E[*T*] bounds for

- SRPT-*k*
- Gittins-k

noisy size estimates

compare **noisy-info** *r*-work to **perfect-info** *r*-work

Theorem:

$$N = \int_0^\infty \frac{W(r)}{r^2} \, \mathrm{d}r$$

r-work decomposition

SRPT-k and Gittins-k E[T] bounds

noisy size estimates

In steady-state system, for any f, $\mathbf{E}[f(W)]$ constant w.r.t. time

In steady-state system, for any f, $\mathbf{E}[f(W)]$ constant w.r.t. time

 $\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$ $\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W+S)^2 - W^2]$

B = service rate, a.k.a. fraction of servers busy $\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$ $\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W+S)^2 - W^2]$

B =service rate, a.k.a. fraction of servers busy

$$\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$$

$$\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W+S)^2 - W^2]$$

$$\mathbf{E}[W] = \frac{\frac{\lambda}{2}\mathbf{E}[S^2]}{1-\rho} + \frac{\mathbf{E}[(1-B)W]}{1-\rho}$$

B =service rate, a.k.a. fraction of servers busy

 $\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$

$$\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W+S)^2 - W^2]$$

if single server:

$$(1 - B)W = 0$$

$$\mathbf{E}[W] = \frac{\frac{\lambda}{2}\mathbf{E}[S^2]}{1 - \rho} + \frac{\mathbf{E}[(1 - B)W]}{1 - \rho}$$

B =service rate, a.k.a. fraction of servers busy

 $\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$

$$\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W+S)^2 - W^2]$$

if single server: (1 - B)W = 0 $E[W] = \frac{\frac{\lambda}{2}E[S^2]}{1 - \rho} + \frac{E[(1 - B)W]}{1 - \rho}$

Lemma:

$$\mathbf{E}[W_{\mathbf{k}}] = \mathbf{E}[W_{\mathbf{1}}] + \frac{\mathbf{E}[(1 - B_{\mathbf{k}})W_{\mathbf{k}}]}{1 - \rho}$$

B = service rate, a.k.a. fraction of servers busy

 $\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$

$$\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W+S)^2 - W^2]$$

if single server:
$$(1 - B)W = 0$$

$$\mathbf{E}[W] = \frac{\frac{\lambda}{2}\mathbf{E}[S^2]}{1-\rho} + \frac{\mathbf{E}[(1-B)W]}{1-\rho}$$

Lemma:

$$\mathbf{E}[W_{\mathbf{k}}] = \mathbf{E}[W_{\mathbf{1}}] + \frac{\mathbf{E}[(1 - B_{\mathbf{k}})W_{\mathbf{k}}]}{1 - \rho}$$

B =service rate, a.k.a. fraction of servers busy

 $\mathbf{E}[W^2 \text{ decrease rate}] = 2\mathbf{E}[BW]$

 $\mathbf{E}[W^2 \text{ increase rate}] = \lambda \mathbf{E}[(W+S)^2 - W^2]$

if single server: (1 - B)W = 0

$$\mathbf{E}[W] = \frac{\frac{\lambda}{2}\mathbf{E}[S^2]}{1-\rho} + \frac{\mathbf{E}[(1-B)W]}{1-\rho}$$

Lemma:

$$\mathbf{E}[W_{\mathbf{k}}] = \mathbf{E}[W_{\mathbf{1}}] + \frac{\mathbf{E}[(1 - B_{\mathbf{k}})W_{\mathbf{k}}]}{1 - \rho}$$

Similar story with *r*-work

$$\mathbf{E}[W_{\mathbf{k}}] = \mathbf{E}[W_{\mathbf{1}}] + \frac{\mathbf{E}[(1 - B_{\mathbf{k}})W_{\mathbf{k}}]}{1 - \rho}$$

$$\mathbf{E}[W_{\mathbf{k}}] = \mathbf{E}[W_{\mathbf{1}}] + \frac{\mathbf{E}[(1 - B_{\mathbf{k}})W_{\mathbf{k}}]}{1 - \rho}$$

$$\mathbf{E}[W_{k}] = \mathbf{E}[W_{1}] + \frac{\mathbf{E}[(1 - B_{k})W_{k}]}{1 - \rho}$$

$$\mathbf{E}[B] = \rho \qquad \leq (k-1)s_{\text{max}}$$

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1-B_k)W_k]}{1-\rho}$$

$$\mathbf{E}[B] = \rho \qquad \leq (k-1)s_{\text{max}}$$

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1-B_k)W_k]}{1-\rho}$$

$$\leq \mathbf{E}[W_1] + (k-1)s_{\text{max}}$$

$$\mathbf{E}[B] = \rho \qquad \leq (k-1)s_{\text{max}}$$

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1-B_k)W_k]}{1-\rho}$$

$$\leq \mathbf{E}[W_1] + (k-1)s_{\text{max}}$$
"work of $\leq k-1$ jobs"

$$\mathbf{E}[B] = \rho \qquad \leq (k-1)s_{\text{max}}$$

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1-B_k)W_k]}{1-\rho}$$

$$\leq \mathbf{E}[W_1] + (k-1)s_{\text{max}}$$
"work of $\leq k-1$ jobs"

$$E[W_k(r)] = E[W_1(r)] + "r$$
-work of $k - 1$ jobs"

$$\mathbf{E}[B] = \rho \qquad \leq (k-1)s_{\text{max}}$$

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1-B_k)W_k]}{1-\rho}$$

$$\leq \mathbf{E}[W_1] + (k-1)s_{\text{max}}$$
"work of $\leq k-1$ jobs"

Single job's *r*-work is at most *r*

$$E[W_k(r)] = E[W_1(r)] + "r$$
-work of $k - 1$ jobs"

Suppose $S \leq s_{\text{max}}$ with probability 1

$$\mathbf{E}[B] = \rho \qquad \leq (k-1)s_{\text{max}}$$

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1-B_k)W_k]}{1-\rho}$$

$$\leq \mathbf{E}[W_1] + (k-1)s_{\text{max}}$$
"work of $\leq k-1$ jobs"

Single job's *r*-work is at most *r*

$$E[W_k(r)] = E[W_1(r)] + "r\text{-work of } k - 1 \text{ jobs"}$$

 $\leq E[W_1] + (k-1)r$

Suppose $S \leq s_{\text{max}}$ with probability 1

$$\mathbf{E}[B] = \rho$$

$$\leq (k-1)s_{\text{max}}$$

$$\mathbf{E}[W_k] = \mathbf{E}[W_1] + \frac{\mathbf{E}[(1-B_k)W_k]}{1-\rho}$$

$$\leq \mathbf{E}[W_1] + (k-1)s_{\text{max}}$$
"work of $\leq k-1$ jobs"

Single job's *r*-work is at most *r*

$$\mathbf{E}[W_k(r)] = \mathbf{E}[W_1(r)] + \text{``r-work of } k - 1 \text{ jobs''}$$

$$\leq \mathbf{E}[W_1] + (k - 1)r$$

$$\stackrel{\text{can improve}}{\text{can improve}}$$

SRPT-k and Gittins-k E[T] bounds

Theorem: for SRPT and Gittins,

$$\mathbf{E}[T_{k}] \le \mathbf{E}[T_{1}] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

SRPT-k and Gittins-k E[T] bounds

Theorem: for SRPT and Gittins,

$$\mathbf{E}[T_{k}] \leq \mathbf{E}[T_{1}] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

$$o(\mathbf{E}[T_{1}])$$

SRPT-k and Gittins-k E[T] bounds

Theorem: for SRPT and Gittins,

$$\mathbf{E}[T_{k}] \leq \mathbf{E}[T_{1}] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$

$$o(\mathbf{E}[T_{1}])$$

Corollary: SRPT and **Gittins** minimize E[T] in heavy traffic (in their respective settings)

Model: (β, α) -bounded noise

true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Model: (β, α) -bounded noise

true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Model: (β, α) -bounded noise z/ z/α true size $s \Rightarrow \text{estimated}$ true size $s \Rightarrow \text{estimated size } z \in [\beta s, \alpha s]$

Generated by joint distribution (S, \mathbb{Z})

Goal: design a policy with "good" E[T] for

- any joint distribution (S, Z)
- any values of α , β

Lemma:

$$\mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

Key steps:

1. **SRPT** minimizes mean *r*-work

Lemma: $E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\frac{\alpha}{\beta}r)]$

Key steps:

1. **SRPT** minimizes mean *r*-work

Lemma: $E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\frac{\alpha}{\beta}r)]$

- 1. **SRPT** minimizes mean *r*-work
- 2. Scale minimizes mean noise-scaled-r-work

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

- 1. **SRPT** minimizes mean *r*-work
- 2. Scale minimizes mean noise-scaled-r-work

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

- 1. **SRPT** minimizes mean *r*-work
- 2. Scale minimizes mean noise-scaled-r-work
- 3. Under any policy,

Lemma:

$$\mathbf{E}[W_{\text{SRPT}}(r)] \leq \mathbf{E}[W_{\text{Scale}}(r)] \leq \mathbf{E}[W_{\text{SRPT}}(\frac{\alpha}{\beta}r)]$$

Key steps:

- 1. **SRPT** minimizes mean *r*-work
- 2. Scale minimizes mean noise-scaled-r-work
- 3. Under any policy, r-work $\leq \frac{\alpha}{\beta}r$ -work $\leq \frac{\alpha}{\beta}r$ -work

filters using Scale's rank

instead of SRPT's rank

Lemma:

$$E[W_{SRPT}(r)] \leq E[W_{Scale}(r)] \leq E[W_{SRPT}(\frac{\alpha}{\beta}r)]$$

Key steps:

- 1. **SRPT** minimizes mean *r*-work
- 2. Scale minimizes mean noise-scaled-r-work
- 3. Under any policy, r-work $\leq \frac{\alpha}{\beta}r$ -work $\leq \frac{\alpha}{\beta}r$ -work

filters using Scale's rank

instead of SRPT's rank